

### **HIP AND GROIN DISORDERS GUIDELINE**

Effective May 1, 2011

#### CONTRIBUTORS TO THE HIP AND GROIN DISORDERS GUIDELINE

#### Editor-in-Chief:

Kurt T. Hegmann, MD, MPH, FACOEM, FACP

#### Assistant Editors:

Jeremy J. Biggs, MD, MSPH Matthew A. Hughes, MD, MPH

#### **Evidence-based Practice Hip Panel Co-Chairs:**

Judith Green McKenzie, MD, MPH, FACOEM Joshua J. Jacobs, MD

#### **Evidence-based Practice Hip Panel Members:**

Garson M. Caruso, MD, MPH, CIME, FAADEP

#### FACOEM

Edward B. Holmes, MD, MPH Allison L. Jones, MD, MS Laura Rachel Kaufman, MD, PhD Cameron W. MacDonald, PT, DPT, GCS, OCS

#### FAAOMPT

Joseph C. McCarthy, MD Brian J. McGrory, MD, MS Marc Safran, MD Jamie Stark, MS, PhD Eric M. Wood, MD, MPH

Methodology Committee Consultant:

Charles Turkelson, PhD\*

#### Managing Editors:

Production: Marianne Dreger, MA Research: Julie A. Ording, MPH

#### **Editorial Assistant:**

Debra M. Paddack

Copyright © 2008-2016 by Reed Group, Ltd. Reprinted from ACOEM's Occupational Practice Guidelines, with permission from Reed Group, Ltd., <u>www.mdguidelines.com</u>. All rights reserved. Commercial use prohibited. Licenses may be purchased from Reed Group, Ltd. at <u>www.mdguidelines.com</u>.

#### **Research Conducted By:**

Kurt T. Hegmann, MD, MPH, FACOEM, FACP Matthew A. Hughes, MD, MPH Matthew S. Thiese, PhD, MSPH Ulrike Ott, PhD, MSPH Sivithee Srisukhumbowornchai, MS Deborah Gwenevere Passey Riann Bree Robbins, BS Atim Effiong, BS Cooper Kennedy Tessa Langley

#### Specialty Society and Society Representative Listing:

ACOEM acknowledges the following organizations and their representatives who served as reviewers of the "Hip and Groin Disorders" Guideline. Their contributions are greatly appreciated. By listing the following individuals or organizations, it does not infer that these individuals or organizations support or endorse the knee treatment guidelines developed by ACOEM.

#### American Association of Hip and Knee Surgeons

Adolph J. Yates, Jr., MD

#### **American Board of Independent Medical Examiners**

Mohammed Ranavaya, MD, JD

#### American College of Preventive Medicine

Lt. Colonel Ronit Ben-Abraham-Katz, MD, FACPM

#### The American Occupational Therapy Association, Inc.

Marian Arbesman, PhD, OTR/L Jeff Snodgrass, PhD, MPH, OTR, CWCE

#### **American Physical Therapy Association**

Michael T. Cibulka, PT, DPT, MHS, OCS Keelan Enseki, MS, MPT Marcie Harris Hayes, PT, DPT, OCS Douglas M. White, DPT, OCS

### IMPACT

There are numerous disorders of the hip and groin, many of which will be covered in this chapter. However, robust prevalence, incidence, and cost estimates for hip disorders are largely unavailable except for osteoarthrosis (OA) and hip fractures. Osteoarthrosis affects 13.9% of adults over age 25, and 33.6% of adults over age 65. The prevalence of symptomatic hip OA is 4.4 per 100 adults over age 55.(1) A Danish study has estimated the 10-year incidence of hip OA requiring arthroplasty to be 0.9 to 1.0%.(2) Incidence rates increase with age. Of all arthritis-related procedures requiring hospitalization, 35% are due to hip and knee replacements. Job-related costs for OA overall are \$3.4 to \$13.2 billion per year with an average patient out-of-pocket direct expense of \$2,600 per year. Twenty-five percent of those affected with OA cannot perform major activities of daily living.(1, 3, 4)

In the United States, hip fractures occur most commonly in adults 65 or older (90% as the result of a fall).(5, 6) However, a sizable minority involve occupational incidents such as motor vehicle accidents and falls from height. These latter types of injuries may lead to severe health problems, reduced quality of life, and premature death. Hospital admissions for hip fractures totaled 320,000 in 2004, and have been increasing; most of these admissions require approximately 1 week of hospitalization and 1 in 5 patients die within a year of their injury. Full recovery occurs in 25% of patients. Nursing home care is necessary for 40%. Cane or walker use is required longer term for 50% of hip fracture patients. The average cost of a hip fracture is \$26,912 per patient. Women account for 76% of the incidence with rates increasing exponentially with age for both genders.(5, 6)

### **OVERVIEW OF MANAGEMENT OF HIP AND GROIN DISORDERS**

The following hip and groin disorders are covered in this Guideline. Other prominent disorders, including lumbar radiculopathy and lumbar spinal stenosis especially for posterior and lateral hip pain, are not reviewed here in detail (see Low Back Disorders chapter for discussion of these disorders), but should be considered in the differential diagnosis of hip pain and hip symptoms. Additional diagnostic considerations include inguinal hernias, femoral hernias, atherosclerotic abnormalities, aneurysms, avulsion fractures (especially sartorius, rectus femoris), femoral mononeuritis, coxa saltans, tumor, cancer, crystal arthropathies (e.g., gout, pseudogout, hydroxyapatite), and infections including septic arthritis.

#### **AVASCULAR NECROSIS**

See Osteonecrosis.

#### **EPIDIDYMO-ORCHITIS**

The vast majority of cases of epididymitis or combined epididymito-orchitis have infectious origins.(7-18) More than 80% of cases in patients under ages 35 or 45 reportedly have Chlamydia trachomitis infections.(8, 19) Older patients tend to have gram-negative rod infections (7, 16) as do those who have had vasectomies and other urological procedures, a history of prostatitis, or who have engaged in anal intercourse.(8, 20, 21) A few cases have been attributed to amiodarone.(22, 23)

There is a small, but not insignificant minority of patients who report a history of a heavy lift or strain that precipitated the symptoms,(24-27) thus giving rise to the possibility that this entity may sometimes be an occupational disease or injury(28-32) outside of the obvious setting of direct work-related trauma.(33) Proposed mechanisms are reflux of urine in the course of the strain(27, 29, 34-36) or elicitation of symptoms from a latent infection.(24) In occupationally oriented medical clinics, patients whose jobs require heavy exertion appear to present more frequently with this diagnosis, whereas those with unequivocally non-occupational etiologies present less frequently.(24, 29)

#### FEMOROACETABULAR IMPINGEMENT

Femoroacetabular impingement (FAI), which occurs when there is abnormal abutment between the femur and acetabulum, is thought to have many causes.(37) It has recently received increased attention as a structural entity reportedly associated with early arthritis of the hip.(38) FAI is associated with predisposing factors including altered femoral neck morphology (such as due to slipped capital femoral epiphysis), anteverted femoral neck, femoral neck nonunion, developmental hip dysplasia, Legg-Calves-Perthes disease, osteonecrosis, a "pistol grip" femoral neck, and coxa vara. It is also associated with acetabular morphologic variants, such as retroverted acetabulum, and deep acetabular socket (coxa profunda and protrusion). Impingement can occur as a result of femoral sided impingement (cam impingement), acetabular rim impingement (pincer impingement), or most commonly a combination of both.

Cam lesions on the femoral head-neck region lead to shear forces of the non-spherical portion of the femoral head against the acetabulum resulting in a characteristic pattern of anterosuperior cartilage loss over the femoral head and corresponding dome, as well as labral tears.(39) Labral tears associated with cam impingement are more commonly labral-chondral separation lesions affecting the transition zone cartilage and leaving the labral tissue in fairly good condition. The chondral damage tends to begin with softening, then debonding and delamination of the articular cartilage from the underlying acetabular bone. These chondral lesions are located in the anterosuperior region of the acetabulum and extend deeper into the acetabulum than chondral lesions due to pincer impingement.

The second category of femoroacetabular impingement is the "pincer" type lesion which is a result of repeated contact stresses of a normal femoral neck against an abnormal anterior acetabular rim as a result of "over coverage." This situation results in degeneration, ossification, and tears of the anterosuperior labrum, as well as the characteristic posteroinferior "contre-coup" pattern of cartilage loss over the femoral head and corresponding acetabulum.(39) In this setting, the acetabular labrum fails first, which leads to degeneration and eventual ossification. This worsens the over coverage. Overall, the pincer type lesion has chondral damage that is limited to near the rim, but occurs more globally around the circumference of the acetabulum compared to the deep chondral injury associated with cam impingement.

Patients with femoroacetabular impingement commonly present with anterior groin pain, hip pain, and pain with hip flexion and internal rotation. The typical patient is middle aged and younger than the usual patient with degenerative joint disease. The typical cam lesion patient is a young adult male in his 20s, while the average pincer patient is an active female in her 40s.(39) Pain and symptoms are normally activity related. On physical exam, patients commonly exhibit decreased internal rotation and adduction with the hip flexed to 90 degrees. Examination reveals a positive impingement test where there is pain with passively adducting and gradually internal rotating the flexed hip. Common treatments include avoidance of aggravating exposures and positions, medications, exercise, and surgery. As noted, femoroacetabular impingement is theorized to increase the risk for hip osteoarthrosis.(38-48) Treatment has included avoidance of postures, especially squatting that provokes symptoms. Surgery is often proposed as a treatment as it is thought to delay or prevent development of osteoarthrosis.

#### **GREATER TROCHANTERIC BURSITIS**

Bursae are sacks with a small amount of fluid that are usually located between structures that move. They provide a structure to reduce friction between the two moving body parts (e.g., between muscle and bone or between bone and overlying skin). Bursitis occurs when the bursae become inflamed and irritated. Trochanteric bursitis is a theoretical condition, as there is little evidence it exists. However, it is theorized to involve an irritated bursa in the lateral hip, and it has also been reported that many patients have pathology in the gluteus medius tendon.(49) Causal mechanisms are somewhat unclear, but are thought to include direct trauma over the trochanter, such as falling on the lateral hip joint or repetitive overuse movement patterns. Unaccustomed use, such as putting pressure over the trochanter, is thought to be a risk factor; routine use is of unknown risk. Greater trochanteric bursitis has most

commonly been treated with NSAIDs, a glucocorticosteroid injection, and physical or occupational therapy.

#### **GREATER TROCHANTERIC PAIN SYNDROME (ALSO LATERAL HIP PAIN)**

This entity is being used to describe patients with pain in the lateral hip joint. Some practitioners use this diagnostic entity in preference to other terms as the precise diagnosis may be unclear at times, or one label (e.g., greater trochanteric bursitis) may fail to completely describe a patient with other abnormalities.

#### **GROIN STRAINS (AND "EPIDIDYMITIS")**

A strain is believed to usually consist of a disruption of a myotendinous junction. A groin strain most classically involves the adductor muscles of the thigh. A complete muscular tear may occur. However, structures within the groin include the lower rectus abdominis musculature, inguinal region, symphysis pubis, upper portions of the adductor muscles of the thigh, and the genitalia and scrotum. Some cases of a lower abdominal muscle strain (usually in the inguinal area) include a clinical case of epididymitis even without an apparent infectious component. Strains that do not promptly resolve are most commonly treated by removing the patient from high-force activities. For more severely affected cases, treatment includes NSAIDs and therapy.

#### **GLUTEUS MEDIUS TENDON TEARS**

The most common location for gluteus medius tendon tears is along the middle facet. There may be extension of the tear toward fibers of the gluteus minimus insertion on the anterior facet. Oftentimes, these are high-grade partial thickness tears starting on the undersurface of the tendon. Therefore, a thorough evaluation is required to identify the site of the tear. Treatment includes NSAIDs, observation, physical or occupational therapy, and surgical repairs.

#### LUMBAR RADICULOPATHY AND LUMBAR STENOSIS

Lumbar radiculopathy and stenosis are two common disorders that present as hip pain. They constitute prominent disorders in the differential diagnosis of hip pain (see Low Back Disorders for discussion of these disorders).

## OSTEOARTHROSIS INCLUDING DEGENERATIVE JOINT DISEASE ("OSTEOARTHRITIS" AND "DEGENERATIVE ARTHRITIS")

Hip degenerative joint disease (DJD) is most commonly caused by osteoarthrosis (OA). While osteoarthritis is the more common name for this entity, osteoarthrosis is more technically precise as there is no classic inflammation. Other arthritic disorders that cause degenerative joint disease prominently include inflammatory autoimmune disorders (e.g., rheumatoid arthritis, systemic lupus erythematosus, and psoriasis) and crystal diseases (e.g., gout, pseudogout, apatites). As these latter disorders are non-occupational, they are not included in this discussion.

Other than intervertebral discs, joints in the body are typically synovial fluid filled, synovium lined, ligamentously encapsulated joints that allow for low friction movement between adjacent bones. OA, an age-related degenerative change in the joint particularly affecting the cartilage on the articular surface, leads to thinning of that cartilage. Pain on movement and stiffness develop. OA may develop in only one joint after a significant traumatic injury (e.g., fracture), in which case it is often delayed by many years. If this injury was occupational, then the subsequent osteoarthrosis is also considered, at least in part, occupational.

The common pathway for hip OA includes such destruction of the joint that it may be indistinguishable on x-ray. Thus, a correct interpretation of an x-ray may include degenerative joint disease, but not osteoarthritis. OA of the hips has been reported to occur as frequently in men as women. The reason for this difference compared with other joints where women are at a greater risk is unknown. Some studies have found that slipped capital femoral epiphyses are responsible for most cases of hip OA.(50) However, that finding has not been universal, although it would appear to explain the demographics of the affected patients. There is a predisposition for patients who already have OA in one or two joints, to develop OA in other joint groups. Several genetic factors have been identified.(51)

The vast majority of OA cases are symmetrical. As such, an occupational basis for such cases is much more difficult to identify. There are a few occupations that have been consistently associated with one type of arthrosis (e.g., hip OA in farmers). However, there are relatively poor and/or inconsistent epidemiological studies in this area and the cause of symmetrical OA is controversial. A propensity for OA to develop in other joints once an individual has already developed symmetrical arthrosis in another body region likely signifies a genetic or other systemic predisposition (e.g., develop hand arthrosis after knee arthrosis or facet joint OA). This is sometimes referred to as "systemic osteoarthrosis." Another theory is that development of OA in one hip will result in development in the other due to abnormal gait mechanics. Treatment of other types of OA is not covered in this chapter as there are substantive management differences by body part, thus the reader is referred to other specific chapters.

Most hip OA cases appear to arise without obvious exposures. The condition tends to progress and most cases are not considered occupational. Cases that occur in only one joint are often post-traumatic, and it is that initial inciting event that determines whether the case is likely to work-related. For example, an individual fractures a femur at work and develops unilateral hip OA in that same hip 20 years later – the hip OA is thought to be occupational.

The sole occupation that has been consistently shown to be associated with hip OA is farming, although duration of farming activities have not been found to further increase that risk. The exposure is unclear and has been hypothesized to involve forceful exposures in youth resulting in slipped capital femoral epiphyses, which later develop OA through altered biomechanics. However, regardless of the lack of clarity regarding the mechanism of development, the association is strong.

Quality studies on the long-term prognosis of patients with OA are noticeably weak. One systematic review reported a finding of "no change" in functional status among hip OA patients over a 3-year period of follow-up, although conflicts in the available studies were noted.(52)

#### Osteoarthrosis: Initial Interventions/Role of Physical and Occupational Therapy and Other Nonpharmacologic or Non-invasive Interventions

Many patients with hip OA are able to control their pain adequately by avoiding activities that significantly provoke symptoms and by using over-the-counter medications. Due to the deep nature of the hip joint, topical agents, heat, and ice may be less helpful than for OA in other joints. As OA is generally characterized by morning stiffness or stiffness (and pain) after both long periods of inactivity or in association with unaccustomed increases in activity, patients may benefit from education. Regular participation in programs stressing aquatic or gentle aerobics (e.g., walking programs) or strengthening exercise may be beneficial especially if individualized to the patient's diagnosis, prior and desired activity levels, and overall preferences. Weight loss is thought to be indicated for patients who are overweight or obese, although a connection has yet to be clearly shown in the hip.(53-65)

#### Osteoarthrosis: Pharmacologic Management

Nonsteroidal anti-inflammatory drugs (NSAIDs) are most commonly used for patients with OA. Chronic NSAID therapy may warrant ancillary use of proton pump inhibitors, H-2 histamine blocking agents, or misoprostol to provide prophylaxis against gastrointestinal adverse effects. Selective Cox-2 inhibitors are also used due to lower risks of gastrointestinal effects. Tricyclic antidepressants, dual reuptake inhibiting antidepressants (i.e., SSNRIs) and acetaminophen may benefit certain patients. Highly select patients may also benefit from judicious use of low doses of opioids if they result in functional improvements. Older patients with significant comorbidities, including renal impairment and medications, should be carefully prescribed.

#### **Osteoarthrosis: Role of Invasive Procedures**

Invasive procedures are not indicated for managing most OA patients unless the condition cannot be satisfactorily controlled with other non-invasive treatments. In such cases, intraarticular injections with glucocorticosteroid and viscosupplementation are sometimes utilized. In advanced cases, joint replacement is often performed.

#### OSTEONECROSIS [AVASCULAR NECROSIS (AVN)]

Osteonecrosis involves impairment of the blood supply to the head of the femur and may evolve to subsequent degeneration and ultimately collapse of the femoral head. It is particularly likely to occur in areas of tenuous blood supply that lacks collateral blood flow, thus most prominently affecting the femoral head. There are numerous reported risk factors, including male gender,(66) diabetes mellitus, glucocorticosteroid treatment or excess,(66) sickle cell anemia, sickle cell trait, alcoholism, organ transplantation,(67) and multiple myeloma.(66) The most prominent occupational risk factor for osteonecrosis is barotraumas ("the bends") which may occur both in diving, as well as working in compressed air environments (e.g., certain types of tunneling projects through unstable sediments requiring compressed air to maintain the workspace). Significant, discrete trauma is thought to be a risk factor. However, non-traumatic job physical factors are controversial. Some workers' compensation jurisdictions will consider a pre-existing, previously non-occupational case of advancing osteonecrosis after a discrete work injury, particularly including collapse, as having an occupational contribution. Treatment is primarily based on alleviating the exposure(s) thought responsible. A surgical "coring" procedure, vascularized and unvascularized bone grafting, and osteotomy are sometimes utilized. Severe cases may require arthroplasty.

