I. SELECTION OF SUBSTANCES FOR REVIEW

- A. Developing a list of substances for review.
- 1. Division staff will annually update a list of existing and new section 5155 airborne contaminant substances to be reviewed for possible inclusion or updating in Table AC-1 of Section 5155. The development of the list of substances to be considered will at a minimum include the following sources:
- a. New or revised occupational exposure limits (OELs) from nationally and internationally recognized professional associations and governmental agencies. Examples of OELs that will be considered include Threshold Limit Values (TLVs) of the American Conference of Governmental Industrial Hygienists (ACGIH), workplace environmental exposure limits (WEELs) of the American Industrial Hygiene Association (AIHA), recommended exposure limits of the National Institute of Occupational Safety and Health (NIOSH), along with OELs derived from reference exposure levels and Proposition 65 listings of the Office of Environmental Health Hazard Assessment (OEHHA) and the U.S. Environmental Protection Agency. b. Cal/OSHA "Form 9" requests and other internal recommendations for new or revised standards from Division, Standards Board and Appeals Board staff. c. Petition decisions granted by the Cal/OSHA Standards Board; and d. Other requests from the public or other governmental agencies such as the Department of Health Services and OEHHA.

Priority substances will be ranked for review based on the following considerations:

- 1. Evidence of a serious potential hazard not adequately addressed by existing regulations of the Division or other governmental agency.
- 2. A substantial change in the value of an OEL that could contribute to increased protection of workers if adhered to by employers.
- 3. The degree to which a substance is in widespread use in California or to which there are other indications of pervasive and potentially hazardous worker exposure to the substance.
- 4. The seriousness of the nature of the health hazard presented by the substance. For example, substances with apparent potential for cancer, reproductive, developmental, or sensitizing effects would generally receive a higher priority for consideration than substances where the major hazard potential is mild respiratory irritation
- 5. The potential for exposure in California (#3) in combination with the degree of hazard (#4). For example, a limited exposure to a highly toxic substance may be just as significant as widespread exposure to a less toxic substance

P1 list	PEL TLV	ratio	YEAR/SOURCE	EPA (M lbs)	EPA-CA	TRI	TRI-CA	CERS
benzophenone	NEW		HESIS					
sulfur dioxide	5 0.25\$	20	2009					
turpentine, monoterpines	100 20	5	2003					98
Priority 2 with PEL/TLV ≥ 10								
boron trifluoride	1 0.1	10	2016					
calcium silicate, nat occ as Wo	oll:10 1	10	2016					
carbaryl	5 0.5	10	2008					932
dichlorvos (DDVP)	1 0.1	10	2002					
ethyleneimine	0.5 0.05	10	2009	10-50				
furfural	2 0.2	10	2017	no data				30
malathion	10 1	10	2003					
	PEL TLV	ratio	YEAR/SOURCE	EPA (M lbs)	EPA-CA	TRI	TRI-CA	CERS

maleic anhydride	0.1 0.01	10	2011	500-750		53	2	
methyl isopropyl ketone	200 20	10	2011	with held				
methyl parathion	0.2 0.02	10	2009					
portland cement (<1% silica)	10 1	10	2010					
propyleneimine	2 0.2	10	2009; OEHHA	0.1 - 0.5				
thiobis, 4,4'- (6-tert-butyl-m-cr	e 10 1	10	2011					
warfarin	0.1 0.01	10	2016					730 (CVS)
temephos	10 1	10	2005					
clopidol	10 3	10	2013					
methomyl	2.5 0.2	12.5	2014					
trivalent, as CR (III)	0.05 0.003	17	2018					
thiram	1 0.05	20	2008					
hexavalent, as CR(VI)	0.005 0.0002	25	2018					
chromite ore processing	0.005 0.0002	25	2018					
naled	3 0.1	30	2002					
furfuryl alcohol	10 0.2	50	2017					
methoxyethanol acetate, 2-	5 0.1	50	2006; NIOSH	no data				
methoxyethanol, 2-	5 0.1	50	2006; NIOSH	1-10				
phenylhydrazine (and salts)	5 0.1	50	1988; OEHHA					
lead chromate	0.02 0.0002	100	2018					
chromyl chloride as Cr(VI)	0.025 0.0001	250	2018					
phthalic anhydride	1 0.002	500	2017	500-750	50	123	6	
,	·							
Priority 2: NEW - TLV but no P	EL; OEHHA, HESI	S recomi	mendation; othe	r				
antimony trioxide production	0.5 ALARA	ALARA	1979					
Tetrafluoroethylene	•	NEW	2001; HESIS	withheld	0	7	0	
methanol	200 200	NEW	2009; HESIS					
strontium chromate	0.0005	NEW	2018	1-10M		_	_	
butane (all isomers)	800 1000 STE	STEL	2013					
acetamide	,	NEW	2017; OEHHA	0	-	8	0	
dioxolane,1,3		NEW	2002	10-50M	0	_	-	
tert-amyl methyl ether		NEW	2002	500-750	0	_	_	62
kerosene jet fuel, total HC vap	or	NEW	2003		-			
dodecyl mercaptan	-	NEW	2004	10-50M	0			
hexahydrophthalic anhydride		NEW	2004	10-50M	0			25
natural rubber latex, as total p	rotein	NEW	2004		-			
perfluorobutyl ethylene		NEW	2004	0	0	0	0	
monochloroacetic acid		NEW	2006	50-100	-	20	2	103
alachlor		NEW	2007	55 255			_	
mineral oil, mildly refined		NEW	2010					
allyl bromide		NEW	2011	0				
carbonyl sulfide		NEW	2011	1-10M		134	13	
phthalidonitrile, 0-		NEW	2011	withheld		_0 .		
piperazine and salts, as piperaz	zine	NEW	2011	NA				
diethylene glycol monobutyl e		NEW	2012	100-250	25	_	_	
diethylhydroxylamine, n,n-	-	NEW	2012	1-10M	11	_	_	
cyanogen bromide		NEW	2013	NA				
boron trichloride		NEW	2016	0.5 - 1	2	8	0	
	PEL TLV		YEAR/SOURCE	EPA (M lbs)	EPA-CA	TRI	TRI-CA	CERS
		. 4110	. LANY JOURCE	LI A (IVI IDS)			СА	CLIG

