NIOSH Investigations of Surgical Plume and Smoke Hazards

Bradley King, PhD, MPH, CIH
Industrial Hygienist
NIOSH Western States Division

Cal/OSHA Advisory Meeting for Protection of Employees from Surgical Plume and Smoke
Oakland, CA
November 8, 2018

Disclaimer

The findings and conclusions in this report are those of the author(s) and do not necessarily represent the official position of the National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention. Mention of any company or product does not constitute endorsement by NIOSH.

Background

- Surgical plume: focus of attention as a potential occupational hazard to operating room (OR) personnel
 - surgical plume particles
 - chemical by-products produced
 - possible infectious agents aerosolized

- widespread use of surgical plume-producing equipment
- large number of OR personnel exposed to plume
- concern for acute and chronic health impacts

Background

- Several energy-based instruments, including:
 - Electrosurgical unit (ESU)
 - Harmonic scalpel
 - Carbon dioxide (CO₂) and other lasers
 - Neutral plasma coagulator

- Commonality: destruction of tissue through energy applied to it and resultant production of considerable quantities of plume
Background

Each year, an estimated 500,000 workers, including surgeons, nurses, anesthesiologists, and surgical technologists, are exposed to laser or electrosurgical smoke.

<table>
<thead>
<tr>
<th>NIOSH HHEs (1985–1990)</th>
</tr>
</thead>
<tbody>
<tr>
<td>University of Utah, UT (1990)</td>
</tr>
<tr>
<td>Laser surgical procedures:</td>
</tr>
<tr>
<td>- mice tumors in animal laser laboratory</td>
</tr>
<tr>
<td>Chemical compounds detected:</td>
</tr>
<tr>
<td>- formaldehyde detected in all but one sample</td>
</tr>
<tr>
<td>- short-term samples (0.21–0.44 ppm) sufficient to cause irritation in some sensitive individuals</td>
</tr>
<tr>
<td>- cyanide detected below OEL</td>
</tr>
<tr>
<td>- direct reading tube at laser irradiation site: 100 ppm for hydrogen cyanide</td>
</tr>
<tr>
<td>Conclusion: potential hazard from exposures on basis of mutagenicity and acute health effects reported</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NIOSH HHEs (1985–1990)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bryn Mawr Hospital, PA (1988)</td>
</tr>
<tr>
<td>Electrocautery knife use during reduction mammoplasty surgeries</td>
</tr>
<tr>
<td>Health effects reported:</td>
</tr>
<tr>
<td>- headache, nausea, upper respiratory and eye irritation</td>
</tr>
<tr>
<td>Particle mass concentrations:</td>
</tr>
<tr>
<td>- range: 0.4–9.4 milligrams per cubic meter of air (mg/m³)</td>
</tr>
<tr>
<td>- mean: 2.75 mg/m³</td>
</tr>
<tr>
<td>- No specific organic vapors, other than isopropanol, detected</td>
</tr>
<tr>
<td>- No polynuclear aromatic compounds (PNAs) or nitrosamines detected</td>
</tr>
<tr>
<td>- Solvent extracts of airborne particles were mutagenic to the Salmonella typhimurium TA 98 strain</td>
</tr>
<tr>
<td>Conclusion: potential hazard from exposures on basis of mutagenicity and acute health effects reported</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NIOSH HHEs (1985–1990)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NIOSH HHEs (1985–1990)</td>
</tr>
<tr>
<td>NIOSH Hazard Control (1996)</td>
</tr>
<tr>
<td>Falls Church, VA; Charlotte, NC; and Dunedin, FL hospitals:</td>
</tr>
<tr>
<td>- symptom questionnaire (66–92% response rate)</td>
</tr>
<tr>
<td>- surgical nurses, anesthetists, and surgical technicians</td>
</tr>
<tr>
<td>- at least 1 symptom associated with plume exposure: 36–52%</td>
</tr>
<tr>
<td>- eye irritation: 10–24%</td>
</tr>
<tr>
<td>- burning of nose or throat: 13–18%</td>
</tr>
<tr>
<td>- coughing: 10–24%</td>
</tr>
<tr>
<td>- nasal symptoms: 3–16%</td>
</tr>
<tr>
<td>- asthma or asthma-like symptoms after beginning work in OR: 2–24%</td>
</tr>
<tr>
<td>- personal breathing zone (PBZ) and area air samples collected:</td>
</tr>
<tr>
<td>- 15 procedures over 4 days at each hospital</td>
</tr>
<tr>
<td>- sampled for: volatile organic compounds (VOCs), acrolein, phenol, creosote, hydrogen cyanide, formaldehyde, acetaldehyde, polycyclic aromatic compounds, carbon monoxide, direct-reading particle monitors</td>
</tr>
<tr>
<td>- results: quantified formaldehyde, acetaldehyde, toluene, but well below applicable OELs</td>
</tr>
</tbody>
</table>
NIOSH HHEs (2001–2006)

Mastectomy 1: particle number concentrations

There have been too few studies, each accounting for different tissue types, laser devices, and operational parameters to draw any definitive conclusions with respect to the true range of particulate matter diameter. Furthermore, several of these studies sampled at locations that were within centimeters of the operative site; thus, it is not clear how the size distributions measured correspond to those experienced in the breathing zone of laser operators. The generation of a more comprehensive data set that is representative of the various possible exposure scenarios is imperative for designing adequate control strategies.

