INSPECTION OF RIVETED BOILERS

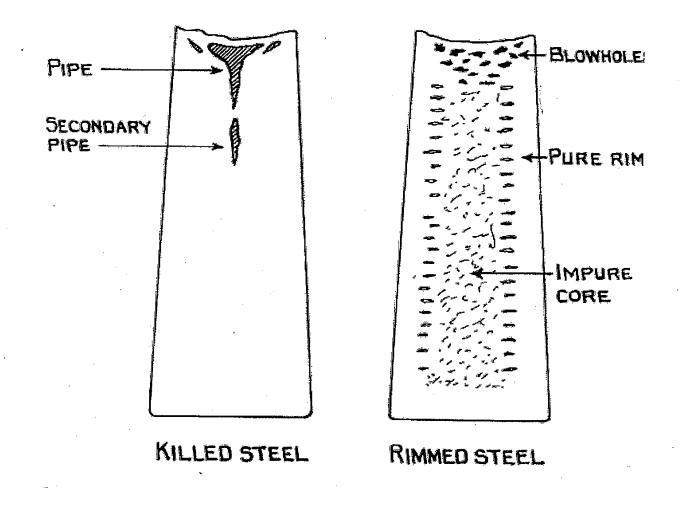
The National Board

October 2018

1

Typical Plate Steel

• S-1-Firebox or flange quality, minimum strength 55,000 psi (1914 ASME code).


• Equivalent to A70 (in 1931)

 SA 212 B split into 516 (fine grain and greater toughness) and 515 (course grain) in 1967

Types of steel ingots

- <u>Rimmed steel</u> ingots have a rim of pure iron material free of defects. Conversely impurities tend to concentrate in the middle section of the ingot. This feature persists through the rolling of a plate. Therefore, the core is less pure than the superficial layers. This provides an advantage for fillet welds, cold forming and rivetting.
- <u>Semi-Killed</u> and <u>Killed</u> steels have no rimming and are homogeneous in nature.

Comparing Ingots

Limitations of Longitudinal Joints (from ASME Sect I 1971)

- Joints of a shell or drum greater than 36"ID shall be butt or double-strap.(PR-16.1)
- Joints of a shell or drum less than or equal to 36"ID may be lap-riveted when MAWP does not exceed 100psi.(PR-16.2)
- Some jurisdictions have a time limit on the life of a riveted lap joint.

Minimum Thickne	ess of Buttstraps
as per 1971 AS	SME Section I
and 2017 S	ect I PR -9
Required Thickness	
	Buttstraps
1/4, 9/32, 5/16, 11/32	1/4
3/8, 13/32	5/16
7/16, 15/32	3/8
1/2, 17/32, 9/16	7/16
5/8, 3/4	1/2
7/8	5/8
1	11/16
1-1/8	3/4
1-1/4	7/8
1-1/2	1

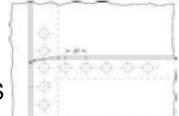

Tables in NBIC Part 2 Supplement S2.10

TABLE \$2.10.3.1

MAXIMUM ALLOWABLE WORKING PRESSURE FOR CYLINDRICAL COMPONENTS (BARREL) For Single-Riveted Lap Joint

TS x t x E/R x FS

R= inside radius of shell

0.5	443	409	380	354	332	313	295	280	266	253	242	231	222	213	204	197	190	183	177	172	166	161	156	152	148	144	140	136	133	130	127	124	121	118
0.49	434	401	372	347	326	306	289	274	261	248	237	227	217	208	200	183	186	180	174	168	163	158	153	149	145	141	137	134	130	127	124	121	118	116
0.48	425	383	365	04-6	319	300	284	269	255	243	232	222	213	204	196	189	182	176	170	165	160	155	150	146	142	138	134	131	128	124	122	119	116	113
0.47	416	384	357	333	312	294	278	263	250	238	227	217	208	200	192	185	178	172	167	161	156	151	147	143	139	135	120	128	125	122	119	116	114	111
948	408	376	349	326	306	288	272	257	245	233	222	213	204	196	188	181	175	169	163	158	153	148	144	140	136	132	129	125	122	119	116	114	111	109
045	866	368	342	319	299	281	206	252	239	228	218	208	199	191	184	177	171	165	160	154	150	145	141	137	133	129	126	123	120	117	114	111	109	106
140	390	360	334	312	292	275	260	246	234	223	213	203	195	187	180	173	167	161	156	151	146	142	138	134	130	126	123	120	117	114	111	109	106	104
043	381	352	327	305	286	269	254	241	229	218	208	199	191	183	176	169	163	158	152	147	143	139	134	131	127	124	120	117	114	112	109	106	104	102
¥	N	4	6	8	0	2	-	12	2	3	0	x	ø	0	5	52	9	7	2	7	8	-	-	28	4	-	80	40	2	2	8	×	8	

