Lung cancer risk for diesel exhaust: meta-analysis of 3 cohorts (2 truck drivers, 1 underground miners, pre-2007)

Exposure setting	Average EC exposure (µg/m ³)	Excess lifetime risk through age 80 years (per 10,000)
Worker exposed, age 20–65 years	25	689
Worker exposed, age 20–65 years	10	200
Worker exposed, age 20–65 years	1	17
eneral public, age 5–80 years	0.8	21

Based on linear risk function, $\ln RR = 0.00098 \times exposure$, assuming a 5-year lag, using age-specific (5-year categories) all cause and lung cancer mortality rates from the United States in 2009 as referent.

Exposure-Response Estimates for Diesel Engine Exhaust and Lung Cancer Mortality Based on Data from Three Occupational Cohorts <u>https://ehp.niehs.nih.gov/1306880/</u>

Non-cancer effects of diesel exhaust (particulate and NO2)

Table 1. Key Experimental Data on Health Effects and Dose-Responses of Diesel Exhaust (Adapted From Taxell and Santonen, 2016)

Endpoint and Type of Study	New Technology Diesel Engines	Older Technology Diesel Engines			
	With Exhaust After Treatment*	With Particle Filter/Trap	Without Exhaust After Treatment		
Human inhalation studies (1–2 h)					
Inflammatory changes in BAL/BW, increased airway resistance	No data identified	No data identified	LOAEL: 100 µg DEP/m ³ (0.2-0.4 ppm NO ₂)		
Sensory irritation	No data identified	No data identified	LOAEL: 100-300 µg DEP/m3 (0.2-1.3 ppm NO2)		
Reduced response to vasodilators	No data identified	NOAEL: 3.4 ppm NO ₂ (7 µg DEP/m ³)	LOAEL: 250-350 µg DEP/m ³ (0.2-1.6 ppm NO ₂)		
Increased ischemic burden	No data identified	No data identified	LOAEL: 300 µg DEP/m ³ (1.0 ppm NO ₂) ^b		
Animal inhalation studies					
Histopathological changes in lungs (104–130 week, rat)	NOAEL: 0.9 ppm NO ₂ (5 μg DEP/m ³); LOAEL: 4.2 ppm NO ₂ (12 μg DEP/m ³)	LOAEL: 1.1 ppm NO ₂ (10 µg DEP/m ³)	LOAEL: 210 μg DEP/m 3 (0.2 ppm NO ₂)		
Mild decrease in pulmonary function (104–130 week, rat)	NOAEL: 0.9 ppm NO ₂ (5 µg DEP/m ³); LOAEL: 4.2 ppm NO ₂ (12 µg DEP/m ³)	No data identified	NOAEL: 2 000 μg DEP/m ³ (1.5 ppm NO ₂) LOAEL: 3 500 μg DEP/m ³ (0.3 ppm NO ₂)		
Lung tumors (104–130 week, rat)	NOAEL: 4.2 ppm NO ₂ (12 µg DEP/m ³)	No lung tumors (original conc. 6 600 µg DEP/m ³ , no data on final exposure levels)	NOAEL: 800–1000 µg DEP/m ³ (0.3 ppm NO ₂) LOAEL: 2 200 µg DEP/m ³ (approximately 1 ppm NO ₂)		
DNA damage in lungs	Negative (comet)	No data identified	Positive (induction of 8-OHdG, gpt, and lacl point mutations, DNA strand breaks and adducts)		
Systemic genotoxicity	Negative (8-OHdG, micronuclei)	No data identified	Mostly negative		
In vitro studies					
Genotoxicity	No data identified	Mutagenic to bacteria (limited data)	Mutagenic to bacteria and mammalian cells (DEP extracts)		

NIOSH, 2009: Occupational exposure measurements to diesel exhaust from on-road vehicles: elemental carbon (EC, $\mu g/m^3$), submicron and respiratory particulate matter (PMs and PMR, $\mu g/m^3$), and CO, NO and NO₂ (ppm)