Surgical Plume Particle Characterization Study

Aim 1:
- Characterize surgical plume particles at the point of generation during experimental trials of plume generation

Aim 2:
- Characterize surgical plume particle at personal breathing zone (PBZ) level at the surgical table during experimental trials of plume generation

Aim 3:
- Measure surgical plume particle concentrations at locations reflective for exposures of operating room personnel during actual surgical procedures

Aim 1: Point of Generation

- Surgical instruments used for plume generation:
 - electrosurgical unit (ESU)
 - harmonic scalpel
 - carbon dioxide (CO2) laser
 - neutral plasma coagulator
- Skin tissue
- Measurements at point of generation:
 - particle size distribution
 - particle number concentration
 - respirable mass concentration estimates
 - particle-adsorbed polycyclic aromatic hydrocarbons (pPAHs)
 - active surface area measurements
- Measurements at two locations in OR periphery:
 - particle number concentrations

- Falls Church, VA; Charlotte, NC; and Dunedin, FL hospitals:
 - Recommendations:
 - implement engineering controls during procedures where surgical smoke is produced
 - combination of general room ventilation and LEV positioned as close as possible to the point of smoke production
 - report instances of health symptoms thought to be associated with exposure to surgical smoke to the hospital's occupational health staff
Aim 1: Point of Generation

- Count median diameter:
 - Smallest: 0.034 µm (harmonic scalpel)
 - Largest: 0.095 µm (ESU)

- GM particle number concentrations:
 - Lowest: 711,000 p/cm³ (harmonic scalpel)
 - Highest: 15,200,000 (neutral plasma coagulator) and 76,900,000 p/cm³ (CO₂ laser)

- Reductions in concentrations when built-in LEV used for ESU:
 - Point of generation: 76–87%
 - Circulating nurse’s desk: 37–46%
 - Near exhaust vent: 60–69%

- GM respirable mass concentrations:
 - Lowest: 0.0629 mg/m³ (neutral plasma coagulator)
 - Highest: 158 mg/m³ (CO₂ laser)

- Ratio of GM pPAH/GM active surface area
 - Lowest: 0.05 (neutral plasma coagulator) and 0.09 (harmonic scalpel)
 - Highest: 0.32–0.93 (ESU)

Aim 2: PBZ

- Surgical instruments used for plume generation:
 - Electrosurgical unit (ESU)
 - Harmonic scalpel
 - Carbon dioxide (CO₂) laser
 - Neutral plasma coagulator

- Skin and fat tissue

- Measurements at PBZ of surgeon:
 - Particle size distribution
 - Particle number concentration

- Measurements in OR periphery:
 - Particle number concentrations
Aim 2: PBZ

- Count median diameter:
 - Smallest: 0.028–0.038 µm (harmonic scalpel) [vs. 0.034 µm]*
 - Largest: 0.088–0.190 µm (ESU) [vs. 0.095 µm]

- GM particle number concentrations:
 - Surgeon:
 - Lowest: 200–500 p/cm³ (harmonic scalpel) [vs. 711,000 p/cm³]
 - Highest: 68,000–109,000 p/cm³ (neutral plasma coagulator) [vs. 15,200,000 p/cm³]
 - Periphery of room:
 - Lowest: 50–500 p/cm³ (harmonic scalpel)
 - Highest: 37,000–67,000 p/cm³ (neutral plasma coagulator)

*Italicized data indicate results from point of generation measurements for comparison.

Aim 3: Surgeries

- Surgical suite field studies:
 - Hospital operating room in NY State
 - ~22-25 air changes per hour (ACH)

- Worker focus:
 - Primary: near the surgical table
 - Secondary: at the periphery of the room

- Selected procedures:
 - Two plume-producing instruments (electrosurgical unit and neutral plasma coagulator) and multiple tissue cuts

- Direct-reading monitoring:
 - Before and throughout the course of the procedure.
Specific Aim 3: Surgeries

Sampling in Medical Office Environment

Recent Research Articles

Surgical Plume Particle Characterization Study

- Recommendations:
 - develop employer policies for utilizing local exhaust ventilation controls when using equipment that produces surgical plume
 - train hospital and medical office staff on the potential hazards of surgical plume and control methods that can be used to minimize exposures
 - ensure operating rooms achieve recommended minimum total and outdoor air changes per hour and are maintained under positive pressure relative to adjacent corridors