TS= tensile strength (55,000) FS= Factor of Safety (6) E= joint eff of 58% FS = Factor of Safety (6

R = Radius of Shell (inside diameter/2)

Types of rivet steel

- SA-31(dropped by ASME for a time but back by popular demand) This spec has better expansion/ductility characteristics than SA-36
- SA-36 created after 1960. ASME Section I 2005 Add. Requires this material to meet all test requirements for SA 31.
- NBIC allows SA 675 as alternative

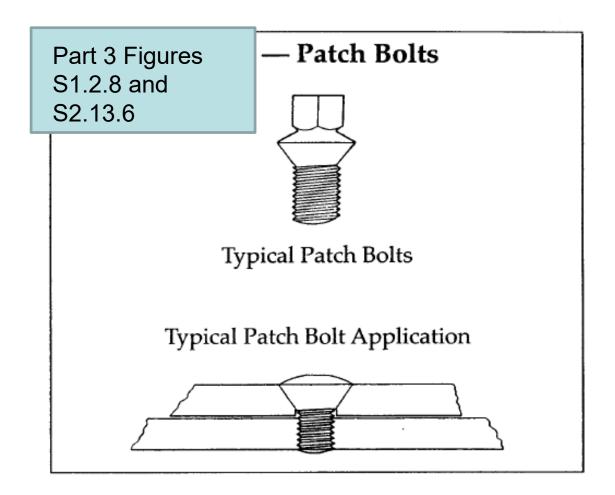
American Standard Large Rivets - I (ASA BI8.4-1960)

RIVETS

ASME B18.1.2 also provides acceptable forms of finished heads This chart is also in NBIC Part 3 Figure S2.13.13.4-a

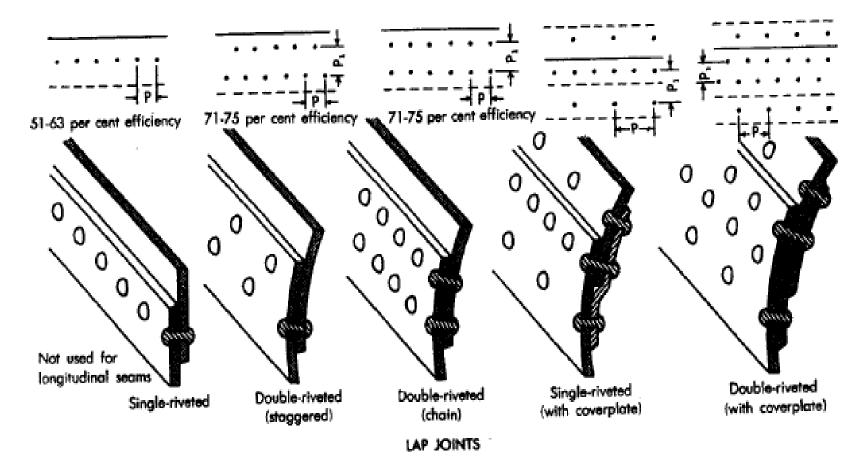
BUTTON HIGH CONE PAN														
	EAD	BI	HEAD	Diam. A	HEAD Height H									
Body Diam.	M'f'd	Driven	Heig M'f'd	M'f'd	Driven	M'f'd	Driven							
Dt	Note 1	Note 2	Note 1	Driven Note 2	Note I	Note 2	Note I	Note 2						
	BUI	TON HE	AD	HIGH BUTTON HEAD (ACORN)										
1/2	0.875	0.922	0.375	0.344	0.781	0.875	0.500	0.375						
5%	1.094	1.141	0.469	0.438	0.969	1.062	0.594	0.453						
34	1.312	I.375	0.562	0.516	1.156	1.250	0.688	0.531						
3%	1.531	1.594 1.828	0.656	0.609 0.688	1.344	1.438 1.625	0.781 0.875	0.609						
1 11/8	1.750 1.969	2.062	0.750	0.088	1.531 1.719	1.025	0.875	0.688 0.766						
178	2.188	2.281	0.938	0.859	1.906	2.000	1.062	0.844						
174	2.406	2.516	I.03I	0.953	2.094	2.188	1.156	0.938						
11/2	2.625	2.734	1.125	1.031	2.281	2.375	1.250	I.000						
156	2.844	2.969	1.219	1.125	2.469	2.562	1.344	1.094						
134	3.062	3.203	1.312	1.203	2.656	2.750	1.438	1.172						
	cc	NE HEA	D		PAN HEAD									
3/2	0.875	0.922	0.438	0.406	0.800	0.844	0.350	0.328						
58	1.094	1.141	0.547	0.516	1.000	I.047	0.438	0.406						
34	1.312	1.375	0.656	0.625	1.200	1.266	0.525	0.484						
7⁄8	1.531	1.594	0.766	0.719	1.400	1.469	0.612	0.578						
I	1.750	1.828	0.875	0.828	1.600	1.687	0.700	0.656						
11/8	1.969	2.063	0.984	0.938	1.800	1.891	0.788	0.734						
11/4	2.188	2.281	1.094	1.031	2.000	2.094	0.875	0.812						
138 1½	2.406	2.516	I.203	I.141	2.200	2.312	0.962	0.906						
172	2.625 2.844	2.734 2.969	I.312 I.422	I.250	2.400	2.516 2.734	1.050 1.138	0.984 1.062						
198	3.062	3.203	I.422 I.53I	I.344 I.453	2.800	2.734	1.130	I.14I						
179	3.002	3,203	1.331	1.455	2.000	2.930	1.223	1.141						

