SO₂ is for discussion at HEAC on 12/4/2018. A draft PEL proposal for SO₂ has not been prepared at this time.

- 1. Sulfur Dioxide Usage Summary of 2016 CDPR data
- 2. Summary of controlled human exposure studies with asthmatic adults. Table organized by increasing SO2 concentration and reports the percentage of subjects experiencing the increase in sRAW or decrease in FEV₁ at that concentration/time. Note that ventilation varies between studies.

https://cfpub.epa.gov/ncea/risk/recordisplay.cfm?deid=338596

3. Causal determination for different health effects from exposure to SO2 from EPA's Integrated Assessment of SO2 for the National Ambient Air Quality Standards Program. The table provides findings from 2008 Integrated Assessment and the updated assessment (December, 2017). The latest assessment provides of review of the epidemiologic and animal data for the different health effects.

https://cfpub.epa.gov/ncea/risk/recordisplay.cfm?deid=338596

 OEHHA Prop 65 Maximum Allowable Dose Level for SO2 (March, 2012) https://oehha.ca.gov/proposition-65/crnr/revision-proposed-specific-regulatory-level-and-augmentation-record-proposed

Maximum Allowable Dose Levels (MADLs) are for chemicals causing reproductive toxicity that are below the safe harbor levels are exempt from the requirements of Proposition 65. The text cites the study in mice that was used to establish the NOAEL and a safe dose in a mouse. This dose is then scaled to humans based on body weight.

Sulfur Dioxide Usage Summary – 2016 CDPR data.

Total Number of Users: 488; 59 Pest Control Operator Licensees/429 Grower/Property Operators

Site Name	No. of Reported Use	No. of Users	Average Amount of Product Used (lbs)	Use Range (lbs)	
COMMERCIAL, INSTITUTIONAL OR	2	2	3.4	1 - 5.8	
INDUSTRIAL AREAS					
COMMODITY FUMIGATION	193	38	32.7	0.0625 - 990	
FOOD PROCESSING/HANDLING	1	1	0.5	0.5	
PLANT/AREA (ALL/UNSPEC)				0.5	
FUMIGATION, OTHER	2487	404	26.7	0.0194 - 2984	
GRAPES	392	60	490	4 - 6214.7	
GRAPES, WINE	16	7	9.4	0.425 - 20	
LANDSCAPE MAINTENANCE	1	1	5	5	
REGULATORY PEST CONTROL	12	1	1.8	0.01 - 6.17	
RESEARCH COMMODITY	1	1	0.3397	0.3397	
STRUCTURAL PEST CONTROL	3	1	1862	1545 - 2461	
UNIDENTIFIED	36	6	331	17.15 - 1052	

Note: Some users have more than one site names and have been counted multiple times.

Sulfur Dioxide Usage Summary CERS Data: 13 users when sorted by the site address.

SIC	Average	Maximum	Physical		Largest	Percent by
CODE	Daily Use	Daily Use	Mixture	State	Container	Weight
1311	140	140	Yes	Gas	140	1
1311	280	280	Yes	Gas	140	1
1311	280	280	No	Gas	140	0.1
1311	840	840	No	Gas	140	91
1311	280	280	No	Gas	140	0.1
1311	280	280	No	Gas	140	0.1
2084	40	60	Yes	Liquid	37	6
2086	165	330	Yes	Liquid	330	31.5
2819	993	993	Yes	Gas	993	8
3241	150	300	No	Gas	144	100
3251	502	1004	No	Gas	251	NULL
4941	NULL	450	No	Liquid	150	NULL
8221	200	1000	Yes	Solid	50	21
federal	NULL	100	Yes	Liquid	5	36
federal	NULL	90	Yes	Liquid	2	36
municipal	4000	8000	No	Liquid	2000	99.5
municipal	8000	16000	No	Gas	2000	100
municipal	15000	30000	No	Gas	2000	100
municipal	2000	4000	No	Gas	2000	100
municipal	2000	4000	No	Gas	2000	100
municipal	8000	16000	No	Gas	2000	100
municipal	15000	30000	No	Gas	2000	100
municipal	4000	8000	No	Liquid	2000	99.5

Percentage of asthmatic adults in controlled human exposure studies experiencing SO₂-induced decrements in lung function and respiratory symptoms. EPA, 2015.

