

Pressure Relief Device Inspection

Review of NBIC Part 2, par. 2.5

Prepared by: J. F. Ball, P. E. Updated November 2016

1

Purpose of Pressure Relief Devices

- Last line of defense against overpressure condition
- Overpressure could lead to failure of the boiler or pressure vessel (PRI)
- Protection for both persons and property
- PRDs are *not* designed as pressure control devices!

Keys to In-service Inspection

- Safety considerations
- Pressure relief device and PRI data
- Device condition
- Installation condition
- Testing and Operational Inspection

Safety Considerations

- High pressure discharge may have considerable energy released
- High temperatures may be involved (steam)
- High levels of noise encountered during testing

First look at application

and PRI nameplate

- Determine MAWP and design temperature
- Determine steaming capacity or heating surface for boilers
- What is the service fluid?

PRI Data

Device Data

HV

Correct Code Stamp for application

- Power and heating boilers
- Low pressure steam heating boilers, hot water heating boilers, hot water heaters

UV (UD) • Unfired pressure vessel service

ASME Certification Mark with Designator

Х

- New ASME Certification Mark
- Replaced previous Code stamps after 2013
- " "Designator" gives service
- V, HV, UV, or UD for pressure relief devices

Device Data – Set Pressure

Inspect pressure relief device nameplate data

- Set pressure for single device cannot exceed MAWP
- Set pressure of *high set device* where multiple devices are installed may exceed MAWP
 - +3% for Section I boilers
 - +5% for heating boilers
 - +5% for pressure vessels
 - +10% for pressure vessel fire case
- Section I valves must have spread less than 10%

Repair plate could change data on original plate

Valve may also have "test only" nameplate

- Will show date of test
- Responsible party
- Gives traceability if valve reset

2013 ASME Code, Section I, Appendix III included "CRITERIA FOR REAPPLICATION OF A CERTIFICATION MARK"

- Not practically written for pressure relief valves
- NBIC Part 3, par. 5.12.5 includes provisions for duplicate nameplates (must be done along with VR repair)
- Includes "Sec.I" instead of Code stamp

Device Data - Capacity

- For boilers, combined valve capacity must exceed maximum designed steaming capacity
- NBIC Part 1, Table 2.9.1.3 gives calculation method when heating area is used (need to know boiler fuel)

Compare valve capacity in BTU/Hr to burner input for heating boilers

• Has burner or fuel been changed?

Device Data – Valve Seals

- Valve seals must have correct identification
- Valve seal identification must match other information on the valve
 - OEM seal
 - Repair company seal should match repair nameplate
 - Seal may match "test only" nameplate

Device Condition

- Seals intact
- Bolting tight and no bolts missing
- Deposits or material buildup
- Damaged or missing parts

Device Condition

Small valves may be permanently sealed (what's wrong here?)

Device Condition

- Valve should not be leaking
- Drain hole not clogged or plugged

Device Condition

- Bellows valve bonnet vent not plugged
- No leakage through bonnet vent

Device Condition

No test gag!

- No reduced inlet or outlet pipe sizes
- Drain piping open
- Piping should not be binding on valve
- Piping should not be supported by valve
- Discharge hazards to personnel

Typical ASME Section I Safety Valve Installation

What's wrong here?

- Rupture disk installation under PRV
- No pressure on gage

Isolation valves

- Not permitted for boilers or hot water heaters
- May be permitted in some pressure vessel applications
 - ASME Code Appendix M requirements
 - Jurisdiction must approve

- Does the valve actually work?
- Lift lever test
 - At least it's not stuck shut...
 - Test at 75% of set pressure for boiler or pressure vessel valves
 - Section IV valves can be checked without pressure
 - Section VIII: Test lever required for valves for steam, air, and hot water over 140 deg. F.