#### **HIP INSTABILITY**

The hip is subject to both traumatic and atraumatic instability. Traumatic hip instability is typically the result of a posteriorly directed force. The spectrum of injury ranges from subluxation to dislocation with or without concomitant injuries. In addition to standard radiographic workup, the evaluation may include an MRI that may demonstrate the characteristic triad of findings of hemarthrosis, an iliofemoral ligament disruption, and a posterior acetabular lip fracture or posterior labral tear.(68) Anterior labral pathology is often present as well and may represent a traumatic avulsion of the labrum or indicate the presence of some underlying bony impingement. The presence of a significant hemarthrosis may warrant aspiration under fluoroscopy to reduce intracapsular pressure. CT scanning may be helpful to define the bony anatomy of associated fractures of the acetabulum or femoral head.

Atraumatic instability is a spectrum ranging from injuries in patients that are attributed to stereotypical use leading to microinstability to patients who manifest generalized ligamentous laxity. Pre-operative diagnosis of atraumatic instability of the hip is unclear and subjective. The labrum or iliofemoral ligament may be damaged from repeated force. These abnormal forces are theorized to cause increased tension in the joint capsule which can lead to painful labral injury, capsular redundancy, and subsequent microinstability. The hip must rely more on the dynamic hip stabilizers for stability once the static stabilizers of the hip such as the iliofemoral ligament or labrum are injured. The spectrum of atraumatic instability also includes patients with hip pain secondary to more generalized ligamentous laxity or, in the extreme form, in patients with connective tissue disorders such as Ehlers-Danlos syndrome or Marfan's syndrome. Physical findings include evaluation for ligamentous laxity and increased external rotation of the hip (in extension during the log roll or in flexion such as the FABER maneuver). Treatment usually consists of rehabilitation therapy and appropriate exercises. Individualized exercise programs may be warranted as the direction of instability may vary among individuals.

#### **HIP DISLOCATION**

Most hip dislocations occur due to violent or high-speed collision, a fall, post-arthroplasty, or a congenital joint malformation (some patients with inherited or congenital abnormalities such as dysplasia have a propensity for recurrence). The mechanism of injury determines whether the condition is work-related. A hip dislocation requires an x-ray and attempted relocation, often with anesthesia. In cases with recurrent dislocation of the joint after replacement, a revision procedure can be performed to attempt to reduce the frequency of dislocations. Pre-operative CT scanning may be helpful to determine the rotational alignment (anteversion) of the femoral and acetabular components.

#### HIP DYSPLASIA

Hip dysplasia, or developmental dysplasia of the hip (DDH), is a relatively common developmental problem which is heterogeneous in anatomic abnormalities and ranges in severity from mild to severe. It

may be unilateral or bilateral and is multifactorial with certain risk factors reported (e.g., female gender, genetic factors, breech birth, firstborns, swaddling the legs of infants). The abnormalities involve a lack of appropriate fitting between the femoral head and acetabulum. In children, there is a propensity towards acetabular abnormalities that is usually accompanied by instability and dislocations and the Crowe classification system is sometimes used.

In adults, the condition is most often identified through an abnormal appearance of the acetabulum and/or proximal femur on x-ray. It leads to an increased risk of labral tears, chrondral damage, ligamentum teres hypertrophy, and osteoarthrosis with some surgeries performed to attempt to reduce the risk of osteoarthrosis.(69) Patients may also present in youth or adulthood with hip pain that may be increased with physical activity. The pain is often in the groin. There may be mechanical symptoms such as locking, painful clicking or restricted range of motion (ROM). Pain is reproduced with the impingement sign as well as by hyperextending the hip or placing the hip in the Femoral Abduction External Rotation (FABER) position. X-rays and ultrasound are used for diagnostic purposes. There may be an increased range of motion (ROM) of both hips, though the affected hip has less motion, often limited by pain. The hip joint may be prone to dislocation and instability and if so, rehabilitation therapy and exercises are most commonly provided. When severe, osteotomies and joint replacement is often performed.

#### **HIP FRACTURE**

Hip fractures include both frank and stress fractures. All fractures involve an application of force that is beyond the bone strength. Occupational fractures most commonly result from falls or motor vehicle accidents. These almost invariably require surgical fixation or sometimes arthroplasty. Stress fractures most typically involve repeated applications of unaccustomed force over a relatively short interval of hours to days. These are usually treated with elimination of the offending exposure and observation. Physical therapy assessment to address movement system impairments, such as muscle performance and motor patterns, may assist in reducing forces on the affected site.

#### **HIP IMPINGEMENT**

See Femoroacetabular Impingement.

#### LABRAL TEARS

The labrum is a triangular fibrocartilaginous structure attached at its base to the rim of articular cartilage surrounding the perimeter of the acetabulum. It is absent inferiorly where the transverse acetabular ligament completes the rim. The labrum provides some structural resistance to lateral and vertical motion of the femoral head within the acetabulum and has an important sealing function which limits fluid expression from the joint space in order to protect the cartilage layers of the hip. The labrum likely also provides some proprioceptive feedback.

While labral tears may occur as an isolated problem, they are usually associated with traumatic injuries, such as hip dislocation or subluxation, or with bony abnormalities, such as hip dysplasia and femoroacetabular impingement.(70) Labral tears less commonly may be the result of some other etiology including capsular laxity, iliop/psoas impingement.(71-74) or symptomatic internal coxa saltans.

Labral tears have been classified in different ways(75-79) – radial flap (most common at 57%), radial fibrillated labrum (22%), longitudinal peripheral tears (16%), and abnormally mobile tears (5.4%). They are now described more functionally as intra-substance tears and tears at the labral-chondral junction. The vascularity of the labrum comes from the capsule and bony acetabulum.(80) Many tears occur in articular nonvascular zone resulting in some labral repairs being unlikely to heal. Labral tears are frequently seen in conjunction with acetabular chondral lesions. Tears more commonly occur anterosuperioly due to the association between labral pathology and underlying bony abnormalities such as impingement and dysplasia. Both femoroacetabular impingement and dysplasia lead to injury to the anterosuperior labrum, albeit thought to be through different mechanisms. In the case of impingement, the anterosuperior labrum is compressed between the femoral head – neck region and the acetabular rim. In dysplasia, the anterosuperior labrum is overloaded due to loss of acetabular bony coverage and subsequent capsular and labral decompensation. In the majority of dysplasia cases, the labral tissue is hyperplastic in an attempt to create a soft-tissue substitute for the loss of acetabular coverage and is

thus even more vulnerable to degenerative tearing. The location of the labral pathology in hip instability may be different than the most common anterosuperior location seen in the setting of impingement and dysplasia. Traumatic hip instability, usually the result of a posteriorly directed force, may result in a posterior labral tear, though an anterior labral injury, may also be present, indicating a traumatic avulsion of the labrum. Hip subluxation may occur from the same mechanism as a dislocation or be the result of a cutting or pivoting maneuver. Atraumatic instability is thought to include a spectrum ranging from stereotypical use leading to microinstability, to patients with generalized ligamentous laxity where repeated forces may result in labral injury.

The diagnosis of labral tears can be quite difficult because not only do the history, symptoms and physical exam vary among patients, but there is also a lack of familiarity with the diagnosis. Many patients present with mechanical symptoms such as buckling, clicking or catching, or painful restricted range of motion. Some can present with dull activity induced, positional pain that does not improve with rest. Common presenting symptoms include insidious onset of groin pain being moderate to severe. This pain may be aggravated with pivoting and walking or other activities. The patient may also notice the pain to be reproducible bringing the hip into extension from flexion. Pain with hyperflexion, internal rotation and adduction (impingement position) is present in the majority of patients. The pain and/or clunk may also be reproduced with the labral stress test (patient supine, hip is placed into full flexion, external rotation and abduction then moved to extension, internally rotated and adducted with reproduction of pain, clicking or clunking(81)) and/or with resisted straight leg raise, although the diagnostic value of this tests may be limited. Treatment is most commonly observation; however, therapy may be helpful and surgical repair is thought to be indicated for tears that are either highly symptomatic or fail to improve with observation. Some theorize labral tears may lead to progressive osteoarthrosis and suggest treatment reduces that risk, although this theory is currently unproven.(82-84)

#### LIGAMENTUM TERES RUPTURES

The function of the ligamentum teres in not fully understood. It is a triangular-shaped structure with a broad-based attachment to the posteroinferior portion of the cotyloid fossa of the acetabulum. It provides blood supply to the developing hip through a small artery to the fovea of the femoral head. There is no known mechanical function, though it has been suggested that this ligament plays a biomechanical role that contributes significantly to the stabilization of the hip.(85) Analysis of the material properties of this ligament has demonstrated similarities to other ligaments and confirms its ability to resist dislocation forces applied to the femoral head. It is tight in adduction, flexion, and external rotation. Disruption of the ligamentum can be associated with trauma and dislocation of the hip or it may occur without dislocation.(85) Disruption of the ligamentum may also occur with degenerative arthritis.(85) Patients suffering from ligamentum rupture as a result of trauma or dislocation will often have symptoms of instability and pain.

The prevalence of ligamentum teres ruptures seen at arthroscopy is more common than would be suspected, with an 8% incidence rate found in one study.(86) Acute disruptions of the ligamentum are thought to occur as a result of exaggerated movements of adduction and external rotation, although hip abduction is often the injury mechanism described with patient history. Diagnosis of these injuries can be difficult and a high index of suspicion with careful attention to the injury mechanism and the physical examination are critical to accurate evaluation. The high incidence of degenerative arthritis associated with complete ligamentum teres ruptures has been attributed to the original injury in many cases. However, recurrent instability and subluxation episodes may cause repeated injury to the femoral head and account for an increased incidence of osteonecrosis in these patients.

#### LOWER ABDOMINAL STRAINS

Lower abdominal strains are frequent occurrences in sports and occupational groups, particularly those involved in heavy lifting.(87) The pathophysiological abnormality is unclear. Pain onset is usually acute occurring in the context of a heavy lift or sports-related forceful exertion. Pain occurs most typically in the lower abdominal muscles often along the inguinal canal; however, there is no hernia. Whether abdominal strain is a risk for or a precursor to an indirect inguinal hernia is also unknown. There is thought that the

disorder represents reflux of urine into the vas deferens during heavy lifting or strain (see epididymoorchitis).

#### MERALGIA PARESTHETICA

Meralgia paresthetica is a peripheral entrapment neuropathy of the lateral femoral cutaneous nerve, a sensory nerve supplying the upper lateral aspects of the thigh.(88-90) While a nerve entrapment may occur at any point along the nerve, the condition is most commonly from a localized pressure in the area of the inguinal ligament, generally in obese, middle-aged adults in whom the obesity is presumed to produce the pressure on the nerve either directly,(89) or through tight clothing.(91, 92) In an occupational setting it may be due to pressure from tight, heavy tool belts or military armor.(91) Onset may be relatively acute, e.g., after one night's sleep or insidious. Other causes include trauma and scarring from prior trauma or post-surgery, and insults from systemic rheumatological disorders. Symptoms involve tingling and numbness in the distribution of the nerve. Pain may be absent, mild or rarely, severe. There is no muscle weakness.

### SUMMARY OF RECOMMENDATIONS AND EVIDENCE

All *Guidelines* chapters include analyses of numerous interventions, whether or not they are FDA-approved. For non-FDA-approved interventions, recommendations are based on the available evidence. This is not an endorsement of their use. Many of the medications recommended are utilized off-label.

The following is a general summary of the recommendations contained in this chapter:

Evaluation and Diagnostic Issues

- The hip joint or groin should be carefully evaluated with a history, physical examination and focused diagnostic testing. A complete physical examination is recommended, since pain can be referred, particularly from the back or knee to the hip joint or from the genitalia or hip to the groin.
- The initial hip or groin pain examination or consultation should focus on the detection of conditions that are remediable or "red flags" for potential alternate conditions (e.g., femoral head osteonecrosis or renal calculus).
- Initial evaluation of hip joint pain requires hip x-rays in some cases, but not in others, depending on the diagnosis and presentation. The threshold for additional x-rays particularly of the back and knees should be low and may be especially indicated depending on history and physical examination findings.
- Diagnostic ultrasound is helpful for evaluating many of these disorders, including gluteus medius tendinopathies, greater trochanteric bursitis, greater trochanteric pain syndrome/lateral hip pain, groin strains, femoroacetabular impingement, hip instability, dislocation, ligamentum teres ruptures, and labral tears.
- Magnetic resonance imaging (MRI) is particularly helpful for osteonecrosis, femoroacetabular impingement, gluteus medius tendinosis or tears, and trochanteric bursitis.
- Magnetic resonance arthrography is particularly helpful for labral tears, femoroacetabular impingement, gluteus medius tendinosis or tears, and trochanteric bursitis.
- CT scanning is helpful in the evaluation of the patient with a traumatic hip dislocation or arthroplastyassociated recurrent hip dislocation.
- Initial evaluation of groin pain frequently requires no diagnostic testing other than sometimes urinalysis.

Patient Education Issues

- Patients need reassurance that hip pain is common. If required, hip arthroplasty is a major surgical procedure, but with a good prognosis. However, most hip arthrosis patients do not require arthroplasty.
- Osteonecrosis has a variable prognosis which often requires surgery, depending on severity.

- Groin pain is common and usually resolves completely with a good prognosis.
- Patients should be encouraged to maintain high a level of function; however, modifications may be helpful in reducing stresses to the hip.
- Rest and disuse of body parts are not recommended for the management of hip pain, groin pain and other conditions other than fractures, as they usually cause further disability and prolong treatment.

**Occupational Issues** 

- Aside from hip fracture patients in whom prolonged time away from work is often required or stress
  fractures in whom significant restrictions to limit forceful use and weight bearing, patients should be
  encouraged to return to normal activity or work as soon as possible. Some situations might require
  modified duty. However, the more activities are reduced, the greater the time generally required for
  patient rehabilitation.
- If hip pain is present, reduced activity may be necessary if the physical requirements of the job exceed the patient's capabilities.
- If a groin strain is present, brief episodes of reduced heavy lifting or jumping may be appropriate.
- A functional capacity evaluation (FCE) can establish appropriate physical capacity for work although
  results should be interpreted with caution and the testing should be preferably conducted by
  someone (e.g., occupational or physical therapist) well experienced in dealing with patients who may
  self-limit due to pain. Address nonphysical factors, return to work programs and participatory
  ergonomics, as needed. Empower patients to accept responsibility for managing their recovery.

#### Adaptive Equipment/Assistive Devices and Other Allied Health Therapies

- Ambulatory assistive devices (e.g., canes and crutches) are helpful and generally considered
  mandatory for severely affected patients and are most often prescribed until the patient can ambulate
  without a limp. However, balance this use against problems of accelerated muscle weakness due to
  prolonged use of assistive devices results in these devices being potentially counterproductive for
  mildly affected patients.
- Ice, heat, ultrasound, and other similar modalities are rarely indicated for treatment of hip pain in the clinical setting. They may be reasonable for trochanteric bursitis. Heat modalities are recommended for treatment of groin strains.
- Consider heat and ice as a part of self care at home, particularly in the acute pain setting. They
  should provide temporary relief of symptoms, but can reinforce pain and illness behaviors in persons
  with chronic pain. There is belief that heat is not indicated in the acute phase of groin strains and
  some other injuries, although acute low back pain has been demonstrated to be successfully treated
  with heat. Quality evidence is lacking.
- There is no evidence to support prolonged and repetitive use of allied health therapies (e.g., massage, electrical therapies, manipulation, or acupuncture). Long-term and repetitive treatment, particularly if there is no documentation of functional improvement, is not indicated in managing patients with chronic pain, including hip pain from degenerative joint disease.

#### Exercise Issues

- Graded exercises to assist in achieving a return to normal function are indicated.
- Gentle exercises are useful to regain normal range of motion in acute pain and post-operative settings. Aggressive stretching may be contraindicated if symptoms are aggravated. It is important for patients to understand that while exercises after surgery can have some discomfort, they should not experience significant increase in pain or new onset of swelling.
- Aerobic and strengthening exercises appear most helpful for rehabilitation of most chronic hip pain conditions. Consultation with a physical therapist to determine the most appropriate exercises for the patient is in order.

#### Medications

Initially manage most hip and groin pain conditions with NSAIDs or acetaminophen.

- Opioids should be avoided in most cases. Opioids might be needed for managing select patients with confirmed moderate to severe hip degenerative joint disease. Short-term opioid use is rarely needed for severe groin strains.
- Glucocorticoid injections are indicated for trochanteric bursitis treatment.

#### Other Issues

- Hip replacement surgery is recommended for symptoms of severe hip degenerative joint disease that cannot be managed with other non-operative treatments (e.g. medications, injections).
- Groin strains may be accompanied by clinical epididymitis. If supporting history or physical
  examination findings are absent, this entity does not appear to require treatment with antibiotics.

### **Summary Tables: Recommendations and Evidence**

Table 1 summarizes the recommendations from the Evidence-based Practice Hip Panel for diagnostic testing for hip and groin disorders. Table 2 is a summary of recommendations for managing these disorders. Table 3 is a summary of pre-, peri-, and post-operative rehabilitation recommendations related to these disorders. Recommendations are based on critically appraised higher quality research evidence, and on expert consensus observing First Principles when higher quality evidence was unavailable or inconsistent. The reader is cautioned to utilize the more detailed indications, specific appropriate diagnoses, temporal sequencing, prior testing or treatment, and contraindications that are elaborated in more detail for each test or treatment in the body of this Guideline in using these recommendations in clinical practice or medical management. These recommendations are not simple "yes/no" criteria, and the evidence supporting them is in nearly all circumstances developed from typical patients, not unusual situations or exceptions. (Studies were reviewed that included numerous disparate conditions beyond hip and groin pain; however, they are not included in this chapter in detail. The reader is referred to other chapters, especially the Chronic Pain chapter for a detailed review of many of those additional studies.)