		Cumulative Percentage of Responders (Number of Subjects) ¹				•		
				sRaw			•	
					≥100% ↑	≥200% ↑	≥300% ↑	-
SO ₂	Exposure		Ventil-		FEV ₁		-	
(ppm)		No. Subj	ation (L/min)	Lung Func	≥15% ↓	≥20% ↓	≥30% ↓	Study
0.2	5	23	~48	sRaw	9% (2) ²	0	0	Linn et al. (1983b)
	10	40	~40	sRaw	5% (2)	0	0	Linn et al. (1987) ³
	10	40	~40	FEV ₁	13% (5)	5% (2)	3% (1)	Linn et al. (1987)
0.25	5	19	~50-60	sRaw	32% (6)	16% (3)	0	Bethel et al. (1985)
	5	9	~80-90	sRaw	22% (2)	0	0	Bethel et al. (1985)
	10	28	~40	sRaw	4% (1)	0	0	Roger et al. (1985)
0.3	10	20	~50	sRaw	10% (2)	5% (1)	5% (1)	Linn et al. (1988) ⁴
	10	21	~50	sRaw	33% (7)	10% (2)	0	Linn et al. (1990) ⁴
	10	20	~50	FEV ₁	15% (3)	0	0	Linn et al. (1988)
	10	21	~50	FEV ₁	24% (5)	14% (3)	10% (2)	Linn et al. (1990)
0.4	5	23	~48	sRaw	13% (3)	4% (1)	0	Linn et al. (1983b)
	10	40	~40	sRaw	25% (10)	8% (3)	3% (1)	Linn et al. (1987)
	10	40	~40	FEV ₁	30% (12)	25% (10)	13% (5)	Linn et al. (1987)
0.5	5	10	~50-60	sRaw	60% (6)	40% (4)	20% (2)	Bethel et al. (1983)
	10	28	~40	sRaw	18% (5)	4% (1)	4% (1)	Roger et al. (1985)
	10	45	~30	sRaw	36% (16)	16% (7)	13% (6)	Magnussen et al. (1990) ⁶
0.6	5	23	~48	sRaw	39% (9)	26% (6)	17% (4)	Linn et al. (1983b)
,	10	40	~40	sRaw	35% (14)	28% (11)	18% (7)	Linn et al. (1987)
	10	20	~50	sRaw	60% (12)	35% (7)	10% (2)	Linn et al. (1988)
	10	21	~50	sRaw	62% (13)	29% (6)	14% (3)	Linn et al. (1990)
	10	40	~40	FEV ₁	53% (21)	48% (19)	23% (9)	Linn et al. (1987)
	10	20	~50	FEV ₁	55% (11)	55% (11)	5% (1)	Linn et al. (1988)
	10	21	~50	FEV ₁	43% (9)	38% (8)	14% (3)	Linn et al. (1990)
1.0	10	28	~40	sRaw	50% (14)	25% (7)	14% (4)	Roger et al. (1985) ⁵
	10	10	~40	sRaw	60% (6)	20% (2)	0	Kehrl et al. (1987)

Conc = concentration; FEV1 = forced expiratory volume in 1 second; func = function ppm = parts per million; sRaw = specific airway resistance; SO2 = sulfur dioxide; subj = subject. Data presented from all references from which individual data were available. Percentage of individuals who experienced greater than or equal to a 100, 200, or 300% increase in specific airway resistance (sRaw), or a 15, 20, or 30% decrease in FEV1. Numbers in parenthesis represent the number of subjects experiencing the indicated effect.

Causal determinations for relationships between sulfur dioxide exposure and health effects from the 2008 and current draft Integrated Science Assessment for Sulfur Oxides.