Description	Ageni	Duration		AM (SD)	GM (GSD)	Location	Year	Reference
Drivers								
Truck - local	ECS	>4	56	5 (0.9)	09(4.0)	US	1980s	(Zaebst et al. 1991)
Truck - local	ECS	>4	576 (a)	2 (2.3)	1 (2.8)	US	2001-2005	(Davis. et al
Truck - local	ECR	>4	5	75	6 (1 6)	US	1999	(Gamhick, et al. 2002)
Truck - local	ECNI	>4	4 (a)	5 (0.1)	5 (1.0)	US	1985	(NIOSH 1986)
Truck - long haul	ECs	>4	72	5 (0.4)	0.4 (3.8)	US	1980s	(Zaebst et al 1991)
Truck - long haul	ECS	>4	349 (a)	1 (0.8)	1 (2.3)	LIS	2001-2005	(Davis et al 2007)
Truck - long haul	ECR	>4	5	52	4 (2.0)	US	1999	(Garshick et al 2002)
Truck - long haul	ECNI	>4	4 (a)	22 (13.2)	19 (2.0)	US	1985	(NIOSH 1986)
Truck	EC1	1->4	3	10 (6 0)	9 (1.8)	US	1992	(NIOSH 1993)
Bus	ECR	>4	5	201	9(1.3)	Estoma	2002 (p)	(Boffetta et al 2002)
Bus	ECR	>4	39	20(13)	1.4 (3.3)	US	2002 (p)	(Ramachandran et al. 2005
Bus	ECI	>4	4	2>LOD: 11-20		US	1998	(NIOSH 1998)
But and truck	EC1	>4	20	118	6(2.9)	Sweden	2002-2004	(Lewne et al. 2007)
Taxi	EC1	>4	8	28	7 (1.6)	Sweden	2002-2004	(Lewne et al. 2007)
Mechanics								
Truck	ECs	>4	80	27 (4.1)	4 (12.1)	US	1980s	(Zachst et al. 1991)
Truck	ECR	>4	10	24	4 (1.6)	US	1999	(Gambick et al. 2002)
Ambulance depot	ECR	>4	3	31	29 (1.6)	UK	2000(p)	(Groves et al. 2000)
Bus	ECR	×	53	39	31 (2 1)	UK	2000(p)	(Groves et al 2000)
Bus	ECR	×	15	395	38 (1.3)	Estonia	2002 (p)	(Boffetta et al. 2002)
Truck bus (~mspection)	EC1	×	40	21 ⁶	11 (3.2)	Sweden	2002-2004	(Lewne et al 2007)
THE OWN (MAPLEMENT)	act	- 4		6.1	1. (2.27)	VIICOLD	FAAF FAAA	TRANSME VI BA AUS I
Others								
Firefighter	ECI	>4	27	24 (max)		US	2002(p)	(Roegner, et al 2002)
Fuefighter	ECI	>4	18	40 (20.3)	35 (1.7)	US	1995(p)	(Echt, et al., 1995)
Fuefighter	ECI	>4	12	10 (max)		US	1997	(NIOSH 1998)
Fuelighter	ECI	<1	8	ND	ND	US	1998	(NIOSH 1998)
Service worker bus	EC]	>4	4	2>LOD 0 3-15		US	1998	CNIOSH 1998)
Vehicle testing	ECR	>4	11	11	11 (1.8)	UK	2000(p)	(Groves et al 2000)
Parking attendant (booth)	ECR	>4	34 (n)	11(06)	1.1 (1.8)	US	2002 (p)	(Ramachandran, et al. 3005)
Drivers								
Taxa Z.	PMS	>4	8	12 ^g	11 (1.3)	Sweden	2002-2004	(Lenne et al 2007)
Bus and truck	PMS	>4	20	15 ²	14 (1.6)	Sweden	2002-2004	(1.exme et al 2007)
Truck - local	PMR	>4	5	129 ^e	120 (1.5)	US	1999	(Gambuck et al 2002)
Truck - local	PMR	>4	545 (a)	28 (39)	20 (2.1)	US	2001-2005	(Davis et al. 2007)
Fruck - long baul	PMR	>4	4	56 ^e	55 (1.2)	US	1999	(Gambick et al. 2002)
Fruck - long haul	PMR	>4	334 (a)	53 (328)	23 (2.5)	US	2001-2005	(Davis et al 2007)
Bus	PMR	>4	5	2003	580 (1.5)	Estonia	2002 (p)	(Boffetta et al 2002)
Mechanics				#			(F.)	
Truck bus (+inspection)	PMs	>4	40	28 ²	23 (1.9)	Sweden	2002-2004	(Lewns et al. 2007)
Truck	PMR	×	10	2035	152 (2.1)	US	1999	(Garabick et al. 2002)
Bue		~	15	2001	1020 (1.6)	Estonia	2002 (p)	(Boffetta et al 2002)
	PMR				10-0(10)			
3us	PMR	NI	232	240 (260)	224 (1 4)	US	1987 (p)	(Gamble et al 1987)
Bus	PMR	>4	41	267	224 (1.8)	UK	2000(p)	(Groves et al 2000)
Ambulance depot	PMR	>4	3	127	118 (1 6)	UK	2000(p)	(Groves et al 2000)