			2016					0-4
simazine		NEW						251
cadusafos		NEW						
folpet		NEW						
methylacetylene-propdiene m	ixture	NEW						
dimethyl-p-toluidine, n, n-		NEW		0.1 -0.5				
myrcene, beta		NEW		100-250				
propylene glycol mono-t-butyl	ether	NEW	HESIS	no data				
anthraquinone		NEW	HESIS	10-50M	1	-	-	29
aldicarb		NEW	no TLV					
benzaldehyde		NEW	no TLV	10-50M	0	-	-	444
butyraldehyde		NEW	no TLV	1 - 5B	0	-	-	
chlorinated paraffins		NEW	no TLV					
decamethylcyclopentasiloxane	e (D5)	NEW	no TLV	1-10M	0			
nitrilotriacetic acid		NEW	no TLV	withheld	0	5	0	
thiourea		NEW	no TLV	1-10M	0	14	0	2
nitro-o-toluidine, 5-		NEW	2007	withheld	0	2	0	
natural rubbr latx, as inhbll alle	ergenic protein	NEW	2008	withheld				
zinc chromate	5. 85 p. 5.5	NEW	2018					
toluene diisocyanate, 2-4 and	2.0.00510.001	5						
,								
Priority 2* - Special Committe	e							
arsine	0.05 0.005	10	2007					
beryllium	0.0002 0.000	4	2014;					
bisphenol A (BPA)	NEW no tlv	NEW	HESIS					134
bromopropane, 1-	5 0.1	50	2014; HESIS					
butyl benzyl phthalate	NEW No TLV	NEW	no TLV; OEHHA					30
carbon nanotubes	15 0.001	15000	2013; HESIS					
di(2-ethylhexyl)phthalate (DEF	•		1998; OEHHA					
diacetyl	0.012 0.01		2012; HESIS					
dibutyl phthalate	5 5		1990; OEHHA					
diesel engine exhaust	NEW		no TLV					
Diisononyl phthalate (DINP)	NEW		HESIS					
di-n-hexyl phthalate (DnHP)	NEW		HESIS					
ethyl isocyanate	NEW 0.02/0.06		2013					
formaldehyde	0.75 0.1	8	2017					3888
gallium arsenide	see 5214 0.003	Ü	2005					3000
isocyanates (TRIG &/or ind sus	•	NF\//	no TLV					
methyl isocyanate	NEW 0.017		2013					
pentanedione, 2,3-	0.012 0.0093		no TLV; NIOSH; F	IECIC				
pentanedione, 2,4-	0.012 0.0093 NEW 25			ILJIJ				
•	•		2010; HESIS					
phenyl isocyanate	NEW 0.005		2013					
silica (crystalline quartz & crist	•		2006					
styrene	50 20	3	2001; OEHHA					

33 2011; HESIS

5 2016

81

titanium dioxide, ultrafine (<10(10 | 0.3

toluene diisocyanate, 2-4 and $2\cdot 0.005 \mid 0.001$

2019 ACGIH Adoptions	PEL TLV	ratio	YEAR/SOURCE	EPA (M lbs)	EPA-CA	TRI	TRI-CA	CERS
cobalt and inorganic compound 0.02 0.02		1	2019					
cyanazine	0.1 -	NEW	2019					
cyclopentadiene	0.5 75	150	2019					
dicyclopentadiene	0.5 5	10	2019					
dimethylphenol	1 -	NEW	2019					
flourine	0.1 0.1	1	2019					
indium tin oxidw	0.0001 -	NEW	2019					
methyltetrahydrophthalate an	•	NEW	2019					
mehtyl vinyl ketone	0.01 0.05	5	2019					
monomethylformamide	1 -	NEW	2019					
o-phthaladehyde	0.1 -	NEW	2019					
propylene glycol ethyl ether	50 -	NEW	2019					
Sulfoxaflor	0.1 -	NEW	2019					
tetramethyl succinonitrile	0.5 0.5	1	2019					
thiacloprid	0.2 -	NEW	2019					
Tin and inorganic tin excluding	t2 2	1	2019					
	_							
2019 ACGIH Adoptions - IVF N								
Chlordane	0.5 0.5	1	2019					
o-Chlorobenzylidene malononit 0.05 0.05 1			2019					
Dinitrobenzene (all (isomers)	0.15 0.15	1	2019					
4,6-Dinitro-o-cresol; 2-methyl-40.2 0.2		1	2019					
, , , , , , , , , , , , , , , , , , , ,		1	2019					
isobutyl nitrite	NEW	NEW	2019					
5-Nitro-o-toluidine	1 -	NEW	2019					
Nitrapyrin	10 10	1	2019					
4,4'-Methylene bis(2-chloroanili 1 NEW NEW			2019					
Pentachloronaphthalene	0.5 0.5	1	2019					
Sulfometuron methyl	5 3.5	0.7	2019					
Temephos	1 10	10	2019					
1,1,2,2-tetrabromomethane	0.1 1	10	2019					
2,4,6-Trinitrotoluene; TNT	0.1 0.5	5	2019					
m-Xylene-a,a'-diamine	0.018 0.1	6	2019					