† Tolerance for diameter of body is plus and minus from nominal and for $\frac{1}{2}$ -in. size equals +0.020, -0.022; for sizes $\frac{5}{6}$ to 1-in., incl., equals +0.030, -0.025; for sizes $\frac{1}{6}$ and $\frac{1}{4}$ -in. equals +0.035, -0.027; for sizes $\frac{1}{6}$ and $\frac{1}{2}$ -in. equals +0.040, -0.030; for sizes $\frac{1}{6}$ and $\frac{1}{2}$ -in. equals +0.040, -0.030; for sizes $\frac{1}{6}$ and $\frac{1}{6}$ -in. equals +0.040, -0.037.

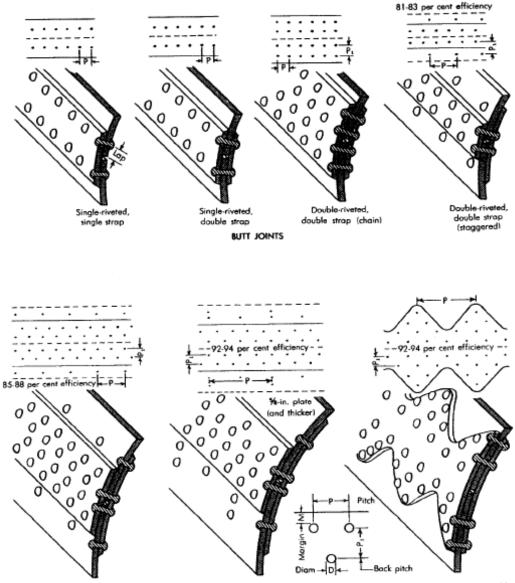

Note I. Basic dimensions of head as manufactured.

Note 2. Dimensions of manufactured head after driving and also of driven head.

Note 3. Slight flat permissible within the specified head-height tolerance.


The following formulas give the basic dimensions for manufactured shapes: Button Head Rivets: A = 1.75D; H = 0.75D; G = 0.885D. High Button Head: A = 1.50D + 0.031; H = 0.75D + 0.125; F = 0.75D + 0.281; G = 0.75D - 0.281; M = 0.50; N = 0.094. Come Head: A = 1.75D; H = 0.875D; B = 0.938D. Pan Head: A = 1.60D; B = D; H = 0.70D. The length (L), in all cases, is measured from the largest diameter of the bearing surface of the head, to the point in a line parallel with the axis of the rivet.