Recommendations are made under the following categories:

- Strongly Recommended, "A" Level
- Moderately Recommended, "B" Level
- Recommended, "C" Level
- Insufficient-Recommended (Consensus-based), "I" Level
- Insufficient-No Recommendation (Consensus-based), "I" Level
- Insufficient-Not Recommended (Consensus-based), "I" Level
- Not Recommended, "C" Level
- Moderately Not Recommended, "B" Level
- Strongly Not Recommended, "A" Level

### Table 1. Summary of Recommendations for Diagnostic and Other Testing for Hip and Groin Disorders

| Test                                                        | Recommendation(s)                                                                                                                                                                                                                                                         |
|-------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Antibodies                                                  | Antibody levels to evaluate and diagnose patients with hip pain if there is reasonable suspicion of a rheumatological disorder – <b>Recommended, Insufficient Evidence (I)</b>                                                                                            |
|                                                             | Antibody levels as a screen to confirm the existence of specific disorders (i.e., rheumatoid arthritis) – <b>Strongly Recommended, Evidence (A)</b>                                                                                                                       |
| Hip Arthroscopy                                             | Arthroscopy to evaluate and diagnose patients with hip pain if there is a suspicion of labral tear, intraarticular body, femoroacetabular impingement, or there are other subacute or chronic mechanical symptoms – <b>Recommended</b> , <b>Insufficient Evidence (I)</b> |
| Arthroscopy for diagnosing acute hip pain – Not Recomme (I) | Arthroscopy for diagnosing acute hip pain – Not Recommended, Insufficient Evidence (I)                                                                                                                                                                                    |
|                                                             | Arthroscopy to diagnose or treat acute, subacute, or chronic hip osteoarthrosis in the absence of a remediable mechanical defect such as symptomatic labral tear – <b>Not</b>                                                                                             |

|                                                                                                                   | Recommended, Insufficient Evidence (I)                                                                                                                                                                                                                                                                             |
|-------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                   | Arthroscopy with chondroplasty for treatment of osteoarthrosis – Not Recommended, Insufficient Evidence (I)                                                                                                                                                                                                        |
| Bone Scans                                                                                                        | Bone scanning for select use in patients with acute, subacute or chronic pain to assist in the diagnosis of osteonecrosis, neoplasms, or other conditions with increased polyosthotic bone metabolism, particularly when more than one joint needs to be evaluated – <b>Recommended, Insufficient Evidence (I)</b> |
|                                                                                                                   | Bone scanning for routine use in hip joint evaluations – Not Recommended, Insufficient Evidence (I)                                                                                                                                                                                                                |
| Computerized<br>Tomography (CT)                                                                                   | Routine CT for evaluating acute, subacute, or chronic hip pain – <b>Not Recommended</b> , <b>Insufficient Evidence (I)</b>                                                                                                                                                                                         |
|                                                                                                                   | CT for evaluating patients with osteonecrosis or following traumatic dislocations or arthroplasty-associated recurrent dislocations – <b>Recommended, Insufficient Evidence</b> (I)                                                                                                                                |
|                                                                                                                   | CT for patients who need advanced imaging, but have contraindications for MRI – Recommended, Insufficient Evidence (I)                                                                                                                                                                                             |
|                                                                                                                   | Routine helical CT for evaluating acute, subacute, or chronic hip pain – <b>Not</b><br><b>Recommended, Insufficient Evidence (I)</b>                                                                                                                                                                               |
|                                                                                                                   | Helical CT for evaluating patients with osteonecrosis who have contraindications for MRI<br>– Recommended, Insufficient Evidence (I)                                                                                                                                                                               |
|                                                                                                                   | Helical CT for select patients with acute, subacute or chronic hip pain for whom advanced imaging of bony structures is thought to be potentially be helpful – <b>Recommended</b> , <b>Insufficient Evidence (I)</b>                                                                                               |
|                                                                                                                   | Helical CT for patients who need advanced imaging, but have contraindications for MRI – Recommended, Insufficient Evidence (I)                                                                                                                                                                                     |
| C-Reactive Protein,<br>Erythrocyte<br>Sedimentation<br>Rate, and Other<br>Non-specific<br>Inflammatory<br>Markers | Erythrocyte sedimentation rate or other inflammatory markers for screening for inflammatory disorders or prosthetic sepsis with reasonable suspicion of inflammatory disorder in patients with subacute or chronic hip pain – <b>Recommended</b> , <b>Insufficient Evidence (I)</b>                                |
| Local Anesthetic<br>Injections and<br>Epidurals                                                                   | Local anesthetic injections to assist in the diagnosis of subacute or chronic hip pain – <b>Recommended, Insufficient Evidence (I)</b>                                                                                                                                                                             |
| Electromyography<br>(including Nerve<br>Conduction                                                                | Electrodiagnostic studies to assist in the diagnosis of subacute or chronic peripheral nerve entrapments including lateral cutaneous nerve to the thigh (meralgia paresthetica) – <b>Recommended, Insufficient Evidence (I)</b>                                                                                    |
| Studies)                                                                                                          | Nerve conduction study to confirm diagnosis or in patients in who surgery is contemplated<br>– Recommended, Insufficient Evidence (I)                                                                                                                                                                              |
| Magnetic<br>Resonance<br>Imaging (MRI)                                                                            | MRI for select patients with subacute or chronic patients with consideration of accompanying soft tissue pathology or other diagnostic concerns – <b>Recommended</b> , <b>Insufficient Evidence (I)</b>                                                                                                            |
|                                                                                                                   | MRI for diagnosing osteonecrosis – Recommended, Insufficient Evidence (I)                                                                                                                                                                                                                                          |
|                                                                                                                   | MRI for routine evaluation of acute, subacute, or chronic hip joint pathology, including degenerative joint disease – <b>Not Recommended, Insufficient Evidence (I)</b>                                                                                                                                            |
|                                                                                                                   | MRI to diagnose hamstring or hip flexor strains in more severe cases – <b>Recommended</b> , <b>Insufficient Evidence (I)</b>                                                                                                                                                                                       |
|                                                                                                                   | MRI to diagnose groin strains or adductor-related groin pain in more severe cases –                                                                                                                                                                                                                                |

|                   | Recommended, Insufficient Evidence (I)                                                                           |
|-------------------|------------------------------------------------------------------------------------------------------------------|
| MR Arthrogram     | MR arthrogram to diagnose femoracetabular impingement, labral tears, gluteus medius                              |
|                   | tendinsosis or tears, or trochanteric bursitis in patients with subacute or chronic hip pain -                   |
| _                 | Recommended, Insufficient Evidence (I)                                                                           |
| Roentgenograms    | X-rays for evaluating acute, subacute or chronic hip pain or femoroacetabular                                    |
| (X-rays)          | impingement or dysplasia – Recommended, Insufficient Evidence (I)                                                |
|                   | X-rays for diagnosing osteonecrosis – Recommended, Insufficient Evidence (I)                                     |
|                   | X-rays to diagnose hamstring or hip flexor strains in more severe cases – Recommended, Insufficient Evidence (I) |
|                   | X-rays to diagnose groin strains or adductor-related groin pain in more severe cases –                           |
|                   | Recommended, Insufficient Evidence (I)                                                                           |
| Single Proton     | SPECT or PET for diagnosing acute, subacute or chronic hip pain – Not Recommended,                               |
| Emission          | Insufficient Evidence (I)                                                                                        |
| Computed          |                                                                                                                  |
| Tomography        |                                                                                                                  |
| (SPECT) and       |                                                                                                                  |
| Positron Emission |                                                                                                                  |
| Tomography (PET)  |                                                                                                                  |
| Ultrasound        | Ultrasound for evaluating patients with gluteus medius tendinopathies, greater                                   |
|                   | trochanteric bursitis, greater trochanteric pain syndrome/lateral hip pain, groin strains,                       |
|                   | femoroacetabular impingement, hip instability, dislocation, ligamentum teres ruptures,                           |
|                   | labral tears, or post-arthroplasty chronic pain where peri-articular masses are suspected –                      |
|                   | Recommended, Insufficient Evidence (I)                                                                           |
|                   | Ultrasound to diagnose other hip disorders including osteonecrosis, osteoarthritis,                              |
|                   | dysplasia, or fractures – No Recommendation, Insufficient Evidence (I)                                           |
| Urine Culture     | Culturing urine to diagnose lower abdominal strain unless other symptoms are present -                           |
|                   | No Recommendation, Insufficient Evidence (I)                                                                     |
|                   | Urine cultures for select patients to diagnose epididymitis or epididymito-orchitis –                            |
|                   | Recommended, Insufficient Evidence (I)                                                                           |

#### Strength-of-Evidence Ratings:

- A = Strong evidence-base: Two or more high-quality studies.\*
- B = **Moderate evidence-base**: At least one high-quality study or multiple moderate-quality studies<sup>\*\*</sup> relevant to the topic and the working population.
- C = Limited evidence-base: At least one study of moderate-quality.

I = Insufficient evidence: Evidence is insufficient or irreconcilable.

\*For therapy and prevention, randomized controlled trials (RCTs) with narrow confidence intervals and minimal heterogeneity. For diagnosis and screening, cross sectional studies using independent gold standards. For prognosis, etiology or harms, prospective cohort studies with minimal heterogeneity.

\*\*For therapy and prevention, well-conducted cohort studies. For prognosis, etiology or harms, well-conducted retrospective cohort studies or untreated control arms of RCTs.

| Hip and Groin<br>Disorder                                  | Treatment with Evidence Rating/Recommendation Level                                                                                                                                                            |                                                                                                                                               |                                                                                                                                                   |  |
|------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|--|
|                                                            | Recommended No Recommendation Not Recommended                                                                                                                                                                  |                                                                                                                                               |                                                                                                                                                   |  |
| Acute,<br>Subacute, or<br>Chronic Hip<br>and Groin<br>Pain | Measures to prevent falls (I)<br>Activities that do not substantially<br>aggravate symptoms for most<br>patients with acute, subacute, or<br>chronic hip or groin pain (I)<br>Bed rest for patients with clear | Ergonomic interventions to<br>prevent or facilitate recovery<br>(I)<br>Yoga for chronic persistent<br>hip pain (I)<br>Norepinephrine reuptake | Bed rest for patients with<br>acute, subacute, or<br>chronic hip pain (I)<br>Norepinephrine reuptake<br>inhibiting anti-<br>depressants for acute |  |

#### Table 2. Summary of Recommendations for Managing Hip and Groin Disorders

| contra-indication to weight-bearing                          | Innibiting anti-depressants for                   | nip pain (I)              |
|--------------------------------------------------------------|---------------------------------------------------|---------------------------|
| Status Such as an unstable hacture                           | (I)                                               | Selective serotonin       |
| (1)                                                          |                                                   | reuptake inhibitors       |
| NSAIDs for chronic hip pain                                  | Topiramate for subacute or                        | (SSRIs) for acute,        |
| especially if due to osteoarthrosis                          | chronic hip pain (I)                              | subacute, or chronic hip  |
| (A)                                                          | Gabapentin for subacute or                        | pain (I)                  |
| NSAIDs for acute or subacute hip                             | chronic hip pain (I)                              | Skeletal muscle           |
| pain (I)                                                     | Willow bark (Salix) ginger                        | relaxants (I)             |
| NSAIDs for acute flares (C)                                  | extract, rose hips, camphora                      | Topiramate (I)            |
| Proton pump inhibitors or                                    | molmol, maleluca alternifolia,                    | Gabapentin for acute hip  |
| misoprostol for patients at                                  | angelica sinensis, aloe vera,                     | pain (I)                  |
| substantially increased risk for                             | tnymus officinalis, mentne                        | Deutine use of eniolds    |
| gastrointestinal bleeding (A)                                | pepenta, amica montana,                           | Routine use of opioids    |
| Sucralfate for patients at                                   | parthenium and zingiber                           | chronic non-malignant     |
| substantially increased risk for                             | officinicalis avocado sovbean                     | rain conditions (C)       |
| astrointestinal bleeding (B)                                 | unsaponifiables oral                              | pairi conditions (C)      |
|                                                              | enzymes, topical copper                           | Topical NSAIDs (I)        |
| H2 blockers for patients at substantially increased risk for | salicylate, S-                                    | Wheatgrass cream (I)      |
| gastrointestinal bleeding (C)                                | Adenosylmethionine, and diacerein harpagoside for | Lidocaine patches (I)     |
| NSAIDs for patients with known                               | acute, subacute, or chronic                       | Eutectic mixture of local |
| cardiovascular disease or multiple                           | hip pain (I)                                      | anesthetics (EMLA) (I)    |
| risk factors for cardiovascular                              | Acupuncture for acute or                          | Other creams/ointments    |
| disease if the risks and benefits of                         | subacute hip pain (I)                             | (I)                       |
| discussed (1)                                                | Diathermy for acute                               | Tumor poorooio footor     |
|                                                              | subacute or chronic hip pain                      | alpha blockers for acute  |
| Acetaminophen (or the analog,                                | (1)                                               | subacute or chronic hin   |
| paracetamol) for acute or subacute                           |                                                   | pain (I)                  |
| hip pain particularly in patients who                        | Infrared therapy for acute,                       |                           |
| nave contra-indications for NSAIDS                           |                                                   | Complementary or          |
| (1)                                                          | (1)                                               | distant supplements of    |
| Acetaminophen (or the analog,                                | Ultrasound for acute,                             | ote for acute subacute    |
| paracetamol) for chronic hip pain                            | subacute, or chronic hip pain                     | or chronic hin pain (I)   |
| particularly in patients who have                            | (1)                                               |                           |
| contraindications for NSAIDs (C)                             | Low-level laser therapy for                       | Magnets and magnetic      |
| Acetaminophen or aspirin as a 1st-                           | acute, subacute, or chronic                       | stimulation for acute,    |
| line therapy for patients with                               | hip pain (I)                                      | subacute, or chronic hip  |
| cardiovascular disease risk factors                          | Manipulation or mobilization                      | pail(I)                   |
| (A)                                                          | for acute hip pain (I)                            | Reflexology for acute,    |
| Judicious use of opioids for acute                           | Massage for acute subacuto                        | subacute, or chronic hip  |
| severe hip pain (I)                                          | or chronic hip pain (I)                           |                           |
| Opioids for select patients with                             | Electrical thereasing autoide of                  | Prolotherapy injections   |
| subacute or chronic hip pain (I)                             | research settings for acute                       | chronic hip pain (1)      |
| Muscle relaxants for acute and                               | subacute, or chronic hin pain                     |                           |
| subacute, moderate to severe hin                             | (1)                                               |                           |
| pain from muscle spasm that is                               |                                                   |                           |
| unrelieved by NSAIDs, avoidance                              | I ranscutaneous electrical                        |                           |
| of exacerbating exposures or other                           | acute subscute or chronic                         |                           |
| conservative measures (I)                                    | hin nain (I)                                      |                           |
| Capsicum for short-term treatment                            |                                                   |                           |
| of acute or subacute hip pain as                             | Botulinum injections (I)                          |                           |
| well as for acute exacerbations of                           | Biofeedback for chronic hip                       |                           |

|                   | chronic hip pain as a counter-                                                                                                                                                                                                                                                 | pain (I)                                                                             |                                                  |
|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|--------------------------------------------------|
|                   | irritant (I)<br>Canes and crutches for moderate<br>to severe acute hip or groin pain or<br>subacute and chronic hip or groin<br>pain where the device is used to<br>advance the activity level (I)                                                                             |                                                                                      |                                                  |
|                   | Orthotics, shoe insoles, or shoe<br>lifts for patients with significant leg<br>length discrepancy with hip pain<br>felt to be a consequence of that<br>discrepancy (I)                                                                                                         |                                                                                      |                                                  |
|                   | Cryotherapies for home use if<br>efficacious for temporary relief of<br>acute, subacute, or chronic hip<br>pain (I)                                                                                                                                                            |                                                                                      |                                                  |
|                   | Self-application of low-tech heat<br>therapy for acute, subacute, or<br>chronic hip pain (I)                                                                                                                                                                                   |                                                                                      |                                                  |
|                   | Manipulation or mobilization for subacute or chronic hip pain (C)                                                                                                                                                                                                              |                                                                                      |                                                  |
|                   | A psychological evaluation as part<br>of the evaluation and management<br>of patients with chronic hip pain<br>(see indications) in order to assess<br>whether psychological factors will<br>need to be considered and treated<br>as part of the overall treatment<br>plan (I) |                                                                                      |                                                  |
|                   | Cognitive-behavioral therapy as an<br>adjunct to an interdisciplinary<br>program for subacute or chronic<br>hip pain (I)                                                                                                                                                       |                                                                                      |                                                  |
|                   | Work conditioning, work<br>hardening, and early intervention<br>programs for chronic hip pain<br>syndromes (I)                                                                                                                                                                 |                                                                                      |                                                  |
|                   | Multidisciplinary or interdisciplinary<br>program (IPRP) with a focus on<br>behavioral or cognitive-behavioral<br>approaches combined with<br>conditioning exercise for patients<br>who due to chronic hip pain,<br>demonstrate partial/total work<br>incapacity (I)           |                                                                                      |                                                  |
| Osteonecrosi<br>s | Measures to prevent falls (I)<br>Reduction or elimination of                                                                                                                                                                                                                   | Ergonomic interventions to<br>prevent or facilitate recovery                         | Glucocorticosteroids, including by injection, in |
|                   | activities that significantly provoke<br>osteonecrotic symptoms, including<br>avoidance of dysbaric exposures,<br>or control of diabetes mellitus,                                                                                                                             | (I)<br>Institution of non-weight-<br>bearing activities (I)<br>Hyperbaric oxygen (I) | early disease stages (I)                         |
|                   | elimination or reductions in glucocorticosteroid use, and/or                                                                                                                                                                                                                   | , · · · · · · · · · · · · · · · · · · ·                                              |                                                  |

|                            | elimination of alcohol and tobacco products (I)                                                                                                                                    |                                                                                                                                                                                                            |              |
|----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
|                            | Aggressive targeting of all<br>coronary artery disease risk factors (I)                                                                                                            |                                                                                                                                                                                                            |              |
|                            | Bisphosphonates particularly for<br>mild to moderate cases of<br>osteonecrosis (C)                                                                                                 |                                                                                                                                                                                                            |              |
|                            | NSAIDs (I)                                                                                                                                                                         |                                                                                                                                                                                                            |              |
|                            | Core compression surgery (I)                                                                                                                                                       |                                                                                                                                                                                                            |              |
|                            | Hip arthroplasty for osteonecrosis<br>with collapse or unresponsive to<br>non-operative treatment (A)                                                                              |                                                                                                                                                                                                            |              |
|                            | Total hip arthroplasty as an<br>effective operation to speed<br>improvements in patient's<br>symptoms and functional status in<br>those with moderate to severe hip<br>disease (A) |                                                                                                                                                                                                            |              |
|                            | Metal-on-metal hip resurfacing arthroplasty for select patients (C)                                                                                                                |                                                                                                                                                                                                            |              |
| Bilateral<br>Osteoarthrosi | Measures to prevent falls (I)                                                                                                                                                      | Ergonomic interventions to                                                                                                                                                                                 |              |
| s or Hip Joint<br>Disease  | For bilateral disease, carefully<br>selected patients may safely<br>undergo simultaneous bilateral hip<br>replacement (C)                                                          | (I)<br>Botulinum injections (I)                                                                                                                                                                            |              |
|                            | Total hip arthroplasty as an<br>effective operation to speed<br>improvements in patient's<br>symptoms and functional status in<br>those with moderate to severe hip<br>disease (A) |                                                                                                                                                                                                            |              |
|                            | Metal-on-metal hip resurfacing arthroplasty for select patients (C)                                                                                                                |                                                                                                                                                                                                            |              |
| Epididymo-                 | Measures to prevent falls (I)                                                                                                                                                      | Ergonomic interventions to                                                                                                                                                                                 | Bed rest (I) |
| Orchius                    | NSAIDs (I)                                                                                                                                                                         | (I)                                                                                                                                                                                                        |              |
|                            | Age-appropriate antibiotics (I)                                                                                                                                                    | Needle aspiration for                                                                                                                                                                                      |              |
|                            | Physical or occupational therapy                                                                                                                                                   | epididymito-orchitis (I)                                                                                                                                                                                   |              |
|                            |                                                                                                                                                                                    | Work limitations for patients<br>with epididymitis or<br>epididymo-orchitis, although<br>limitations may be necessary<br>depending on the severity of<br>the condition and the physical<br>job demands (I) |              |
|                            |                                                                                                                                                                                    | Ice (I)                                                                                                                                                                                                    |              |
| Glutous                    | Magguros to provent falls (1)                                                                                                                                                      | Intermittent elevation (I)                                                                                                                                                                                 |              |
| Medius                     | Trochontorio glucocorticostoroid                                                                                                                                                   | prevent or facilitate recovery                                                                                                                                                                             |              |
|                            | i rochanteric giucocorticosteroid                                                                                                                                                  | ,                                                                                                                                                                                                          |              |