Others								
Vehicle testing	PMR	>4	10	156	149 (1.4)	UK	2000(p)	(Choves et al. 2000)
Driver								
Truck – local	NO	>4	4 (a)	0.23 (0.05)	0.22(1.3)	US	1985	(NIOSH 1986)
Truck - long haul	NO	24	4 (a)	0.27 (0.10)	0.25 (1.5)	US	1985	(NIOSH 1986)
Driver								
Taxi	NO ₂	>4	12	0.032	0.02 (0.7)	Sweden	2002-2004	(Lewne et al. 2007)
Bus and truck	NO2	>4	30	0.032	0 03 (0 7)	Sweden	2002-2004	(Lewns et al 200")
Truck	NO2	>4	40	0 04 (0 02)		Sweden	1997-1999	(Lewne et al. 2006)
Taxi	NO	24	20	0 03 (0 01)		Sweden	1997-1999	(Lewne et al 1006)
Bus	NO2	>4	42	0.03 (0.01)		Sweden	1997-1999	(Lenne et al. 2006)
Mechanics								
Truck bus (-inspection)	NO2	>4	60	0.05 ^g	0.05 (0.9)	Sweden	2002-2004	(Lesvne et al 2007)
Bus	NOT	NI	232	0.24 (0.26)		US	1987 (p)	(Gamble et al 1987)

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3073453/

NISOH, 2012: Measurement of Area and Personal Breathing Zone Concentrations of Diesel Particulate Matter (DPM) during Oil and Gas Extraction Operations, including Hydraulic Fracturing

Personal Breathing Zone Measurements of Diesel Particulte Matter (DPM as μ g/m³ Elemental Carbon) by Operation Arithmetic (AM) and Geometric (GM) Means as Time Weighted Averages

Total # of samples	$AM \pm SD^*$	GM±SE ^{**}	Range	95% CI
				(lower/upper)
33	11.9±11.3	8.4± 1.1	1.4-52	6.2/11
10	7.4±5.3	5.7±1.4	2.0-18	3.3/10
6	5.4±3.8	3.0±2.1	0.1-11	0.5/18
10	10.00	6.010.0	0.1.52	5 2/9 0
	33 10 6	Total # of samples AM ±SD 33 11.9±11.3 10 7.4±5.3 6 5.4±3.8	Total # of samples AM ±SD GM±SE 33 11.9±11.3 8.4±.1.1 10 7.4±5.3 5.7±1.4	Total # of samples AM ±SD GM±SE Range 33 11.9±11.3 8.4±.1.1 1.4-52 10 7.4±5.3 5.7±1.4 2.0-18 6 5.4±3.8 3.0±2.1 0.1-11

Area Measurement Diesel Particulate Matter (DPM as µg/m³ Elemental Carbon) by Operation, Arithmetic (AM) and Geometric (GM) Means as Time Weighted Average (TWA)

Operation	Total # of samples	AM ±SD*	GM±SE**	Range	95% CI
					(lower/upper)
Completions	30	18.5±16.6	9.5±.2.7	0.1-68	5.3/17
Drilling Operations	21	16.2±15.0	11.0±2.2	3.0-51	7.2/17
Servicing Operations	4	8.4±8.4	4.4±3.2	0.8-18	0.4/47
Total	55	16.9 ±15.5	9.5±1.7	0.1-68	6.6/13.6

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5957075/