- Surgical smoke generated from human tissue in an unoccupied operating room using an electrocautery device for 15 min
 - (1) without LEV control
 - (2) control with a wall irrigation suction unit with an in-line ultra-low penetration air filter
 - (3) control with a smoke evacuation system

- surgical smoke caused approximately 25% cell death in the SAEC and 40% in the RAW cells compared to background and field blank toxic in both the SAEC and RAW although to varying degrees

- average count median diameters: 0.092 µm
- average particle number concentrations: 900–54,000 p/cm³
- acetaldehyde, ethanol and isopropyl alcohol detected in every sample with higher concentrations compared to other VOCs

- Recent Research Articles

- Recent Research Articles

- Recent Research Articles

- Recent Research Articles

- Recent Research Articles

- Recent Research Articles

- Recent Research Articles

- Recent Research Articles

- Recent Research Articles

- Recent Research Articles

- Recent Research Articles

- Recent Research Articles

- Recent Research Articles

- Recent Research Articles

- Recent Research Articles

- Recent Research Articles

- Recent Research Articles

- Recent Research Articles

- Recent Research Articles

- Recent Research Articles

- Recent Research Articles

- Recent Research Articles

- Recent Research Articles

- Recent Research Articles

- Recent Research Articles

- Recent Research Articles

- Recent Research Articles

- Recent Research Articles

- Recent Research Articles

- Recent Research Articles

- Recent Research Articles

- Recent Research Articles

- Recent Research Articles

- Recent Research Articles

- Recent Research Articles

- Recent Research Articles
Recent Research Articles

 - ethanol and isopropyl alcohol were predominantly detected in every sample with relatively high concentrations compared to other VOCs
 - average ratios of LEV controls to without LEV control ranged 0.24–0.33 (particle number concentration) and 0.14–0.31 (particle mass concentration)

NIOSH HCW Survey: Surgical Smoke

- Surgical smoke questions:
 - control practices for those who work within 5 feet of a source
 - years exposed
 - hazard training
 - workplace procedures and guidelines that address surgical smoke from laser surgery and/or electrosurgery

NIOSH HCW Survey

 - anonymous, web-based
 - multi-module:
 - aerosolized medications
 - anesthetic gases
 - antineoplastic drugs
 - chemical sterilants
 - high level disinfectants
 - surgical smoke

NIOSH HCW Survey: Surgical Smoke

- Study population (n=4,533 respondents):
 - members of professional practice organizations representing healthcare occupations which routinely come in contact with surgical smoke, including:
 - nurse anesthetists
 - anesthesiologists
 - surgical technologists and assistants
 - perioperative nurses

NIOSH HCW Survey: Surgical Smoke

- Results: Local Exhaust Ventilation (LEV)
 - always used: 47% L, 14% E
 - never used: 31% L, 59% E
 - recommendation:
 - have employees use LEV for all procedures where surgical smoke is generated

- Results: Hazard training
 - never received: 49% L, 44% E
 - received >12 months ago: 29% L, 32% E
 - recommendation:
 - train employees on hazards and methods to minimize exposure prior to working in areas where surgical smoke is generated

NIOSH HCW Survey: Surgical Smoke

Results: Employer procedures

- No employer standard procedures addressing surgical smoke hazards: 31% L, 29% E
- Unknown if employer had standard procedures: 39% L, 40% E

Recommendation:
- Ensure procedures that address the hazards of surgical smoke are available

NIOSH HCW Survey: Surgical Smoke

Results: Personal protective equipment

- N95 always used: 6% L, 1% E
- N95 never used: 90% L, 98% E
- Laser & surgical masks used: 90% L, 98% E

Recommendation:
- Use a properly fitted, filtering facepiece respirator (e.g., N95) rather than a surgical or laser mask, especially in situations where LEV is lacking

Health Effects Research

- Few well-designed, large scale epidemiological studies of HCW populations investigating extent of health effects from plume exposure
- Animal model studies of effects in the literature
- Smaller comparative studies and questionnaires shown that exposure associated with acute eye and respiratory irritation, at minimum
- Handful of case reports of laryngeal papillomas

Vital to continue to investigate the risk of health effects that healthcare workers are under

Acknowledgements

- Dr. Allison Tepper, Ms. Teresa Seitz, Dr. Nancy Burton, Dr. Andrea Steege, Jim Bolano, Dr. Marie Sweeney, NIOSH/DSHEFS
- Dr. Doug Evans, NIOSH/DART
- Dr. Terri Pierce, formerly of NIOSH/DRDS
- Mr. Max Kiefer, NIOSH/WSD
- Dr. Jennifer Sider et al., Dr. Taekhee Lee et al., NIOSH/HELD
- Dr. Peter Lees, Johns Hopkins Bloomberg School of Public Health
- Dr. Denis Branson, Fayetteville, New York:

Thank You

Bradley.King@cdc.hhs.gov