| Tendinosis<br>and Tears                                                             | injections for gluteus medius tears<br>with accompanying clinical bursitis<br>(C)<br>NSAIDs or acetaminophen for<br>gluteus medius tears with<br>accompanying clinical bursitis (I)<br>Progressive, eccentric exercise for<br>gluteus medius tendinosis and<br>tears, particularly to strengthen the<br>lateral hip musculature (I)<br>Surgical repair for gluteus medius<br>tears that are non-responsive to | (1)                                                                                                                                                                                                     |              |
|-------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| Greater<br>Trochanteric<br>Bursitis/<br>Greater<br>Trochanteric<br>Pain<br>Syndrome | Measures to prevent falls (I)<br>Limitations may be helpful in the<br>acute phase (I)<br>Trochanteric glucocorticosteroid<br>injections for acute, subacute, or<br>chronic trochanteric bursitis or<br>greater trochanteric pain syndrome<br>(C)<br>NSAIDs or acetaminophen for<br>acute, subacute, or chronic<br>trochanteric bursitis or greater<br>trochanteric pain syndrome (I)                          | Ergonomic interventions to<br>prevent or facilitate recovery<br>(I)<br>Topical NSAIDs (I)<br>Lidocaine patches (I)<br>Eutectic mixture of local<br>anesthetics (EMLA) (I)<br>Other creams/ointments (I) |              |
| Groin Strains<br>and<br>Adductor-<br>Related Groin<br>Pain                          | Measures to prevent falls (I)<br>NSAIDs (I)<br>Work limitations for patients with<br>groin strains or adductor-related<br>groin pain who perform high-<br>physical jobs or cannot avoid job<br>tasks thought to have resulted in<br>the strain (I)<br>Ice (I)<br>Heat (I)<br>Ace wraps (I)<br>Physical or occupational therapy<br>(I)                                                                         | Ergonomic interventions to<br>prevent or facilitate recovery<br>(I)<br>Work limitations for most<br>groin strains or adductor-<br>related groin pain (I)                                                | Bed rest (I) |
| Hamstring<br>and Hip<br>Flexor<br>Strains                                           | Measures to prevent falls (I)<br>NSAIDs (I)<br>Work limitations for patients with<br>hamstring or hip flexor strains who<br>perform high-physical jobs or<br>cannot avoid job tasks thought to<br>have resulted in the strain (I)<br>Ice (I)<br>Heat (I)<br>Ace wraps (I)                                                                                                                                     | Ergonomic interventions to<br>prevent or facilitate recovery<br>(I)<br>Work limitations for most<br>hamstring or hip flexor strains<br>(I)                                                              | Bed rest (I) |

|                      | Physical or occupational therapy (I)                                                                                                                                                                                                                         |                                                                                                                                                               |                                      |
|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|
|                      | Progressive agility, trunk<br>stabilization and icing (PATS) (I)                                                                                                                                                                                             |                                                                                                                                                               |                                      |
| Hip Fracture         | Measures to prevent falls (I)                                                                                                                                                                                                                                | Ergonomic interventions to                                                                                                                                    |                                      |
|                      | Bisphosphonates for select<br>patients with osteopenia-related<br>hip fractures (A)                                                                                                                                                                          | prevent or facilitate recovery<br>(I)<br>Manipulation or mobilization                                                                                         |                                      |
|                      | Calcitonin for patients with hip<br>fracture, particularly those who are<br>intolerant to or have other contra-<br>indications for bisphosphonates (I)                                                                                                       | (I)                                                                                                                                                           |                                      |
|                      | Transcutaneous electrical nerve<br>stimulation (TENS) for emergency<br>transport of patients with hip<br>fracture (B)                                                                                                                                        |                                                                                                                                                               |                                      |
|                      | Acupressure for transporting patients with hip fracture to the hospital (B)                                                                                                                                                                                  |                                                                                                                                                               |                                      |
|                      | Surgical treatment (C)                                                                                                                                                                                                                                       |                                                                                                                                                               |                                      |
|                      | Surgical intervention as soon as the patient is medically stable (I)                                                                                                                                                                                         |                                                                                                                                                               |                                      |
|                      | Arthroplasty for older patients with<br>displaced femoral neck and<br>subcapital fractures (A)                                                                                                                                                               |                                                                                                                                                               |                                      |
| Femoro-              | Measures to prevent falls (I)                                                                                                                                                                                                                                | Ergonomic interventions to                                                                                                                                    |                                      |
| Impingement.         | NSAIDs (I)                                                                                                                                                                                                                                                   | prevent or facilitate recovery                                                                                                                                |                                      |
| "Hip<br>Impingement, | Local glucocorticosteroid injections (I)                                                                                                                                                                                                                     |                                                                                                                                                               |                                      |
| Tears                | Physical or occupational therapy<br>(I)                                                                                                                                                                                                                      |                                                                                                                                                               |                                      |
|                      | Arthroscopic surgery or open<br>repair for "hip impingement" or<br>labral tear cases that fail<br>conservative management (I)                                                                                                                                |                                                                                                                                                               |                                      |
| Hip                  | Measures to prevent falls (I)                                                                                                                                                                                                                                | Ergonomic interventions to                                                                                                                                    | Tumor necrosis factor-               |
| s                    | Aerobic exercise (B)                                                                                                                                                                                                                                         | (I)                                                                                                                                                           | alpha blockers (I)                   |
|                      | Stretching exercises for select<br>patients with significant reductions                                                                                                                                                                                      | Norepinephrine reuptake                                                                                                                                       | Magnets and magnetic stimulation (I) |
|                      | in range of motion that are not thought to be fixed deficits (I)                                                                                                                                                                                             | Topiramate (I)                                                                                                                                                | Reflexology (I)                      |
|                      | Strengthening exercises (B)                                                                                                                                                                                                                                  | Gabapentin (I)                                                                                                                                                |                                      |
|                      | A trial of aquatic therapy for<br>patients with hip osteoarthrosis<br>who meet the referral criteria for<br>supervised exercise therapy and<br>have co-morbidities (e.g., extreme<br>obesity, significant degenerative<br>joint disease, etc.) that preclude | Glucosamine sulfate 1,500mg<br>daily (single or divided dose),<br>chondroitin sulfate, or<br>methylsulfonylmethane for<br>treatment hip osteoarthrosis<br>(I) |                                      |

|                               | effective participation in a weight-<br>bearing physical activity and who<br>will either transition to a land-<br>based program or a self-<br>administered water-based program<br>(I)<br>NSAIDs for chronic hip pain<br>especially if due to osteoarthrosis<br>(A)<br>Acupuncture for select use for<br>chronic osteoarthrosis of the hip as<br>an adjunct to more efficacious<br>treatments (B)<br>Cryotherapies for home use if<br>efficacious for temporary relief of<br>osteoarthrosis (I)<br>Self-application of low-tech heat | Glucosamine sulfate intra-<br>muscular injections (I)<br>Glucosamine sulfate intra-<br>articular injections (I)<br>Glucosamine sulfate,<br>chondroitin sulfate, or<br>methylsulfonylmethane for<br>prevention of osteoarthrosis<br>(I)<br>Diacerein (I)<br>Diathermy (I)<br>Infrared therapy (I)<br>Ultrasound (I)<br>Low-level laser therapy (I)<br>Manipulation or mobilization |              |
|-------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
|                               | therapy (I)<br>Intraarticular glucocorticosteroid<br>injections (B)<br>Intraarticular hip visco-<br>supplementation injections (I)<br>Hip arthroplasty for severe<br>arthritides (A)                                                                                                                                                                                                                                                                                                                                                | <ul> <li>(I)</li> <li>Massage (I)</li> <li>Electrical therapies outside of research settings (I)</li> <li>Transcutaneous electrical nerve stimulation (TENS) (I)</li> <li>Botulinum injections (I)</li> </ul>                                                                                                                                                                     |              |
| Lower<br>Abdominal<br>Strains | Measures to prevent falls (I)<br>NSAIDs (I)<br>Work limitations for patients with<br>lower abdominal strains who<br>perform high-physical jobs or<br>cannot avoid job tasks thought to<br>have resulted in the strain (I)<br>Ice (I)<br>Heat (I)<br>Physical or occupational therapy<br>(I)                                                                                                                                                                                                                                         | Ergonomic interventions to<br>prevent or facilitate recovery<br>(I)<br>Work limitations for most<br>lower abdominal strains (I)                                                                                                                                                                                                                                                   | Bed rest (I) |
| Meralgia<br>Paresthetica      | Measures to prevent falls (I)<br>Weight loss for patients who are<br>overweight or obese, avoidance of<br>aggravating exposures, and the<br>wearing of loose clothing (I)<br>Glucocorticosteroid injections for<br>meralgia paresthetica if more<br>conservative treatments are not<br>efficacious (I)<br>Surgical release for select patients<br>(I)                                                                                                                                                                               | Ergonomic interventions to<br>prevent or facilitate recovery<br>(I)<br>NSAIDs (I)<br>Topical lidocaine patches (I)<br>Spinal cord stimulators for<br>select patients (I)                                                                                                                                                                                                          |              |

Strength-of-Evidence Ratings: A = Strong evidence-base: Two or more high-quality studies.\*

- B = **Moderate evidence-base**: At least one high-quality study or multiple moderate-quality studies<sup>\*\*</sup> relevant to the topic and the working population.
- C = Limited evidence-base: At least one study of moderate quality.

I = Insufficient evidence: Evidence is insufficient or irreconcilable.

\*For therapy and prevention, randomized controlled trials (RCTs) or crossover trials with narrow confidence intervals and minimal heterogeneity. For diagnosis and screening, cross sectional studies using independent gold standards. For prognosis, etiology or harms, prospective cohort studies with minimal heterogeneity.

\*\*For therapy and prevention, well-conducted cohort studies. For prognosis, etiology or harms, well-conducted retrospective cohort studies or untreated control arms of RCTs.

| Table 3. Summary of Recommendations for Pre-, P | eri-, and Post-operative Issues Related to Hip |
|-------------------------------------------------|------------------------------------------------|
| and Groin Disorders                             |                                                |

| Recommended                                                                                                                                                                                                                                 | No Recommendation                                                                        | Not Recommended                                          |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|----------------------------------------------------------|
| Gabapentin for peri-operative<br>management of hip pain to reduce need                                                                                                                                                                      | Manipulation or mobilization for surgical patients (I)                                   | Tumor necrosis factor-alpha<br>blockers for arthroplasty |
| adverse effects from opioids (A)                                                                                                                                                                                                            | Pre-operative autologous blood<br>donation (I)                                           | osteolysis (I)                                           |
| NSAIDs for post-operative hip pain (I)                                                                                                                                                                                                      | Routine peri-operative use of                                                            |                                                          |
| bone formation after arthroplasty (B)                                                                                                                                                                                                       | Disphosphonates (I)<br>Routine post-operative use of                                     |                                                          |
| Acetaminophen (or the analog, paracetamol) for post-operative hip pain                                                                                                                                                                      | calcitonin (I)                                                                           |                                                          |
| particularly in patients who have<br>contraindications for NSAIDs (I)                                                                                                                                                                       | Use of treatment in a geriatric unit or<br>using interdisciplinary rehabilitation<br>(I) |                                                          |
| Judicious use of opioids for post-<br>operative hip pain (I)                                                                                                                                                                                | Use of a late post-operative program for patients with mild reductions of                |                                                          |
| Cryotherapy for hip arthroplasty and surgery patients (C)                                                                                                                                                                                   | questionable significance in the late post-operative period (I)                          |                                                          |
| Acupuncture for hip arthroplasty procedures (B)                                                                                                                                                                                             | Specific vocational or avocational pursuits post-operatively (I)                         |                                                          |
| One-day use of systemic antibiotics for<br>patients undergoing surgical hip<br>procedures (B)                                                                                                                                               |                                                                                          |                                                          |
| Pre-operative education program prior to hip arthroplasty (B)                                                                                                                                                                               |                                                                                          |                                                          |
| Prevention of venous thromboembolic<br>disease for post-operative hip patients,<br>particularly arthroplasty patients or other<br>post-operative patients with prolonged<br>reductions in activity (early ambulation is<br>recommended) (A) |                                                                                          |                                                          |
| Use of post-operative graded<br>compression stockings for prevention of<br>venous thromboembolic disease (B)                                                                                                                                |                                                                                          |                                                          |
| Use of lower extremity pump devices for prevention of venous thromboembolic disease (B)                                                                                                                                                     |                                                                                          |                                                          |
| Low-molecular weight heparin for prevention of venous thromboembolic disease (A)                                                                                                                                                            |                                                                                          |                                                          |

| Factor Xa inhibitors for prevention of venous thromboembolic disease (A)                                                                                                                                                                                                                                                     |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Warfarin and heparin for prevention of venous thromboembolic disease (B)                                                                                                                                                                                                                                                     |  |
| Aspirin for prevention of venous thromboembolic disease (B)                                                                                                                                                                                                                                                                  |  |
| A pre-operative exercise program<br>particularly emphasizing cardiovascular<br>fitness and strengthening especially for<br>patients who exhibit evidence of<br>weakness or unsteady gait. Flexibility<br>components may be reasonable in those<br>without fixed deficits. (B)                                                |  |
| Post-operative exercise program and<br>rehabilitation program for hip arthroplasty<br>surgery patients (B)                                                                                                                                                                                                                   |  |
| For at least the first 6 weeks post-<br>operatively, use walking aid as long<br>needed (C)                                                                                                                                                                                                                                   |  |
| For at least the first 6 weeks post-<br>operatively, add other recommendations<br>only if needed (e.g., elevated toilet seats,<br>prohibiting driving) (C)                                                                                                                                                                   |  |
| For at least the first 6 weeks post-<br>operatively, ADL adaptive equipment as<br>needed (e.g., long- handled reacher,<br>long-handled shoe horn or sock aid) (I)                                                                                                                                                            |  |
| Post-operative exercise program and rehabilitation program for hip fracture patients (B)                                                                                                                                                                                                                                     |  |
| Geriatric unit treatment for patients with<br>multiple health care issues, particularly if<br>there is moderate dementia (C)                                                                                                                                                                                                 |  |
| A late post-operative exercise program<br>after either arthroplasty or hip fracture<br>emphasizing cardiovascular fitness and<br>strengthening or resistance for patients<br>who exhibit significant evidence of<br>weakness or unsteady gait. A home<br>exercise program among motivated<br>patients may be sufficient. (C) |  |

#### Strength-of-Evidence Ratings:

A =Strong evidence-base: Two or more high-quality studies.\*

B =**Moderate evidence-base**: At least one high-quality study or multiple moderate-quality studies<sup>\*\*</sup> relevant to the topic and the working population.

C =Limited evidence-base: At least one study of moderate quality.

I =Insufficient evidence: Evidence is insufficient or irreconcilable.

\*For therapy and prevention, randomized controlled trials (RCTs) or crossover trials with narrow confidence intervals and minimal heterogeneity. For diagnosis and screening, cross sectional studies using independent gold standards. For prognosis, etiology or harms, prospective cohort studies with minimal heterogeneity.

\*\*For therapy and prevention, well-conducted cohort studies. For prognosis, etiology or harms, well-conducted retrospective cohort studies or untreated control arms of RCTs.

### **BASIC PRINCIPLES AND DEFINITIONS**

Acetabulum: A somewhat spherical

structure which covers approximately 170° of the femoral head.

Acute, Subacute, or Chronic Pain: For purposes of identifying interventions at different stages of diseases, acute pain is defined as pain for up to 1 month; subacute, pain from 1 to 3 months; and chronic, pain of more than 3 months duration (see Chronic Pain chapter for additional information).

Active Therapy: The term "active therapy" is commonly used to describe treatment that requires the patient to assume an active role in rehabilitative treatment. Although there is no one specific treatment defined by this term, it most commonly includes therapeutic exercises, particularly aerobic activities and muscle reconditioning (weight lifting or resistance training).(93) Some studies have included active stretching and treatment with psychological, social, and/or educational components requiring active participation from the patient.(94)

Active Exercise Therapy: Active exercise therapy typically consists of cardiovascular training and muscle strengthening, (95, 96) although it may also include progressive or occasionally even active stretching, especially in patients with substantially reduced ranges of motion. Active exercise therapy is used as a primary treatment for chronic pain, is frequently initiated in the course of treating subacute pain, and is a primary treatment after various surgeries. The goal of active exercise therapy is to improve function. (95) The word "active" is used to differentiate individualized exercise programs designed to address and rehabilitate specific functional, anatomic or physiologic deficits from passive treatment modalities or from forms of "exercise" that require very little effort or investment on the part of the patient or provider.

Allied Health Therapies: These are treatment approaches that require extensive training and development of specific skills. Allied health therapies include manipulation, mobilization, massage, and acupuncture.

**Bursae**: Bursae are fluid-filled sacs within the body which provide lubrication in areas such as points where muscles move over bony projections.

**Bursitis**: Bursitis occurs when the bursae become inflamed and irritated. This results in pain when the overlying muscle is used. It may occur from a number of exposures, including when there is direct pressure, in those with adjacent tissue that is degenerative such as tendons, or with forceful and unaccustomed use.

**Delayed Recovery:** Delayed recovery is most commonly defined as an increase in the period of time prior to returning to work or to usual activities, when compared with the length of time expected, based on reasonable expectations, disorder severity, age, and treatments provided.

Enthesopathy: Disorder of the muscular or tendinous attachment to bone.

**Femoral Neck**: The femoral neck lies between the femoral head and femoral shaft, demarcated by the greater and lesser trochanters. As the blood supply to the femoral head runs through the femoral neck, a femoral neck stress fracture may disrupt the blood supply to the femoral head leading to osteonecrosis of the femoral head.