Health Effect Categorya and	Causal Determination ^b					
Exposure Duration	2008 ISA	Current Draft ISA				
Respiratory effects— Short-term exposure Section <u>5.2.1</u> , <u>Table 5-27</u>	Causal relationship	Causal relationship				
Respiratory effects– Long-term exposure Section <u>5.2.2</u> , <u>Table 5-31</u>	Inadequate to infer the presence or absence of a causal relationship	Suggestive but not sufficient to infer a causal relationship				
Cardiovascular effects– Short-term exposure Section <u>5.3.1</u> , <u>Table 5-41</u>	Inadequate to infer the presence or absence of a causal relationship	Suggestive but not sufficient to infer a causal relationship				
Cardiovascular effects– Long-term exposure Section <u>5.3.2</u> , <u>Table 5-43</u>	Not included	Inadequate to infer the presence or absence of a causal relationship				
Reproductive and developmental effects° Section <u>5.4</u> , <u>Table 5-46</u>	Inadequate to infer the presence or absence of a causal relationship	Suggestive but not sufficient to infer a causal relationship				
Total mortality– Short-term exposure Section <u>5.5.1</u> , <u>Table 5-51</u>	Suggestive but not sufficient to infer a causal relationship	Suggestive but not sufficient to infer a causal relationship				
Total mortality– Long-term exposure Section <u>5.5.2</u> , <u>Table 5-55</u>	Inadequate to infer the presence or absence of a causal relationship	Suggestive but not sufficient to infer a causal relationship				
Cancer– Long-term exposure Section <u>5.6</u> , <u>Table 5-56</u>	Inadequate to infer the presence or absence of a causal relationship	Suggestive but not sufficient to infer a causal relationship				

ISA = integrated Science Assessment.

^aAn array of outcomes is evaluated as part of a broad health effect category: physiological measures (e.g., airway responsiveness), clinical outcomes (e.g., hospital admissions), and cause-specific mortality. Total mortality includes all nonaccidental causes of mortality and is informed by findings for the spectrum of morbidity effects (e.g., respiratory, cardiovascular) that can lead to mortality. The sections and tables referenced include a detailed discussion of the evidence that supports the causal determinations and the SO₂ concentrations with which health effects have been associated.

^bSince the 2008 ISA for Sulfur Oxides, the phrasing of causal determinations has changed slightly, and the weight of evidence that describes each level in the hierarchy of the causal framework has been more explicitly characterized.

Reproductive and developmental effects studies consider a wide range of exposure durations.

"As noted in the <u>Initial Statement of Reasons for the proposed regulation</u>, another inhalation study by Singh (1989)⁴ demonstrated reduced birth weight after prenatal exposure to sulfur dioxide. This effect was statistically significant for mice exposed to sulfur dioxide at 65 ppm for 24 hours/day. At 32 ppm, a reduction in birth weight was not statistically significant. Thus, the study by Singh (1989) provided a NOEL of 32 ppm for mice exposed for 24 hours/day and, for purposes of Proposition 65, is now the most sensitive study deemed to be of sufficient quality (Section 25803(a)(4)).

MADL CALCULATION

The following calculations were performed in accordance with Section 25803 to derive the MADL for sulfur dioxide using data and exposure parameters from Singh (1989):

Conversion of air concentration in ppm to milligrams per cubic meter (mg/m3) using a conversion factor of 2.64 mg/m3 per ppm⁵

(32 ppm 2.64 [mg/m3 per ppm]) = 84.48 mg/m3

Calculation of the NOEL dose for a 30 gram mouse (0.030 kilograms [kg]) with an inhalation rate of 0.063 m3/day 6 , 7

(84.48 mg/m3' 0.063 m3/day), (0.030 kg) = 177.41 mg/kg/day

Calculation of the NOEL dose for a 58 kg woman 177.41 mg/kg/ day ' 58 kg = 10289.78 mg/day, or 10,000 mg/day after rounding

The MADL is derived by dividing the NOEL by one thousand (Section 25801(b)(1)). Thus, the adjusted NOEL was divided by 1,000 to obtain the MADL:

MADL = 10,000 mg/day 1000 = 10,000 micrograms/day"