Patch Bolts



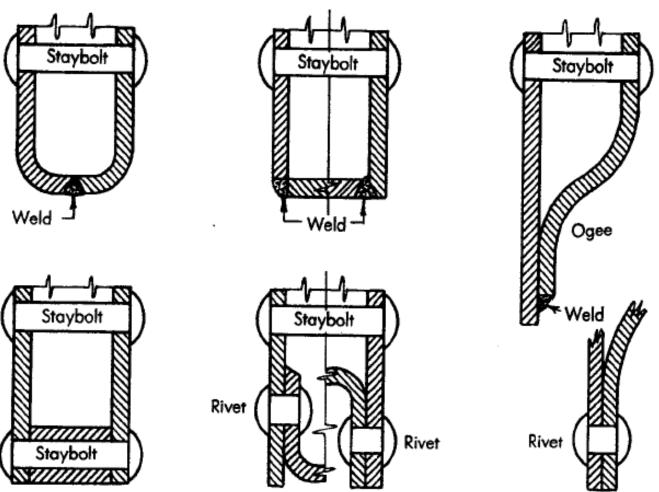
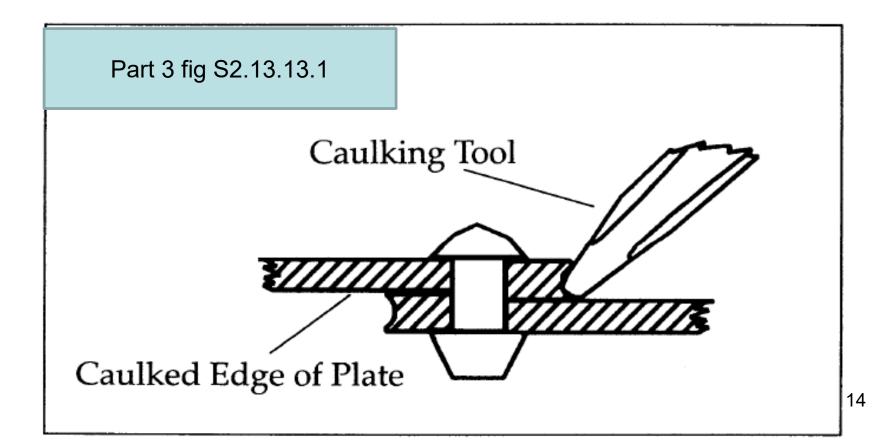
Types of Lap joints