**Femoral Neck Stress Fracture**: Stress fractures of the femur occur mainly at the femoral neck and are classified as either tension fractures (at the superior aspect of the femoral neck) or compression fractures (at the inferior aspect of the femoral neck). Pain associated with femoral neck stress fractures may be poorly localized in the hip and may be referred to the thigh or back. Femoral neck stress fractures usually manifest insidiously; otherwise healthy persons report pain related to activity, which

does not resolve with conservative therapy. These fractures may be mild causing only minimal bone changes and eventually heal, or they might progress to a complete fracture requiring surgical fixation. Stress fractures of the femoral neck are usually seen in young, active individuals who change activity level or who do strenuous activity to which they are unaccustomed.

**Functional Capacity Evaluation (FCE):** A comprehensive battery of performance-based tests used to attempt to assess an individual's ability for work and activities of daily living.(97) An FCE may be done to identify an evaluee's ability to perform specific job tasks associated with a job – a job-specific FCE, or his or her ability to perform physical activities associated with any job – a general FCE (see Chronic Pain and Low Back Disorders chapters for additional information).

**Functional Improvement (especially objective evidence):** Functional improvement entails tracking and recording evidence that the patient is making progress toward increasing his or her functional state (validated tools preferred).

**Functional Restoration:** A term initially used for a variant of interdisciplinary pain alleviation or at least amelioration characterized by objective physical function measures, intensive graded exercise and multi-modal pain/disability management with both psychological and case management features.(98-104) The term has become popular as a philosophy and an approach to medical care and rehabilitation. In that sense, the term refers to a blend of various techniques (physical and psychosocial) for evaluating and treating the chronic non-malignant pain patient, particularly in the workers' compensation setting (see Chronic Pain chapter for additional information).

**Greater Trochanteric Bursitis**: Trochanteric bursitis occurs when the trochanteric bursa is inflamed, although in most cases, there are not classic symptoms and signs of inflammation. Classic inflammation may occur with arthropathies or infectious agents. Patients usually complain of lateral hip pain because pain may radiate down the lateral aspect of the thigh. The hip joint itself is not involved. The condition is thought to occur either as a result of acute trauma such as contusions from falls, idiopathic, or from stereotypical use where the bursa becomes irritated due to friction by the iliotibial band (ITB). Leg-length discrepancy, hip abductor weakness, and lateral hip surgery are predisposing factors.

**Groin**: The groin includes the lower rectus abdominis musculature, the inguinal region, symphysis pubis, upper portions of the thigh adductor muscles, and the genitalia and scrotum. It consists of the area where the abdomen meets the legs. A groin strain is a disruption of a myotendinous junction. A complete muscular tear may occur.

**Groin Injury**: Most groin injuries are related to unaccustomed or high forces on the hip joint and surrounding bony and muscular support structures of the pelvis. The most common *acute* groin injuries are contusions and hematomas. The most common *chronic* groin conditions are strains of the muscle-tendon unit resulting from high force.

**Harris Hip Score**: The Harris Hip Score is one of the more commonly used scoring systems for hip disorders (see <u>www.orthopaedicscore.com/scorepages/harris hip score.html</u> and WOMAC and Hip Outcomes Score below). Scoring is based largely on the degree to which pain limits activities combined with ranges of motion.(105)

**Hip Dislocation**: Hip dislocations are relatively uncommon and usually result from a violent or highspeed collision or fall (up to 70% are due to motor vehicle accidents). Pain is usually severe, associated with an inability to bear weight and with shortening and rotation of one leg inward or outward. Hip dislocations are either anterior or posterior with posterior hip dislocations comprising the majority of traumatic dislocations. Most other dislocations occur due to a congenital malformation of the hip joint or occur after hip replacement.

**Hip Dysplasia**: Hip dysplasia, or developmental dysplasia of the hip (DDH), is a relatively common problem where there is less acetabular bony coverage over the femoral head.

**Hip Joint**: The hip joint is a synovial ball-and-socket type joint based on the articulation of the head of the femur and the acetabulum of the pelvis. Five ligaments hold the femur in the acetabulum: the iliofemoral ligament, pubofemoral, ischiofemoral, transverse acetabular and femoral head ligaments. Dislocation of the hip joint is difficult due to the angulation of the proximal femur in relation to the acetabulum and the strength of these ligaments joined together.

**Hip Outcome Score**: This is a commonly used scoring system for hip disorders and prominently includes ratings of the degree of difficulty performing specific tasks. It also incorporates a sports rating system that is sometimes useful for more active patients (see

http://outcomeregistry.binaryspectrum.com/HarrisHOS/HarrisHipScore Forms.aspx).

**Hip Pain**: Pain originating from the hip is usually felt in the buttock or groin area with radiation to the distal thigh and anterior medial aspect of the knee. Pain in the hip may also be due to referred pain from cardiovascular or metastatic processes, lumbar disc herniation with neurological impingement, retroperitoneal or pelvic tumor, or from aortoiliac insufficiency.

**Osteonecrosis [Avascular Necrosis (AVN)] of the Femoral Head**: Osteonecrosis occurs when the tenuous blood supply to the femoral head is interrupted. Osteonecrosis of the femoral head can be a result of traumatic or non-traumatic factors. The condition is painless early on, but as it advances, patients generally present with pain and limitation of motion. Pain most commonly localizes in the groin area, but also manifests in the ipsilateral buttock, knee, or greater trochanteric region. Pain is usually exacerbated by weight bearing and relieved with rest.

**Pain Behavior:** Pain behavior includes verbal and non-verbal actions (e.g., grimacing, groaning, limping, using pain relieving or support devices, requesting pain medications, etc.) which communicate the concept of pain.

**Passive Modality:** Passive modality refers to various types of provider-given treatments in which the patient is passive. These treatments include medication, injection, surgery, allied health therapies (e.g., massage, acupuncture, and manipulation), and various physical modalities such as hydrotherapy (e.g., whirlpools, hot tubs, spas, etc.), ultrasound, TENS, other electrical therapies, heat, and cryotherapies.

**Primary Prevention**: Primary prevention involves preventing the condition or risk factor from developing (e.g., physical activity programs to prevent obesity which results in osteoarthrosis).

**Rehabilitation**: The term "rehabilitation" is used in these *Guidelines* to mean physical medicine, therapeutic and rehabilitative evaluations, and procedures. Rehabilitation services are delivered under the direction of trained and licensed individuals such as physicians, occupational therapists, or physical therapists. Mental health professionals may also be incorporated in the treatment team, particularly for select chronic pain patients. Jurisdictions may differ on qualifications for licensure to perform rehabilitative evaluations and interventions.

**Secondary Prevention**: Secondary prevention involves reduction in the exposure or risk factor after the risk factor has already developed, but before the disease has occurred (e.g., use of fall protection equipment to prevent hip fractures).

Sprain: A sprain is the disruption of a joint's ligaments.

**Strain:** Strain is the disruption of a myotendinous junction, usually from a high force, unaccustomed exertion(s). It may also occur during an accident. This term is occasionally used to describe non-specific muscle pain in the absence of knowledge of an anatomic pathophysiological correlate.

**Synovitis**: Synovitis refers to inflammation of a synovial membrane, although in most cases there are no classic symptoms or signs of inflammation. Classic inflammation occurs with crystalline arthropathies or infectious agents. Synovitis is usually painful, especially with motion. Fluctuating swelling may occur due to effusion within the synovial sac.

**Synovial Membrane**: The synovial membrane incorporates the entire femoral head, the anterior neck, and the proximal half of the posterior neck of the femur.

**Tenosynovitis**: Tenosynovitis refers to inflammation of a tendon sheath, although in most cases there are no classic symptoms or signs of inflammation. Classic inflammation may occur with arthropathies or infectious agents.

**Tertiary Prevention:** Tertiary prevention has most typically been defined as amelioration of the condition after it has already developed. For example, after a patient has osteonecrosis, precluding him or her from diving or other decompression activities is a method of tertiary prevention.

**Trochanteric Bursa**: The trochanteric bursa lies between the femoral trochanteric process and the gluteus medius/iliotibial tract, just superficial to the greater trochanter of the femur.

**Visual Analog Scale (VAS):** The visual analog scale measures a patient's level of subjective pain from "no pain" to "worst pain."

**Western Ontario and McMaster Universities Osteoarthritis (WOMAC) Index:** The WOMAC index is the most common outcome measure other than standard and VAS pain ratings. It combines subjective ratings of pain with activities, stiffness, physical function, social function and emotional function measures.(106)

### INITIAL ASSESSMENT

The physician performing an initial evaluation of a patient with hip or groin pain should seek a discrete explanatory diagnosis. A careful, thorough history is required. Review of systems that also involve the knee, spine, abdomen, and genitourinary tract is necessary. The examination of the patient with hip or groin pain generally needs to focus on the hip joint and include relevant neighboring structures similar to the review of systems. Medical history and physical examination findings can alert the physician to other pathology that presents with pain or other constitutional symptoms. Certain findings, "red flags," raise suspicion of serious underlying medical conditions (see Table 4). Potentially serious disorders include infections, tumors, or systemic rheumatological disorders.

| Disorder            | Medical History                                                                                                                                                                                                                                                                                                                                                              | Physical Examination                                                                                                                                                                                                                                                                                           |
|---------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Tumor/<br>Neoplasia | Severe localized pain, often deep seated, unrelenting bony pain                                                                                                                                                                                                                                                                                                              | Pallor, reduced blood pressure, diffuse weakness                                                                                                                                                                                                                                                               |
|                     | History of cancer (at any point in a lifetime)<br>Age >50 years<br>Symptom consistent with disease in specific<br>organ system (e.g., cough, change in bowel<br>habit, epigastric pain, early satiety)<br>Constitutional symptoms, such as recent<br>unexplained weight loss, fatigue                                                                                        | Tenderness over bony landmarks and<br>percussion tenderness (other than greater<br>trochanteric bursitis or groin strain)<br>New mass or tenderness<br>Abnormal pulmonary examination (crackles,<br>wheezes, rhonchi, decreased breath sounds)<br>New findings at a distant site to the original<br>complaints |
| Infection           | Constitutional symptoms, such as recent<br>fever, chills, or unexplained weight loss<br>Recent bacterial infection (e.g., urinary tract<br>infection); IV drug abuse; diabetes mellitus;<br>or immunosuppression (due to<br>corticosteroids, transplant, or HIV)<br>History of recurring infections treated with<br>antibiotics (e.g., repeated urinary tract<br>infections) | Fever, tachycardia, tachypnea, hypotension<br>Elevated white blood cell count (may be<br>decreased in elderly or immunocompromised)<br>Shift in the WBC differential towards immature<br>cells ("left shift")<br>Abnormal urinalysis<br>Abnormal body part examination (e.g.,<br>pulmonary)                    |

| Table 4 Red Ela    | as for Potential | v Sorious ( | Conditions | Associated w | ith Hin an | d Grain Pair | <b>^</b> * |
|--------------------|------------------|-------------|------------|--------------|------------|--------------|------------|
| i able 4. Reu Flag | ys for Potential | y Senious v | Conditions | Associated w | ппрап      | u Groin Fail | 1          |

|                           | Foreign travel with exposure potential                             | Tenderness over bony landmarks                                                              |
|---------------------------|--------------------------------------------------------------------|---------------------------------------------------------------------------------------------|
| Progressive<br>Neurologic | Severe spine or extremity pain<br>Progressive numbness or weakness | Significant and progressive dermatomal and/or<br>myotomal (motor) involvement               |
|                           | Complaints of new clumsiness of galt                               | or bowel incontinence                                                                       |
|                           |                                                                    | Hyper-reflexia or other evidence of myelopathy                                              |
| Rheumatologic<br>Disease  | Diffuse arthralgias<br>Prior arthropathies                         | Polyarticular joint effusions (usually with warmth)                                         |
|                           | Skin changes, lesions, or ulcers<br>Fatique, malaise               | X-ray abnormalities consistent with erosive or<br>degenerative pathology                    |
|                           | Subtle mental status changes                                       | Elevated sedimentation rate (ESR) or C-<br>reactive protein (CRP)                           |
|                           |                                                                    | Hematuria, proteinuria                                                                      |
|                           |                                                                    | Other specific abnormalities as appropriate (e.g., ANA, RF, anti-DNA, C3, anti-Ro, anti-La, |
|                           |                                                                    | oral ulcers, pulmonary abnormalities, ophthalmological involvement, dermal                  |
|                           |                                                                    | abnormalities)                                                                              |
| Testicular                | Acute onset testicular and groin pain                              | Tenderness                                                                                  |
| Torsion                   |                                                                    | Loss of blood flow on ultrasound                                                            |
| Ectopic                   | Acute onset lower abdominal or groin pain                          | Pregnancy test                                                                              |
| Pregnancy                 |                                                                    | Vaginal ultrasound                                                                          |

\*This list is not meant to be comprehensive, rather reviewing many common suggestive historical and examination findings.

### MEDICAL HISTORY AND PHYSICAL EXAMINATION

### **MEDICAL HISTORY**

The initial evaluation of patients with hip or groin pain should include a thorough medical history, as the vast majority of data to successfully evaluate and treat these patients is found in the history. A complete occupational history is necessary to assist the patient with successful accommodation and rehabilitation, as well as determine work-relatedness. Hip joint pathology reportedly has varying clinical presentations with pain experienced in various joints and body regions documented by fluoroscopically guided intraarticular bupivacaine injection (see Table 5 and Figure 1).(107) Other data from patients awaiting hip arthroplasty have suggested referral patterns to the groin, anterior thigh and knee.(108-114) Pain referral patterns are highly variable, thus physicians must have a clinical suspicion for hip joint pathology to properly evaluate and diagnose hip disorders.

| Table 5. Frequency | of Pain | Referral to the Butto | ock, Thigh, | Groin, Leg, | Knee, and Foot |
|--------------------|---------|-----------------------|-------------|-------------|----------------|
|                    |         |                       |             |             | ,              |

| Anatomic  | Percentage of      |
|-----------|--------------------|
| Region    | Patients with Pain |
| Buttock   | 71                 |
| Thigh     | 57                 |
| Anterior  | 27                 |
| Lateral   | 27                 |
| Posterior | 24                 |
| Medial    | 16                 |
| Groin     | 55                 |
| Leg       | 16                 |
| Lateral   | 8                  |
| Posterior | 8                  |
| Anterior  | 4                  |

| Medial | 2 |
|--------|---|
| Foot   | 6 |
| Knee   | 2 |
|        |   |
|        |   |
|        |   |
|        |   |
|        |   |

Lesher JM, Dreyfuss P, Hager N, Kaplan M, Furman M. Hip joint pain referral patterns: a descriptive study. *Pain Med.* 2008;9(1):22-5. Reprinted with permission from John Wiley and Sons.

#### Figure 1. Composite Preprocedural Pain Drawing from All Patients



Lesher JM, Dreyfuss P, Hager N, Kaplan M, Furman M. Hip joint pain referral patterns: a descriptive study. *Pain Med.* 2008;9(1):22-5. Reprinted with permission from John Wiley and Sons.

- 1. What may I do for you today? (This question helps to frame the discussion towards what the patient feels is the main purpose of the visit. This includes situations where it seems eventually tangential after a complete evaluation. This also helps ensure that the physician is able to eventually address the main purpose which is important to patient satisfaction.)
- 2. What are the symptoms? How does the worker act when describing them (may help ascertain the expression of and meaning of pain to the worker, while simple hand gestures and postures taken while describing the pain are often highly useful for diagnosis)?
  - What are your symptoms?
  - When did your symptoms begin?
  - Where are the symptoms located?
  - What activities make you worse or better?
  - Do you have pain or stiffness?
  - Do you have numbness or tingling?
  - Do you have pain or other symptoms elsewhere?
  - Have you lost control of your bowel or bladder?
  - Do you have fever, night sweats, or weight loss?
  - Are your symptoms constant or intermittent? What makes the problem worse or better?
  - What is the day pattern to your pain? Better getting out of bed in the morning, during the morning, mid-day, evening, or asleep? When is it worst? Do you have a problem sleeping? What position is most comfortable?
  - Since these symptoms began, have your symptoms changed? How?
  - How does having this pain affect your life?
- 3. How did the condition develop?

Past:

- Have you had similar episodes previously?
- Have you had previous testing or treatment? What treatment? What were the results? With whom? How long did it take to get back to work? To light duty? (Was recovery similarly delayed?)
- Did you receive a disability or impairment rating?
- Was recovery complete? (Did you get a disability award?)

Cause:

What do you think caused the problem?

- How do you think it is related to work?
- Were you doing anything at that time when your symptoms began? (It is important to obtain all information necessary to document the circumstances and biomechanical factors of injury to assist the patient in obtaining compensation, where appropriate.)
- Did your symptoms begin gradually or suddenly? Did you notice the pain the day after the event?
- . Did you slip, trip, fall, twist, jerk, or strike an object?
- For traumatic injuries: Was the area deformed? Did you lose any blood or have an open wound?

Job:

- What are your specific job duties?
- What are your work hours and breaks? .
- Do you rotate jobs?
- How long do you spend performing each duty on a daily basis?
- Do you have assistance of other people or lifting devices?
- What do you do for work/modified duty?
- What is the hardest part of the job for you to do with your injury? Why?
- How much do you lift at work as a maximum? Usual lift?
- What was your previous job? What were those occupational factors?

Non-Occupational Activities:

- What other activities (hobbies, workouts, sports) do you engage in? At home or elsewhere? (For suspicion of hip osteoarthrosis: What prior activities did you engage in? What prior jobs?)
- Describe your current daily activities by explaining your activities from awakening to bedtime?
- Any heavy lifting? How? How often? .
- Can you perform activities of daily living (e.g., dressing, bathing, grooming, etc.) or instrumental activities of daily living (e.g., shopping, food preparation, housekeeping, etc.)?
- Could these have contributed to the development of pain?
- 4. Assess treatments and how the responses may or may not have differed from expected outcomes.
  - What treatments have you had?
  - Did anything help decrease your symptoms? What and for how long?
  - Are you doing any exercises at home? Which ones? How often? .
  - Are you taking any non-prescription medications and supplements?
- 5. Discuss symptom limitations.
  - How do these symptoms limit you?
  - If these symptoms limit you, how long have your activities been limited? .
  - How long can you sit, stand, walk, and bend?
  - Can you lift? How much weight can you lift (use gallons of milk, groceries, etc., as examples)?
  - How much can you push or pull?
- 6. Are there other medical problems? For example:
  - Osteoarthrosis, rheumatoid arthritis or other arthritides
  - Fractures, lower extremity surgeries
  - Cardiovascular disease
  - Pulmonary disease
  - . Gastrointestinal problems
  - **Diabetes mellitus**
  - Neurological disorders (including radiculopathies, headaches)
  - Psychophysiologic disorders (e.g., irritable bowel syndrome, chronic fatigue syndrome, sick building syndrome, fibromyalgia, and multiple chemical sensitivity)

7. Is there any psychological, psychiatric, mental health, substance use, alcohol, or tobacco disorder historv?

- Have you ever had a substance use problem? DUI? Detoxification? •
- Have you ever had an alcohol problem? (CAGE or MAST screening especially required for . possible osteonecrosis)

- Is there tobacco use? Prior use? (Assess number of packs per day/number of years)
- Is there use of other drugs? (Current and prior use)
- 8. What is the occupational psychosocial context?
  - Do you like your job?
  - What is your relationship with your co-workers and supervisor and how do they treat you?
- 9. Assess whether there are problems at home/social life. Does the patient feel in control of most situations? Is there support?
  - How do your family members get along with each other?
  - How do they help and support you, including assistance with chores?
  - Does your family treat you differently now that you are in pain? Have your roles at home changed because of your injury?
  - How do your friends treat you differently?
  - Do you get increased symptoms when you are dealing with problems with your family and friends? How often? When? Why?