• Rope can be tied to lever for personnel safety

• Assure rope does not affect valve

Allow valve to "snap" shut

P1000425.mov

P1000428.mov

- Set pressure test
 - Set pressure within Code tolerance
 - Valve should not be leaking
- Full pressure test on unit (not accumulation test)
- Remove valve and check on test stand

Lift assist devices sometimes used to check valve on-line without a full pop test

- Corrective Action
 - Remove system from service if valve is stuck shut! (+16%)
- Out of set pressure tolerance (NBIC Part 2, par. 2.5.7 g))
 - "Minor" adjustment = 2x set tolerance
 - Must be done by qualified organization
 - "Major" adjustment indicates a repair is needed

What is a Qualified Organization?

- NBIC defines a "qualified organization" as an "organization accredited by the National Board"
- Could be National Board VR or T/O certified organization
- Part 3, Supplement S7.10 gives outline of requirements for potential Jurisdictional acceptance

Recommended Test Frequencies

- Jurisdictional Rules
- NBIC recommendations
 - Boilers less than 400 psi manual test every 6 months, annual pressure test
 - Boilers greater than 400 psi Pressure test every three years
 - High temp. hot water boilers annual pressure test
 - Low pressure boilers (15 psi) manual test quarterly, annual pressure test before heating season

Recommended Test Frequencies

- Hot water heating boilers manual test quarterly, annual pressure test before heating season
- Hot water heating boilers manual test quarterly, annual pressure test before heating season
- Water heaters manual test every 2 months (replace if defective)

Pressure Vessel and Piping Applications

- To determine inspection frequency, the vessel contents, system operation, and previous inspection history must be reviewed
- Steam annually
- Air, clean dry gasses every 3 years
- PRV with rupture disk 5 years
- Propane, refrigerant 5 years
- All others Per Inspection History

Sample Inspection Checklist

Sample Inspection Checklist for Pressure Relief Devices (Based on NBIC Part 2, Section 2.5)

1. Valve Type					
2. Set pressure					
3. Object being protected		Code S	Section	۱ <u> </u>	
4. Object MAWP	Vee	N_=			
5. Set pressure L1 or equal to MAWP:	Yes_	NO			
6 Set pressure seal intact	Vos	No			
7 Adjusting ring(s) soal intact	Voe	No		NI/A	
8 Seals match mfg / renair /test namen	late2		No	IN/A	
 Generation done with valve: 	Inetall	nco	- Ron	havor	
10 Evidence valve is leaking	Voe	No	_ 1.61	loveu_	
TO. EVIDENCE VAIVE IS leaking	165				
11. Connections (bolting) tight	Yes	No			
12. Evidence of rust or corrosion	Yes	No			
13. Body drain open	Yes	No			
14. Test gag	Yes	No			
15. Bonnet vented for bellows	Yes _	No		N/A	
16 Inlat pipe CT or equal to value inlat	ni Te	Vee	No		
17. Outlet pipe GT or equal to valve milets	size lot size	Yes			NIZA
17. Outlet pipe G1 of equal to valve out	et size	Yes			N/A
10. Drain pipe open 10. Diading of inlet or outlet piping		Yes			
19. Binding of Iniel of outlet piping		res	_ NO _		
20. Discharge pipe support OK		res	_ NO _		
21. Discharge to safe location		Yes	_No_		
22. Isolation valve(s) used?		Yes	_No_		
23. Inlet pipe and valve inlet deposits?		Yes	_No_		N/A
24. Outlet pipe and valve outlet deposits	?	Yes	No		N/A
25. Test method:		Pop test	lift	ever ch	eck
26. Measured set pressure:	Accep	table:	, No	t acce	otable
27. Seat leakage:	Accep	table:	, No	ot acce	ptable
Comments:					
					-
Inspected by: Date					
Corrective actions required/ taken:					

Corrective actions completed by: _____

Date

Final Exam (outlet piping)

Final Exam

What's wrong with this installation?

- Pressure relief devices are important to safe system operation
- Inspections must be done to assure devices are installed and *functioning properly*

THANK YOU!