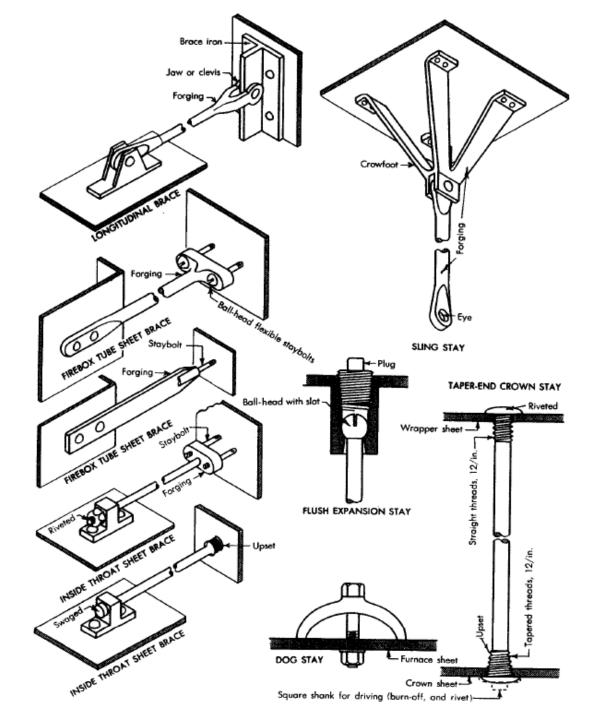
RIVETING

Types of Buttstrap joints

12

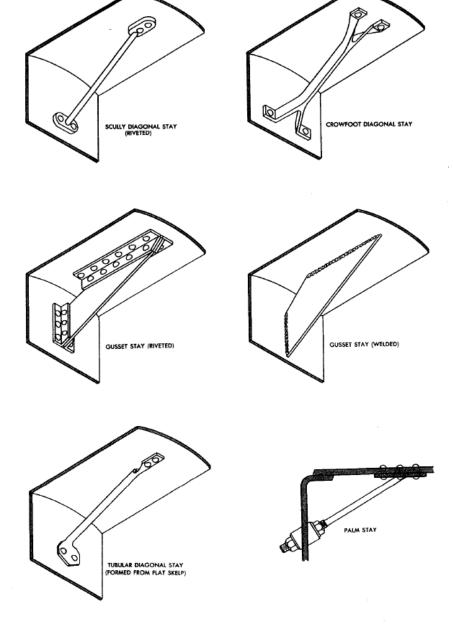
Mud rings

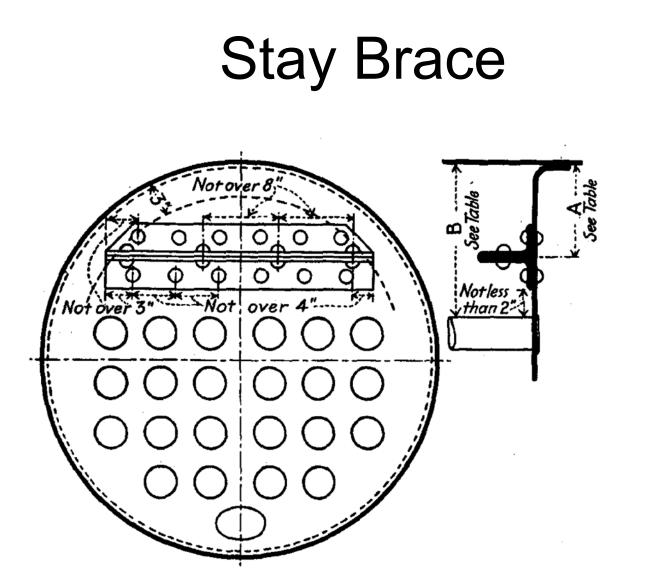
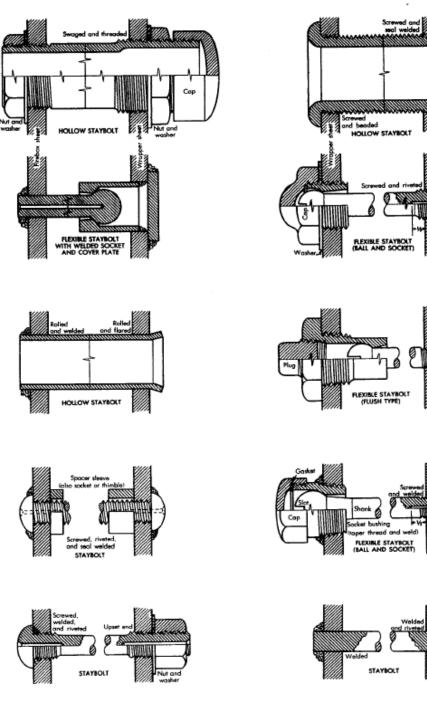

Fig. 22.14 Staybolting, riveting, and welding at firebox boiler mud ring

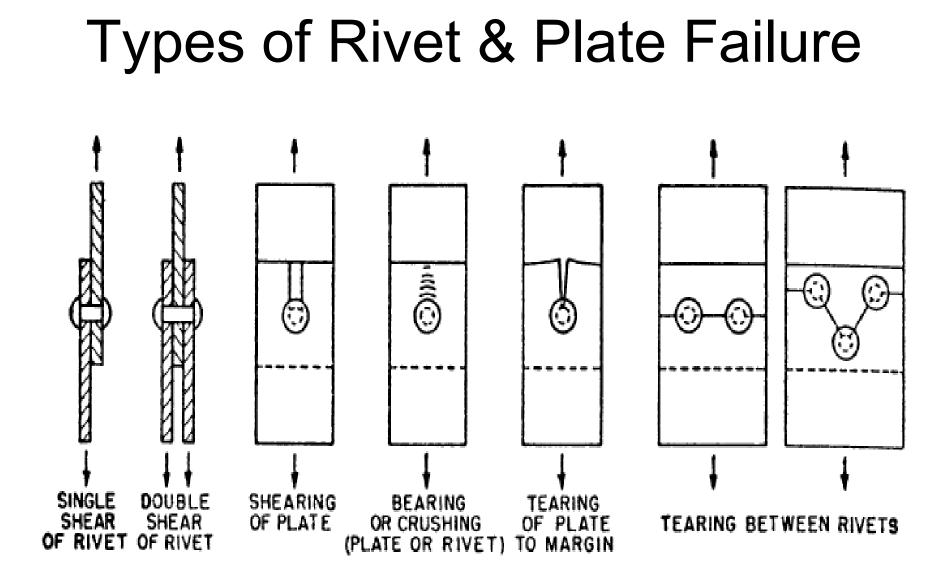
Caulking tool

Used to seal the joint from a corrosive atmosphere. This important to prevent crevice corrosion cracking.