10. Are there advocagenic (litigious) influences?

- Do you have a workers' compensation claim for this injury?
- Do you have a lawsuit or other legal action involving this pain problem?

### PHYSICAL EXAMINATION

The objective of the physical examination of the hip is to help define the physical abnormality (ies) and narrow the diagnostic considerations to ultimately help focus the treatment plan. Physical examination data, including vital signs should be reviewed for potential inferences regarding infectious or neoplastic origins.

The physical examination should begin the moment the physician sees the patient. Observing how the patient sits, walks, and moves is of major importance, often more important than any other aspect of the exam. It also helps to have the patient demonstrate what positions seem to provoke or caused the symptoms as the demonstration is invariably of greater help than verbal descriptions.

Guided by the medical history, the physical examination includes:

- General observation of the patient, including changes in positions, stance and gait;
- Regional examination of the hip and groin;
- Examination of organ systems related to appropriate differential diagnoses;
- Neurologic screening;
- Testing for various specific hip and groin disorders;
- Monitoring for pain behavior during range of motion, changing postures as a clue to origin of the problem.

Most of the hip exam is not purely objective, as there is generally an element of cooperation for determination of strength or active range of motion and most maneuvers require a subjective statement of pain to be considered positive. However, atrophy, fasciculations and extremity length discrepancies are all wholly objective measures.

It is frequently helpful to obtain measurements of the patient's capabilities in the clinic to follow in subsequent clinic visits. These may include:

- Walking distance (observe in the hallway or outdoors and subsequently simultaneously interview the
  patient about their progress if a longer walking ability is demonstrated);
- Ability to climb stairs (walking to the nearest stairwell with the patient and observing capabilities);
- Repeated toe raises (number able to perform);
- Distance of heel walking;
- Squats (number);
- Sensory examination findings (e.g., monofilaments), or
- Movement inconsistent while in exam room with pain/injury problem.

This also moves the examiner from the role of a more passive observer to a more active team leader, resulting in more informed decision making on exercise and other physical activity benchmarks. Active involvement of the provider is believed to be helpful to facilitate the patient's recovery.(115) The use of validated functional assessment tools to follow patient progress is recommended.

#### **Physical Examination for Specific Diagnoses**

Physical examination findings vary largely on the severity and acuity of the disorder. In general, conditions that arise acutely present with more pronounced physical examination findings. Patients with long-standing conditions have less prominent physical examination findings.

#### Osteonecrosis – Avascular Necrosis (AVN)

The physical examination findings of patients with osteonecrosis usually include reduced range of motion and pain with passive range of motion. There may be pain with weight bearing. Patients may be unable to bear weight if there has been collapse of the avascular bone.

#### Epididymo-orchitis

Physical examination findings of epididymoorchitis consist of unilateral epididymal with or without testicular tenderness. There is no dysuria, discharge, or abnormalities on urinalysis.

#### Femoroacetabular Impingement (FAI)

FAI patients have variable physical examination findings that include decreased internal rotation and adduction with the hip flexed to 90 degrees. Patients usually have a positive impingement test (pain with passive adduction and gradually internally rotating the flexed hip).

#### **Gluteus Medius Tears**

Patients with a relatively acute onset tear of the gluteus medius have an abnormal gait, as they are unable to horizontally stabilize their pelvis. Tenderness over the greater trochanter may be present and range of motion is usually reduced. Qualitative muscle strength weakness is present and tends to be worse with larger tears, although on a chronic basis, compensatory mechanisms of surrounding muscles help minimize abnormalities found on physical examination.

#### **Greater Trochanteric Pain Syndrome**

Same as trochanteric bursitis and possible findings of gluteus medius tears.

#### **Groin Strain**

Patients with groin strains avoid use or movement of the affected myotendinous junction, which is also focally tender on examination. If there is a complete rupture, there is a muscular defect and a hematoma usually forms acutely. Patients tend to have reduced qualitative muscle strength.

#### Hip Dislocations, Fractures, or Sprains

Patients with acute dislocations or fractures are unable to bear weight. Both conditions tend to have a shortened lower extremity that is usually externally rotated. However, patients with sprains are able to bear weight and use the joint, although pain is present.

#### Hip Dysplasia

In hip dysplasia, pain is often reproduced with the impingement sign. Pain is reproduced with hip hyperextension or placing the hip in the FABER position. Increased range of motion of both hips may be present, but the affected hip has less motion, often limited by pain.

#### **Hip Instability**

In cases of hip instability, range of motion may be increased and findings may be present for ligamentous laxity. Patients tend to have increased hip external rotation (in extension during the log roll or in flexion such as the FABER maneuver).

#### **Hip Osteoarthrosis**

The physical examination for rheumatological issues should include an evaluation of all relevant joints as well as a comprehensive musculoskeletal examination. Common joints for abnormalities must be examined (DIP, PIP, MCP, wrist, shoulder, spine, hip, knees, great toe MTP) with low threshold for examining the remaining joints not listed. This includes observation, inspection, function, gait, palpitation, active and passive range of motion, and strength and stretch reflexes. There should be an evaluation to attempt to detect whether there are signs of degenerative joint disease that are present despite the absence of complaints (e.g., Heberden's nodes in a patient with knee arthritis, or crepitus on range of motion of the knee in a patient with hand complaints). These may provide evidence for a systemic arthropathy (whether osteoarthrosis or not). Presence of warmth and mild tenderness over the MCP joints is for example, a clue that what appears to be knee joint arthritis may be rheumatoid arthritis. These diagnostic clues have substantial long-term implications for successful secondary prevention. Threshold for a comprehensive rheumatological examination should generally be low, especially if arthritic issues are present in multiple joints. Range of motion is generally reduced, especially hip rotation, although it can be normal when mild.

#### Labral Tears

Labral tears present with variable findings. Pain may be reproducible on range of motion. The extent of the range of motion is often restricted. Pain may be reproduced with placing the hip into extension from flexion. Pain is present in the majority of cases with hyperflexion, internal rotation and adduction (impingement position). The pain and/or clunk may also be reproduced with the labral stress test and/or with resisted straight leg raise.

#### Ligamentum Teres Ruptures

The physical examination is usually normal in the absence of other findings. As this condition may accompany osteoarthrosis, those examination findings may be present.

#### Lower Abdominal Strains

The physical examination findings consist of focal tenderness in the affected muscle. Generally, there are no other findings on examination, although on occasion these may accompany epididymoorchitis.

#### **Meralgia Paresthetica**

Meralgia paresthetica patients have reduced sensation in the distribution of the lateral cutaneous nerve to the thigh.

#### **Trochanteric Bursitis**

Tenderness is invariably present over the greater trochanter. Pain is also usually present with hip range of motion. The total extent of the hip range of motion is usually normal.

### WORK-RELATEDNESS

Acute occupational hip injuries are related to a specific acute traumatic event – the location of the event determines work-relatedness and is non-controversial. Most jurisdictions also request a physician opinion as to whether a disease or disorder should be considered work related for the purpose of workers' compensation. Physicians need to remember that their role is to supply opinion and that the "medical/scientific" answer and the "legal" answer as determined by regulations and case law precedents in a particular jurisdiction (workers' compensation system) are different (see Work-Relatedness chapter for determining work-relatedness). That said, there are few if any quality epidemiological studies addressing work-related hip disorders. Thus, aside from these specific circumstances (e.g., occupational fractures and other acute trauma, osteonecrosis from barotraumas, hip osteoarthrosis in farmers, trochanteric bursitis after a fall), most opinions are speculative.

#### **OSTEONECROSIS – AVASCULAR NECROSIS (AVN)**

There are many non-occupational risk factors for osteonecrosis, including male gender,(66) diabetes mellitus,(116) glucocorticosteroid treatment or excess,(66, 117-119) alcohol,(120-126) gout,(118, 122) sickle cell anemia,(118, 124) sickle cell trait,(124) organ transplantation,(67, 127) multiple myeloma,(66) smoking,(121, 125, 126) or obesity.(121) The primary occupational risk factor is barotrauma ("the bends"), which may occur due to diving as well as working in compressed air environments (e.g., certain types of tunneling projects through unstable sediments requiring compressed air to maintain the workspace). Significant, discrete trauma is thought to be a risk factor (e.g., unilateral fracture and unilateral osteonecrosis).(128, 129) Occupational physical factors are controversial,(125) but it has been theorized that high force or repeated activities are risk factors. However, there are no quality studies to define work-relatedness.

#### FEMOROACETABULAR IMPINGEMENT

There are numerous associated non-occupational anatomic abnormalities (e.g., altered femoral neck morphology, such as due to slipped capital femoral epiphysis, anteverted femoral neck, femoral neck nonunion, developmental hip dysplasia, Legg-Calves-Perthes disease, osteonecrosis, a "pistol grip" femoral neck, and coxa vara, as well as acetabular morphologic variants, such as retroverted acetabulum, and deep acetabular socket [coxa profunda and protrusion]). However, no quality studies address occupational factors. There are cases that are theorized to have an underlying occupational contribution – i.e., patients have greater risk of FAI from stereotypical use in certain positions (e.g., baseball catcher's position, some construction workers).

#### **GLUTEUS MEDIUS TEARS**

Gluteus medius tears are degenerative tendon conditions and tears, similar to those in the rotator cuff, and are considered more analogous to diseases. However, discrete accidents may contribute to these tears. It is theorized that forceful use may contribute to the condition, thus it is possible this condition may be occupational in some circumstances. However, there currently are no quality epidemiological studies to identify occupational risk factors.

#### **GROIN STRAIN**

Groin strains involve myotendinous strains in the groin. Symptoms are usually acute onset and these injuries are considered more analogous to acute injuries than diseases, although repeated, unaccustomed use may precipitate the event. Thus, the nature of the forceful unaccustomed use determines whether the condition is work-related.

#### HIP DISLOCATIONS, FRACTURES AND SPRAINS

Hip dislocations, fractures, and sprains are consequences of significant trauma. The mechanism of trauma determines whether the condition is work-related. With dislocations, there is frequently an inherited or congenital abnormality with a propensity towards recurrences. In situations where there is inherited dysplasia, dislocation may occur in the context of a work event, but work-relatedness will be determined largely based on a specific definition of work-relatedness in the setting of pre-existing, non-occupational conditions.

#### **HIP DYSPLASIA**

Hip dysplasia is a non-occupational condition.

#### HIP INSTABILITY

Traumatic instability is not controversial as the location of trauma determines work-relatedness. Atraumatic instability is less clearly occupational as there are no quality studies that demonstrate increased risk for instability from occupational tasks. While a theory could be constructed for workrelatedness due to stereotypical use, factors are currently unclear.

#### **HIP OSTEOARTHROSIS**

There are numerous non-occupational factors as well as a few occupational factors for hip osteoarthrosis. The non-occupational factors include age,(130-135) obesity,(64, 136) bone mineral density,(137) rheumatoid arthritis, gout, other inflammatory arthropathies, reduced 25-hydroxyvitamin

D,(135) heredity,(132) Heberden's nodes,(131-133, 138, 139) and osteoarthrosis involving other joints in the body ("systemic or generalized osteoarthrosis").(51, 131, 138-141) Unilateral hip osteoarthrosis as a consequence of a discrete occupational traumatic event (e.g., femur fracture) is considered occupational and is not substantially controversial. However, it is unclear whether symmetrical cases are work related in the absence of significant bilateral trauma.

Farmers have been consistently found to have an elevated risk for hip osteoarthrosis, but the reason for this increased risk is unclear. Greater time spent farming has not been found to result in a dose-response related increase risk of hip osteoarthrosis. This suggests support for the theory that forceful use in youth, with resultant slipped capital femoral epiphyses, may explain the condition.(50, 142-144)

There are no other occupations with consistent findings of work-relatedness, and no occupational epidemiological studies with measured workplace factors have been reported. There are theories and weak studies suggesting heavy lifting may be a risk factor. However, these studies used retrospective methods and thus are biased toward increased exposure estimation among those with hip osteoarthrosis. A study of runners found no greater prevalence of hip osteophytes and trended towards greater cartilage thickness on x-rays in runners compared with non-runners.(145) A population-based study from Denmark found a lack of increased risk for hip osteoarthrosis requiring arthroplasty with increased exposures by expert ratings incorporating standing/walking, sitting, whole body vibration and heavy lifting ranging from low (e.g., office workers) to medium (e.g., nurses) to high risk such as construction workers.(2)

#### LABRAL TEARS

Like other cartilaginous tears in the body, labral tears are likely degenerative and not work-related. For tears that occur with an acute symptomatic onset due to a discrete event, work-relatedness is largely non-controversial. When there is a symptomatic degenerative tear in the absence of trauma, work-relatedness is speculative.

#### LIGAMENTUM TERES RUPTURES

There are few studies of ligamentum teres rupture and there are no quality studies that address occupational factors. A ligamentum teres rupture in the setting of a discrete traumatic occupational event is not controversial. Other cases of possible work-relatedness are speculative.

#### **TROCHANTERIC BURSITIS**

Trochanteric bursitis appears to occur both in the presence and absence of trauma. There are no quality studies evaluating occupational factors. In settings where significant trauma has occurred to precipitate the bursitis, work-relatedness is not controversial. In the absence of trauma, a theory may be constructed whereby physical factors such as unaccustomed forceful use of the hip may cause the condition; however, this is speculative. Tests should be ordered if there is a reasonable probability that trochanteric bursitis is present and that the test results may change the management of the condition. Sometimes, the threshold for ordering a test is lower if the adverse effects resulting from missing the diagnosis are considerable.

# SPECIAL STUDIES, DIAGNOSTIC AND TREATMENT CONSIDERATIONS

#### **Diagnostic Criteria**

The criteria presented in Table 6 follow the clinical thought process from the mechanism of illness or injury to unique symptoms and signs of a particular disorder and finally to test results (if tests are needed to guide treatment at this stage).

#### Table 6. Diagnostic Criteria for Non-red-flag Conditions

| Probable<br>Diagnosis or<br>Injury       | Symptoms                                                                                                                                                                                                                           | Signs                                                                                                                                                                                                                                                                                                                                                                                 | Tests and Results                                                                                                                                                                           |
|------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Hip Osteoarthrosis                       | Non-radiating hip pain.<br>Morning stiffness or stiffness<br>on standing after prolonged<br>sitting. Sleep disturbance<br>sometimes present; mood<br>disturbance usually not<br>present. Often other affected<br>joints.           | Range of motion (ROM) generally<br>reduced especially hip rotation.<br>May be normal when mild.                                                                                                                                                                                                                                                                                       | X-rays usually ordered<br>to help secure<br>diagnosis. Other<br>diagnostic tests only if<br>targeting the specific<br>body part and there is a<br>potential for meaningful<br>intervention. |
| Hip Dislocation                          | Inability to bear weight.<br>Acute onset associated with<br>forceful event or accident.<br>Recurrent problem if<br>congenital.                                                                                                     | Unable to bear weight. Lower<br>extremity shortened and<br>externally rotated.                                                                                                                                                                                                                                                                                                        | Hip x-rays usually<br>ordered. Other testing<br>usually not necessary.                                                                                                                      |
| Hip Fracture                             | Fall or motor vehicle<br>accident. Severe pain.<br>Unable to bear weight.                                                                                                                                                          | Unable to bear weight. Lower<br>extremity shortened and<br>externally rotated.                                                                                                                                                                                                                                                                                                        | X-rays required. Other<br>testing usually not<br>necessary in acute<br>treatment setting.                                                                                                   |
| Labral Tears                             | Non-radiating groin pain with<br>ROM. Typically provoked<br>with specific, predictable<br>activities such as specific<br>position(s). May have<br>buckling, clicking, catching.<br>Pain may be worse with<br>pivoting and walking. | Variable findings; pain<br>reproducible on ROM. Extent of<br>ROM often restricted. Pain<br>reproduced with hip into<br>extension from flexion. Pain with<br>hyperflexion, internal rotation and<br>adduction (impingement position)<br>is present in majority. Pain and/or<br>clunk may also be reproduced<br>with the labral stress test and/or<br>with resisted straight leg raise. | X-rays often ordered.<br>MRI is sometimes<br>ordered, and MR<br>arthrography often<br>helpful.                                                                                              |
| Osteonecrosis                            | Non-radiating hip pain.<br>History of systemic factors<br>(e.g., diabetes mellitus,<br>alcohol)                                                                                                                                    | Reduced ROM and pain with<br>passive ROM usually present.<br>May have pain with weight<br>bearing. May be unable to bear<br>weight if osseous collapse has<br>occurred.                                                                                                                                                                                                               | X-rays required. MRI<br>and CT may be ordered<br>for further evaluation of<br>the femoral head. Bone<br>scans sometimes<br>ordered particularly for<br>evaluation of other<br>joints.       |
| Trochanteric<br>Bursitis                 | Non-radiating lateral hip pain. Pain worse with activity.                                                                                                                                                                          | Tender over greater trochanter.<br>Pain with hip ROM. Extent of<br>ROM usually normal.                                                                                                                                                                                                                                                                                                | X-rays sometimes<br>ordered. Other testing<br>usually not required.                                                                                                                         |
| Femoroacetabular<br>Impingement          | Non-radiating groin pain.<br>Pain is often positional and<br>worse with activity. Pain with<br>hip flexion and internal<br>rotation.                                                                                               | Decreased internal rotation and<br>adduction with hip flexed to 90<br>degrees. Positive impingement<br>test (pain with passive adduction<br>and gradually internally rotating<br>the flexed hip).                                                                                                                                                                                     | X-rays usually ordered.<br>MRI and MR<br>arthrography helpful.                                                                                                                              |
| Gluteus Medius<br>Tears                  | Non-radiating hip pain. May<br>have weakness, especially<br>with more acute tears.                                                                                                                                                 | Abnormal gait with inability to<br>stabilize pelvis. Tender over<br>greater trochanter. ROM usually<br>reduced. Qualitative muscle<br>strength weakness.                                                                                                                                                                                                                              | X-rays usually ordered.<br>MR helpful.                                                                                                                                                      |
| Greater<br>Trochanteric Pain<br>Syndrome | Non-radiating hip pain. Pain<br>increased when lying on the<br>affected side or stair                                                                                                                                              | Tender to palpation over the greater trochater. Antalgic gait sometimes present and increased                                                                                                                                                                                                                                                                                         | X-rays usually ordered.<br>MRI sometimes helpful.                                                                                                                                           |

|                              | climbing.                                                                                                                                                                                          | pain with stair climbing.                                                                                                                                                                                                                     |                                                |
|------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|
| Groin Strain                 | Focal pain in the muscle-<br>tendon junction affected.<br>May have epididymal pain if<br>inguinal area involvement.                                                                                | Patients avoid use or movement.<br>Focal tenderness at affected<br>myotendinous junction. Muscular<br>defect if complete rupture, usually<br>with hematoma at rupture site.<br>Reduced qualitative strength.                                  | No testing usually ordered.                    |
| Hip Dysplasia                | May be asymptomatic other<br>than with dislocation or<br>instability. Pain is in groin<br>and may have symptoms<br>with specific positions.                                                        | Pain reproduced with<br>impingement sign. Pain<br>reproduced with hip<br>hyperextension or placing hip in<br>the FABER position. Increased<br>ROM of both hips may be<br>present, but affected hip has less<br>motion, often limited by pain. | X-rays often sufficient                        |
| Hip Instability              | Dislocation may have<br>occurred. May have<br>subjective weakness.                                                                                                                                 | ROM may be increased and<br>findings present for ligamentous<br>laxity. Increased hip external<br>rotation (in extension during log<br>roll or in flexion such as the<br>FABER maneuver).                                                     | X-rays usually ordered.<br>MRI may be helpful. |
| Ligamentum Teres<br>Ruptures | May be asymptomatic or<br>have experienced pain if<br>ligament tear with discrete<br>traumatic event. Event<br>usually involved<br>exaggerated adduction and<br>external rotation or<br>abduction. | Exam usually normal in the<br>absence of other findings. May<br>accompany osteoarthrosis, thus<br>those exam findings may be<br>present.                                                                                                      | X-rays usually ordered.<br>MRI may be helpful. |

Adapted from Rondinelli RD (Ed.). *Guides to the Evaluation of Permanent Impairment, Sixth Edition*. Chicago, III: AMA Press; 2008(146); and Sanders SH, Harden RN, Vicente PJ. Evidence-based clinical practice guidelines for interdisciplinary rehabilitation of chronic nonmalignant pain syndrome patients. *Pain Prac*. 2005;5(4):303-15.(147)

Note: The above highlights are footnotes

### DIAGNOSTIC TESTING AND OTHER TESTING

#### ANTIBODIES

There are numerous antibodies that are markers for specific rheumatic diseases (e.g., rheumatoid factor, anti-nuclear antibodies, anti-Sm, anti-Ro, anti-La for rheumatoid arthritis, systemic lupus erythematosus, Sjogren's, mixed connective tissue disorder, etc.). Patients with rheumatic disorders are at increased risk for degenerative joint disease of the hip.

 Recommendation: Antibodies for Diagnosing Hip Pain with Suspicion of Chronic or Recurrent Rheumatological Disorder
 Antibody levels are recommended to evaluate and diagnose patients with hip pain if ther

Antibody levels are recommended to evaluate and diagnose patients with hip pain if there is reasonable suspicion of a rheumatological disorder.

Indications – Patients with hip pain with suspicion of rheumatological disorder.

Strength of Evidence – Recommended, Insufficient Evidence (I)

2. Recommendation: Antibodies to Confirm Specific Disorders Antibody levels are strongly recommended as a screen to confirm the existence of specific disorders such as rheumatoid arthritis.

Indications – Patients with hip pain and a presumptive diagnosis of a rheumatological disorder.
#### Strength of Evidence – Strongly Recommended, Evidence (A)

#### Rationale for Recommendations

Elevated antibody levels are highly useful for confirming clinical impressions of rheumatic diseases. However, ordering of a large, diverse array of antibody levels without targeting a few specific disorders diagnostically is not recommended routinely in patients with hip pain as wide-ranging, non-focused test batteries are likely to result in inaccurate diagnoses due to false positives and low pre-test probabilities. Providers should also be aware that false-negative results occur. Measurement of antibody levels is minimally invasive, unlikely to have substantial adverse effects, and is low to moderately costly depending on the specific test ordered. They are recommended for focused testing of a limited number of diagnostic considerations.

#### **HIP ARTHROSCOPY**

Arthroscopy of the hip has been increasingly utilized for diagnosis and treatment of hip disorders as this procedure is less invasive and has lower complication rates than open procedures.(148-151) It is performed through small incisions using a camera to view the inside of a joint. However, indications for either diagnostic or therapeutic procedures are not well defined with quality studies. There is some belief that this procedure is more appropriate for younger and more physically active patients.(151)

1. Recommendation: Hip Arthroscopy for Diagnosing Hip Pain with Suspicion of Labral Tear, Intraarticular Body, Femoroacetabular Impingement, or Other Subacute or Chronic Mechanical Symptoms

Arthroscopy is recommended to evaluate and diagnose patients with hip pain if there is a suspicion of labral tear, intraarticular body, femoroacetabular impingement, or there are other subacute or chronic mechanical symptoms.

*Indications* – Patients with hip pain with suspicion of labral tear, intraarticular body, femoroacetabular impingement, or other subacute or chronic mechanical symptoms.

Strength of Evidence – Recommended, Insufficient Evidence (I)

- Recommendation: Hip Arthroscopy for Diagnosing Acute Hip Pain Arthroscopy is not recommended for diagnosing acute hip pain.
  Strength of Evidence – Not Recommended, Insufficient Evidence (I)
- 3. Recommendation: Hip Arthroscopy for Treatment of Osteoarthrosis without Mechanical Symptoms Arthroscopy is not recommended to diagnose or treat acute, subacute, or chronic hip osteoarthrosis in the absence of a remediable mechanical defect such as symptomatic labral tear.

Strength of Evidence – Not Recommended, Insufficient Evidence (I)

4. Recommendation: Hip Arthroscopy with Chondroplasty for Osteoarthrosis Arthroscopy with chondroplasty is not recommended for treatment of osteoarthrosis. Strength of Evidence – Not Recommended, Insufficient Evidence (I)

#### Rationale for Recommendations

Arthroscopy of the hip is increasingly utilized to treat several hip disorders, especially ones with mechanical symptoms. Complication rates from hip arthroscopic procedures range from 1.3 to 1.6% (148-150) with more serious injuries tending to be related to nerve retraction, neuropraxias, infection, or complex regional pain syndrome. (148-150, 152-155) Symptomatic labral tears and removal of foreign bodies have been reported as successfully treated in uncontrolled case series. (79, 151, 156-162) Labral tears reportedly should involve the most limited resection possible as removing excessive quantities of labrum tends to increase risk of instability. (163, 164) Labral repair has been reported as successful in case series. (80, 165) Femoroacetabular impingement is also a potential indication. (151, 166) A microfracture procedure has been utilized to treat both knee(167) and hip chondral lesions. (40, 168) By

analogy with the knee joint, where quality evidence has demonstrated a lack of efficacy of chondroplasty,(169) chondroplasty of the hip joint is not recommended.(170, 171) Arthroplasty is invasive, has some adverse effects, and is costly. However, it is indicated for patients with persistent mechanical symptoms.

Post-operative rehabilitation for arthroscopic procedures is thought to differ from other surgical hip procedures,(151) and prolonged partial weight-bearing protocols lasting from 10 days (e.g., labral resection, labral repair, capsular modification) to 4 weeks (e.g., osteoplasty, microfracture) have been developed. (151, 166) Some physicians believe that range-of-motion exercises should begin within 4 hours of an arthroscopic impingement procedure.(166) However, quality evidence suggesting that the rehabilitation solely related to this procedure is different is lacking. In fact, quality evidence for other procedures suggests more rapid rehabilitation protocols result in superior outcomes (see Post-operative Rehabilitation). There is evidence that younger healthier patients who undergo arthroscopy do not require different rehabilitation protocols(151) than older healthier patients. Thus, the primary issues are pre-operative functional status and projected post-rehabilitation status. In general, following usual hip rehabilitation protocols is indicated, although the rate of progress is often be accelerated compared with more extensive surgical procedures and is particularly accelerated for younger healthier patients who may not require retraining in gait or weight bearing.

#### Evidence for the Use of Hip Arthroscopy

There are no quality studies evaluating the use of arthroscopy for hip pain.

#### **BONE SCANS**

Bone scans involve intravenous administration of a radioactive tracer medication that is preferentially concentrated in areas of metabolic activity in bone. Radioactivity is then detected by a large sensor and converted into skeletal images. There are many causes for abnormal radioactive uptake including metastases, infection, inflammatory arthropathies, fracture, or other significant bone trauma. Thus, positive bone scans are not highly specific. Bone scans have been used to diagnose early osteonecrosis of the femoral head prior to findings on x-ray.

1. Recommendation: Bone Scanning for Select Use in Patients with Acute, Subacute, or Chronic Pain Bone scanning is recommended for select use in patients with acute, subacute, or chronic pain to assist in the diagnosis of osteonecrosis, neoplasms, or other conditions with increased polyosthotic bone metabolism, particularly when more than one joint needs to be evaluated.

*Indications* – Patients with hip pain with suspicion of osteonecrosis, Paget's disease, neoplasm, or other increased polyosthotic bone metabolism.

Strength of Evidence – Recommended, Insufficient Evidence (I)

2. Recommendation: Routine Use of Bone Scanning for Routine Hip Joint Evaluations Bone scanning is not recommended for routine use in hip joint evaluations.

Strength of Evidence - Not Recommended, Insufficient Evidence (I)

#### Rationale for Recommendations

Bone scanning may be a helpful diagnostic test to evaluate suspected metastases, primary bone tumors, infected bone (osteomyelitis), inflammatory arthropathies, or trauma (e.g., occult fractures). It may be helpful in patients with suspected early AVN, but without x-ray changes. In patients where the diagnosis is felt to be secure, there is not an indication for bone scanning as it does not alter treatment or management. Bone scanning is minimally invasive, has minimal potential for adverse effects (essentially equivalent to a blood test), but is high cost. It is also generally inferior to MRI.

#### Evidence for the Use of Bone Scans

A comparative study of 143 bone scans of hip pain patients included 23 normal control patients.(172) Most of the patients (53%) presented with painful hips at the time of bone scanning. Including definitely and probably positives resulted in estimated sensitivity of 43% and specificity of 90%. The authors

concluded that bone scintigraphy is "not indicated to diagnose possible contralateral AVN if the hip is asymptomatic."

#### COMPUTERIZED TOMOGRAPHY (CT)

Computerized tomography (CT) remains an important imaging procedure, particularly for bony anatomy, whereas MRI is superior for soft tissue abnormalities. CT may be useful for hip joint abnormalities where advanced bone imaging is required. CT may be helpful for evaluating AVN and following traumatic dislocations or arthroplasty-associated recurrent dislocations. CT also may be useful to evaluate the spine in patients with contraindications for MRI (most typically an implanted metallic-ferrous device).

1. Recommendation: Routine CT for Evaluating Acute, Subacute, or Chronic Hip Pain Routine CT is not recommended for evaluating acute, subacute, or chronic hip pain.

#### Strength of Evidence – Not Recommended, Insufficient Evidence (I)

2. Recommendation: CT for Evaluating Patients with Osteonecrosis (AVN), Dislocations, or Contraindications for MRI

CT is recommended for evaluating patients with osteonecrosis or following traumatic dislocations or arthroplasty-associated recurrent dislocations. CT is also recommended for patients who need advanced imaging, but have contraindications for MRI.

*Indications* – Hip pain from osteonecrosis with suspicion of subchondral fracture(s), increased polyosthotic bone metabolism, or traumatic hip dislocations, particularly when acetabular or femoral head fracture fragments are sought; arthroplasty-associated recurrent hip dislocations to evaluate the rotational alignment (anteversion) of the acetabular and femoral components; patients with contraindications for MRI.

#### Strength of Evidence – Recommended, Insufficient Evidence (I)

#### Rationale for Recommendations

Computerized tomography is considered superior to MRI for imaging of most hip abnormalities where advanced imaging of calcified structures is required. A contrast CT study is minimally invasive, has few if any adverse effects, but is costly. CT is therefore recommended for select use.

#### Evidence for the Use of CT

There are no quality studies addressing the use of CT for evaluating hip pain.

# C-REACTIVE PROTEIN, ERYTHROCYTE SEDIMENTATION RATE, AND OTHER NON-SPECIFIC INFLAMMATORY MARKERS

There are many markers of inflammation that may be measured serologically. These include C-reactive protein (CRP), erythrocyte sedimentation rate (ESR), ferritin, and an elevated total protein-albumin gap.

Recommendation: Erythrocyte Sedimentation Rate or Other Inflammatory Markers for Screening for Inflammatory Disorders in Subacute or Chronic Hip Pain Patients

Erythrocyte sedimentation rate or other inflammatory markers are recommended for screening for inflammatory disorders or prosthetic sepsis with reasonable suspicion of inflammatory disorder in patients with subacute or chronic hip pain.

Indications – Patients with hip pain with suspicion of rheumatological disorder.

#### Strength of Evidence – Recommended, Insufficient Evidence (I)

#### Rationale for Recommendation

Erythrocyte sedimentation rate is the most commonly used systemic marker for non-specific inflammation and is elevated in numerous inflammatory conditions including rheumatological disorders as well as infectious diseases. C-reactive protein is a marker of systemic inflammation that has been associated with an increased risk of coronary artery disease. However, it is also a non-specific marker for other inflammation. Other non-specific markers of inflammation include ferritin, and an elevated protein-albumin gap, which have no known clinical roles. CRP and ESR measurements are minimally invasive,

have low risk of adverse effects, and are low cost. They are recommended as a reasonable screen for systemic inflammatory conditions especially if the hip pain patient also has other pains without clear definition of a diagnosis or those with fibromyalgia or myofascial pain syndrome, although the specificity is not high. However, ordering of a large, diverse array of anti-inflammatory markers without targeting a few specific disorders diagnostically is not recommended.

Evidence for the Use of C-reactive Protein, Erythrocyte Sedimentation Rate, or Other Non-specific Inflammatory Markers

There are no quality studies evaluating the use of C-reactive protein, erythrocyte sedimentation rate, or other non-specific inflammatory markers for hip pain.

#### CYTOKINES

See Chronic Pain chapter.

#### **HELICAL CT SCANS**

Helical CT scans are sometimes used for diagnosing osteonecrosis. There is quality evidence that they are superior to MRI or x-ray for identifying subchondral fractures in the femoral head.(173) Bone scans were traditionally used for diagnosis and may be positive even though an x-ray may be normal;(174) however, they have largely been replaced by MRI scans.

- 1. Recommendation: Routine Helical CT for Evaluating Acute, Subacute, or Chronic Hip Pain Routine helical CT is not recommended for evaluating acute, subacute, or chronic hip pain. Strength of Evidence – Not Recommended, Insufficient Evidence (I)
- 2. Recommendation: Helical CT for Evaluating Osteonecrosis Helical CT is recommended for evaluating patients with osteonecrosis who have contraindications for MRI.

*Indications* – Patients with hip pain from osteonecrosis who have contraindications for MRI (e.g., implanted hardware), increased polyosthotic bone metabolism.

#### Strength of Evidence – Recommended, Insufficient Evidence (I)

 Recommendation: Helical CT for Select Patients with Acute, Subacute, or Chronic Hip Pain Helical CT is recommended for select patients with acute, subacute, or chronic hip pain for whom advanced imaging of bony structures is thought to be potentially helpful. Helical CT is also recommended for patients who need advanced imaging, but have contraindications for MRI.

*Indications* – Patients with acute, subacute, or chronic hip pain who need advanced bony structure imaging. Patients needing advanced imaging, but with contraindications for MRI (e.g., implanted hardware) are also candidates.

#### Strength of Evidence – Recommended, Insufficient Evidence (I)

#### Rationale for Recommendations

Helical CT scanning has been largely replaced by MRI. However, it has been thought to be superior to MRI for evaluating subchondral fractures, although a definitive study has not been reported.(173) In addition, there are patients who have contraindications for MRI (e.g., implanted ferrous metal), and in those patients who require evaluation of AVN, helical CT is recommended. Helical CT has few if any adverse effects, but is costly. It is recommended for use in select patients.

#### Evidence for the Use of Helical CT Scans

There are no quality studies evaluating the use of helical CT scans for diagnosing hip pain.

#### LOCAL ANESTHETIC INJECTIONS AND EPIDURALS FOR HIP PAIN DIAGNOSIS

Local anesthetic injections are sometimes used for diagnostic confirmation of hip and groin conditions (for therapeutic injections, see Injections). These injections are also sometimes used to differentiate pain

from a distant site, such as the knee or spine. Diagnostic injections include intraarticular injections (hip or knee), ilioinguinal, genitofermoral, saphenous, and lumbar epidurals. Local nerve block or sacroiliac joint injection should be used to assist in diagnosis. Immediate and delayed results of injection(s) should be recorded.

#### Recommendation: Local Anesthetic Injections to Diagnose Subacute or Chronic Hip Pain Local anesthetic injections are recommended to assist in the diagnosis of subacute or chronic hip pain.

Indications – Patients with subacute or chronic hip pain from unclear source.

#### Strength of Evidence – Recommended, Insufficient Evidence (I)

#### Rationale for Recommendation

Local anesthetic injections for diagnostic purposes appear helpful for confirming the diagnostic impression, although there are no quality studies evaluating these injections for purposes of evaluating hip pain. Intraarticular hip injections with anesthetic agents are generally thought to be better if performed with a glucocorticosteroid as it generally accomplishes both diagnostic and therapeutic purposes simultaneously, although occasionally a simple anesthetic injection may be helpful in select cases. These injections are minimally invasive, have minimal potential for adverse effects, and are moderately costly.

#### Evidence for the Use of Local Anesthetic Diagnostic Injections

There are no quality studies evaluating the use of local anesthetic diagnostic injections for hip pain.

#### ELECTROMYOGRAPHY (including Nerve Conduction Studies)

Electrodiagnostic studies have also been used to confirm diagnostic impressions of other peripheral nerve entrapments, including the lateral cutaneous nerve to the thigh (meralgia paresthetica). (See Low Back Disorders chapter for discussion of electrodiagnostic studies to evaluate back-related disorders that may present as hip pain.)

# Recommendation: Electromyography for Diagnosing Subacute or Chronic Peripheral Nerve Entrapments Electrodiagnostic studies are recommended to assist in the diagnosis of subacute or chronic peripheral nerve entrapments including lateral cutaneous nerve to the thigh (meralgia paresthetica).