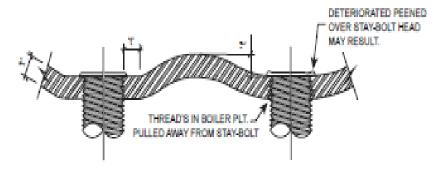
Stays and Braces


FIG. 16 · STAYING OF HEAD WITH STEEL ANGLES IN TUBULAE BOILER

381

Staybolts



Intergranular corrosion cracking at rivet holes also.

Bulges

FIGURE \$2.10.4.2-a

POINT OF TANGENCY OF THE CURVE IN A BULGE WITHIN 't' OF THE EDGE OF THE STAYBOLT

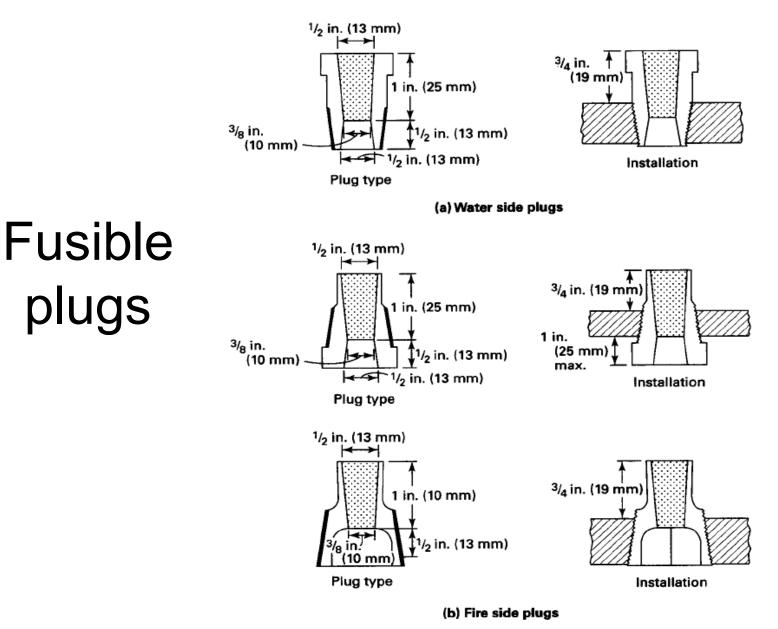


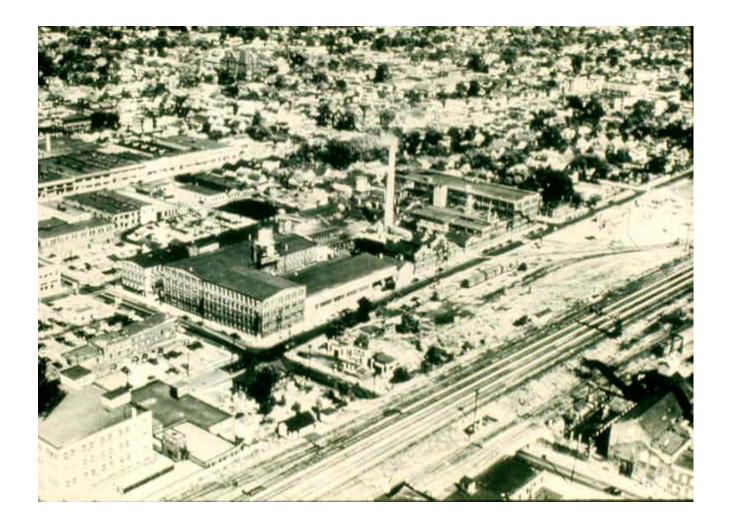
FIGURE \$2.10.4.2-b

CONTINUOUS BULGING WHERE ONLY SOME BULGES EXCEED ALLOWABLE DEFORMATION

2001 0201101.1

GENERAL NOTE: All dimensions minimum unless otherwise specified

FIG. A-10 TYPICAL FORMS OF FUSIBLE PLUGS


Leaks

- *Leaking rivets should be re-caulked.
- *Small cracks are drilled at each end and patched (or welded).
- *Joints should be re-caulked (welding should be a last resort and should be minimized).
- Leaking tell tale holes in stays indicate a broken stay
- *All of these methods should be approved by the jurisdiction before work begins.

Weld repairs

- Small seal welds instead of caulking are OK with a qualified welder and procedure. However, heat treatment may be required.
- Full penetration welds should be monitored closely because of the potential of welding to rimmed steel.
- Dye penetrant exam before welding is recommended

Before welding the riveted lap joint

After welding the riveted lap joint