*Indications* – Patients with subacute or chronic paresthesias with or without pain particularly if unclear diagnosis.

#### Strength of Evidence – Recommended, Insufficient Evidence (I)

#### Rationale for Recommendation

Electrodiagnostic studies may assist in confirming peripheral nerve entrapments such as the lateral cutaneous nerve to the thigh. These studies are minimally invasive, have minimal potential for adverse effects (essentially equivalent to a blood test), and are moderately costly.

#### Evidence for the Use of Electromyography

There are no quality studies evaluating the use of electrodiagnostic studies for diagnosing peripheral nerve entrapments relevant to the hip.

#### FUNCTIONAL CAPACITY EVALUATIONS

See Chronic Pain chapter.

#### **MAGNETIC RESONANCE IMAGING (MRI)**

Magnetic resonance imaging (MRI) is not generally used as an initial or secondary test for most hip joint problems since it tends to be less helpful for imaging bones. It is considered the imaging test of choice for soft tissues. MRI is the gold standard for evaluating AVN after x-rays (67, 172, 175) and for evaluating osteonecrosis patients and is used to quantify the volume of affected tissue including marrow edema which is inversely correlated with prognosis.(176-180)

1. Recommendation: MRI for Hip Joint Pathology including Diagnosing Femoroacetabular Impingement, Gluteus Medius Tendinosis or Tears, Trochanteric Bursitis, and in Select Patients with Postarthroplasty Chronic Pain or Periarticular Masses

MRI is recommended for select patients with subacute or chronic hip pain with consideration of accompanying soft tissue pathology or other diagnostic concerns.

*Indications* – Patients with subacute or chronic hip pain who need imaging surrounding soft tissues, including evaluating gluteus medius tendons or masses (generally not indicated for acute hip pain).

Strength of Evidence – Recommended, Insufficient Evidence (I)

2. Recommendation: MRI for Diagnosing Osteonecrosis (AVN) MRI is recommended for diagnosing osteonecrosis.

*Indications* – Subacute or chronic hip pain thought to be related to osteonecrosis (AVN), particularly when the diagnosis is unclear or if additional diagnostic evaluation and staging is needed.

Strength of Evidence – Recommended, Insufficient Evidence (I)

3. Recommendation: MRI for Routine Evaluation of Acute, Subacute, Chronic Hip Joint Pathology MRI is not recommended for routine evaluation of acute, subacute, or chronic hip joint pathology, including degenerative joint disease.

Strength of Evidence – Not Recommended, Insufficient Evidence (I)

#### Rationale for Recommendations

MRI has not been evaluated in quality studies for hip joint pathology.(41, 181) However, it is likely particularly helpful for soft tissue abnormalities. There are no quality studies evaluating the use of MRI for AVN, hip joint pathology, or osteonecrosis. There is low-quality evidence that MRI may be less sensitive for detection of subchondral fractures than helical CT or plain x-rays in patients with osteonecrosis.(173) MRI has been suggested for evaluations of patients with symptoms over 3 months.(181-184) **As there are concerns that MRI is inferior to MR arthrography, particularly for evaluating the labrum,**(185) **MRI is recommended for evaluating the joint, but not the labrum.** There are reports of negative MRIs, yet finding gluteus medius tendon tears at surgery, thus MRIs appear to potentially have similar limitations imaging tendons in hip joint as in the shoulder.(186) MRI is not invasive, has no adverse effects aside from issues of claustrophobia or complications of medication, but is costly. MRI is not recommended for routine hip imaging, but is recommended for select hip joint pathology particularly involving concerns regarding soft tissue pathology.

#### Evidence for the Use of MRI

There are no quality studies evaluating the use of MRI for diagnosing hip pain.

#### MR ARTHROGRAM

Recommendation: MR Arthrogram for Diagnosing Femoroacetabular Impingement, Labral Tears, Gluteus Medius Tendinosis or Tears, or Trochanteric Bursitis in Patietns with Subacute or Chronic Hip Pain

MR arthrogram is recommended to diagnose femoroacetabular impingement, labral tears, gluteus medius tendinosis or tears, or trochanteric bursitis in patients with subacute or chronic hip pain.

*Indications* – Patients with subacute or chronic hip pain and symptoms or clinical suspicion of femoroacetabular impingement, labral tears, gluteus medius tendinosis or tears, trochanteric tears, or other hip joint concerns.

Strength of Evidence – Recommended, Insufficient Evidence (I)

#### Rationale for Recommendation

The use of MR arthrograms has not been evaluated in quality studies. However, they appear helpful in evaluating and confirming femoroacetabular impingement, gluteus medius tendinosis or tears, or trochanteric bursitis as soft tissue abnormalities.(185) Enhanced MR arthrogram allows better labral evaluation and is recommended for diagnosing femoroacetabular impingement, gluteus medius

tendinosis or tears, or trochanteric bursitis compared to other imaging procedures.(41, 42, 47, 69, 76, 181, 183-185, 187-196) MR arthrography is minimally invasive, has no adverse effects aside from issues of claustrophobia or complications of medication, but is costly. However, it is likely the best imaging procedure available for these patients and is recommended for select use.

#### Evidence for the Use of MR Arthrogram

There are no quality studies evaluating the use of MR arthrogram for diagnosing femoroacetabular impingement, gluteus medius tendinosis or tears, or trochanteric bursitis.

#### X-RAYS

X-rays are the most basic of the anatomical tests, show bony structure and, after many decades of use, are the initial test for evaluating most cases of hip pain.(197-200) Two or three views are generally performed. It should be noted that the threshold for x-ray of the lumbosacral spine and/or knee joint should be low, particularly if the findings on x-ray are either normal or do not readily explain the degree of abnormality on x-ray. For osteonecrosis, plain x-ray results differ by stage of disease. Early x-rays are usually normal or have less distinct trabecular patterns since the living part of the bone does not image with x-rays.(174) As the disease progresses, x-rays begin to show osteoporotic areas, progressing to sclerotic areas and finally flattening and bony collapse.(174) X-rays have also been reported as helpful for diagnosing hip dysplasia(201) and femoroacetabular impingement.(202-207)

1. Recommendation: X-rays for Acute, Subacute, or Chronic Hip Pain, or Femoroacetabular Impingement or Dysplasia

# X-rays are recommended for evaluating acute, subacute, or chronic hip pain, or femoroacetabular impingement or dysplasia.

*Indications* – In the absence of red flags, moderate to severe hip pain lasting at least a few weeks, and/or limited range of motion.

*Frequency/Duration* – Obtaining x-rays once is generally sufficient. For patients with chronic or progressive hip pain, it may be reasonable to obtain a second set of x-rays months to years subsequently to re-evaluate the patient's condition, particularly if symptoms change.

Strength of Evidence – Recommended, Insufficient Evidence (I)

2. Recommendation: X-rays for Diagnosing Osteonecrosis X-rays are recommended for diagnosing osteonecrosis.

Indications - All patients thought to have osteonecrosis (AVN).

#### Strength of Evidence - Recommended, Insufficient Evidence (I)

#### Rationale for Recommendations

X-rays are helpful to evaluate most patients with hip pain, both to diagnose and to assist with the differential diagnostic possibilities. There are no quality studies evaluating their efficacy. There is a low-quality study suggesting x-rays have higher sensitivity than MRI for detection of subchondral fractures in patients with osteonecrosis.(173) X-rays are non-invasive, are low to moderate cost, and have little risk of adverse effects; therefore, they are recommended.

#### Evidence for the Use of X-rays

There are no quality studies evaluating the use of x-rays for hip pain or diagnosing osteonecrosis. There is 1 comparative clinical study in Appendix 2.

# SINGLE PROTON EMISSION COMPUTED TOMOGRAPHY (SPECT) AND POSITRON EMISSION TOMOGRAPHY (PET)

Single proton emission computed tomography (SPECT) is a 3-dimensional imaging technique in which radionucleotide tracers that release gamma radiation are used to create multiplanar re-formations. Positron emission tomography (PET) is another technique that investigates functional and, to a lesser degree, anatomical details within the brain, but uses positron-emitting radionucleotides.

# Recommendation: SPECT or PET for Diagnosing Acute, Subacute, or Chronic Hip Pain SPECT or PET is not recommended for diagnosing acute, subacute, or chronic hip pain.

#### Strength of Evidence – Not Recommended, Insufficient Evidence (I)

#### Rationale for Recommendation

SPECT and PET scanning of the brain may be of use in assessing the status of cerebrovascular perfusion, tumors, or neurodegenerative conditions, but aside from providing information of interest for research, they have not been shown to be useful in influencing the management of patients with chronic pain states, including chronic hip pain. There is no quality evidence to support the use of these scans to evaluate patients with hip pain. PET scanning is expensive and SPECT scanning is moderately so; both are minimally invasive. SPECT scanning may be useful in detecting inflammatory disease in the spine or other areas that might not be amenable to evaluation by other studies.

#### Evidence for SPECT and PET

There are no quality studies evaluating the use SPECT or PET for the management of hip pain.

#### ULTRASOUND

Diagnostic ultrasound has been used to evaluate the hip joint, especially the soft tissues, effusions, (208) dysplasia, (209, 210) and labral tears, (211) as well as occult fractures. (212)

1. Recommendation: Ultrasound for Evaluating Gluteus Medius Tendinopathies, Greater Trochanteric Bursitis, Greater Trochanteric Pain Syndrome/Lateral Hip Pain, Groin Strains, Femoroacetabular Impingement, Hip Instability, Dislocation, Ligamentum Teres Ruptures, Labral Tears, or Postarthroplasty Chronic Pain Where Peri-articular Masses Are Suspected

Ultrasound is recommended for evaluating patients with gluteus medius tendinopathies, greater trochanteric bursitis, greater trochanteric pain syndrome/lateral hip pain, groin strains, femoroacetabular impingement, hip instability, dislocation, ligamentum teres ruptures, labral tears, or post-arthroplasty chronic pain where peri-articular masses are suspected.

Indications – Patients with hip pain thought to be from these disorders.

Strength of Evidence – Recommended, Insufficient Evidence (I)

2. Recommendation: Ultrasound for Other Hip Disorders including Osteonecrosis, Osteoarthrosis, Dysplasia, or Fractures

There is no recommendation for or against the use of ultrasound to diagnose other hip disorders including osteonecrosis, osteoarthritis, dysplasia, or fractures.

Strength of Evidence - No Recommendation, Insufficient Evidence (I)

#### Rationale for Recommendations

Ultrasound has been found to be helpful in evaluating tendinopathies, including tendon ruptures. There is no clear indication for the use of ultrasound to evaluate osteoarthrosis. Ultrasound is not invasive, has no adverse effects, and is moderately costly. It is recommended for disorders with soft tissue pathology.

#### Evidence for the Use of Diagnostic Ultrasound

There are no quality studies evaluating the use of diagnostic ultrasound for hip pain.

### **INITIAL CARE**

Assuring that there is not a remediable condition or red flag is the treating physician's first concern, prior to considering the patient's comfort measures. Nonprescription analgesics may provide sufficient pain relief for most patients with acute and subacute hip pain. If treatment response is inadequate (i.e., if symptoms and activity limitations continue) or the physician judges the condition limitations to be more significant, prescribed pharmaceuticals or physical methods may be added. Co-morbid conditions,

invasiveness, adverse effects, cost, and physician and patient preferences guide the choice of treatment. Initial care and comfort items may include non-steroidal anti-inflammatory drugs (NSAIDs), acetaminophen, heat, exercises, and/or advice on activities. Education about hip pain should begin at the first visit.

This guideline recommends interventions with quality evidence of proven efficacy. Known complication rates and safety profiles, if available, should always be utilized in decision making and were considered in developing this guideline. In addition to those treatments reviewed herein, there are many other theoretically potential treatments possible for management of hip and groin conditions. However, in the absence of moderate- to high-quality studies supporting their efficacy, (213) these other interventions are not recommended and are indicated as **Not Recommended**, **Insufficient Evidence (I)**.

### **ACTIVITIES AND ACTIVITY MODIFICATION**

There are substantial differences in the way that activities and activity modifications are typically managed for acute versus chronic pain. Acute pain may benefit from activity limitations, while chronic pain is almost never improved with activity limitations. Acute hip or groin pain is often improved by avoiding those occupational and non-occupational activities that result in a *substantial* increase in pain. Even in the acute pain setting, appropriate activity modifications are difficult to identify. For example, because prolonged inactivity usually results in increased pain upon movement, it is easy to erroneously conclude that the activity aggravated the pain. However, even in that setting, some activity is usually desirable. In general, activities causing a *significant* increase in hip or groin symptoms should be reviewed with the patient and modifications advised when appropriate. These modifications may include lifting adjustments, frequency of postural changes, workstation design, or other activities may require at least temporary modification.

Chronic hip or groin pain is managed substantially differently from acute pain. Almost invariably, rehabilitation of chronic hip or groin pain involves gradually performing the occupational and non-occupational activities that result in increased pain to achieve increased function. The same types of limitations are often needed, but the progressive performance of increasing frequencies, intensity, and/or durations of these activities is generally necessary to rehabilitate these problems. Every attempt to maintain the patient at maximal levels of activity, including work activities, should be made, as it is in the patient's best short- and long-term interest. Written activity limitations guidance communicates the status of the patient, and also gives the patient information on what he or she should or should not do at home.

### **Work Activities**

Work activity modifications are often necessary during the treatment course for patients with hip or groin pain. Advice on how to avoid aggravating activities that at least temporarily increase pain includes a review of work duties to decide whether or not modifications can be accomplished without employer notification and to determine whether modified duty is appropriate and available. Making every attempt to maintain patients at the maximal levels of activity, including work activities, is strongly recommended as it is in their best interest, particularly among patients with chronic hip or groin pain.

The first step in determining whether work activity modifications are required usually involves a discussion with the patient regarding whether he or she has control over his or her job tasks. In such cases where the worker can make modifications, e.g., receive assistance to lift a box or alternate sitting and standing as needed, there may be no requirement to write any restrictions even if the pain is limiting. In some situations, it may be advisable to confirm this report with the patient's supervisor to signal to the supervisor that the person is under treatment. In some cases, specified limitations may be a better treatment strategy. Assessment of work activities and potential for modifications may also be facilitated by a worksite visit and analysis by a health care provider with appropriate training (e.g., typically a physician, occupational therapist, physical therapist, or some ergonomists).

Work limitations should be tailored by taking into account the following factors: 1) job physical requirements; 2) the safety of the tasks, in consideration of the diagnosed condition, age, and relevant biomechanical limitations; 3) severity of the problem; 4) work organizational issues (overtime, work allocation, wage incentives); and 5) the patient's understanding of his or her condition. Sometimes it is necessary to write limitations or to prescribe activity levels that are above what the patient feels he or she can do, particularly when the patient feels that sedentary activity is advisable. In such cases, the physician should be careful to not overly restrict the patient; education about the pain problem and the need to remain active should be provided.

Common limitations involve modifying the weight of objects lifted, frequency of lifts, and posture – all while taking into account the patient's capabilities. For severe cases of acute hip or groin pain, frequent initial limitations for occupational and non-occupational activities include:

- No lifting of more than 10 pounds;
- No prolonged or repeated bending (flexion);
- No prolonged or repeated crouching and squatting;
- Avoidance of prolonged, low frequency whole body vibration; and
- Alternate sitting and standing frequently.

These work (and home) activity guidelines are generally reassessed every week in the acute phase with gradual increases in activity recommended so that patients with severe non-specific hip or groin pain evolve off modified duty in no more than 6 to 12 weeks. The amount of weight handled can be progressively increased. An alternative is to return the patient at first to 1 to 2 hours a day on his or her prior full duty job, with the remainder of the day spent at modified duty. The number of hours of full duty work can be increased every 1 to 2 weeks.

However, individualization is often necessary and if the prior job physical tasks involved frequent lifting of more than 100 pounds, then restricted work guidance may reasonably be substantially greater, e.g., 25 pounds lifting and carrying at first. Progressively increased activity is important and prolonged sedentary activity is often unhelpful, thus restrictions that state "sedentary work" is *not* appropriate for most hip or groin patients. Physicians should recognize that patient expectations regarding return-to-work status are often set prior to the first appointment,(214) thus education may be necessary to set realistic expectations and goals. It is best to communicate to the patient early in the treatment that limitations will be progressively reduced as he or she progresses. This should also be communicated at each successive visit so that the patient is advised well in advance of the treatment plan.

It is best to communicate early in the treatment that limitations will be progressively reduced as the patient progresses. Experienced physicians communicate the intended changes in restrictions for the coming week (similar to forecasting increases in exercise program components) at the current visit to reduce the element of surprise and help actively facilitate the patient's most important elements of an active, functional restoration program. Tailoring restrictions is required in nearly all patients with chronic hip pain as there is great variability in symptoms and dysfunction. The employer should also be consulted when developing strategies to expedite and support integrating the patient back into the workplace (see Participatory Ergonomics, Low Back Disorders chapter). The physician can make it clear to patients and employers that:

- Patients usually have increased pain performing almost any function (even light duty) early in rehabilitation;
- Increases in symptoms should be heard with a sympathetic ear and factors which are associated with significant increases in pain should be addressed;
- Increases in pain do not equate to injury for patients with chronic pain;
- Any restrictions are intended to allow for time to build activity tolerance through exercise and work reconditioning; and
- Where appropriate, it may help to mention to the patient that this rehabilitative plan will also help him or her regain normal non-occupational activities.

Table 7 provides recommendations on activity modification and duration of absence from work. These guidelines are intended for patients without comorbidity or complicating factors, including serious prior injuries. They are targets to provide a guide from the perspective of physiologic recovery. The physician should make it clear to the patient and employer that:

- moderately heavy lifting, carrying, or working in awkward positions may aggravate symptoms; and
- any restriction is intended to allow for spontaneous recovery or time to build activity tolerance through exercise.

|                |                                                          | Recommended Target for Disability Duration** |                 |                  |  |  |
|----------------|----------------------------------------------------------|----------------------------------------------|-----------------|------------------|--|--|
| Disorder       | Activity Modifications and                               | Job Classification                           | Modified Duty   | Modified Duty    |  |  |
|                | Accommodation                                            | Dictionary of Occupational<br>Titles         | Available       | Not Available    |  |  |
| Hip            | Avoid substantially aggravating activities               | Sedentary                                    | 0 days          | 0 days           |  |  |
| Osteoarthrosi  |                                                          | Light                                        | 0 days          | 0 days           |  |  |
| S              |                                                          | Moderate                                     | 0 days          | Up to 30 days    |  |  |
|                |                                                          | Heavy                                        | 0 to 28 days    | Up to 90 days    |  |  |
|                |                                                          | Very Heavy                                   | 0 to indefinite | Up to indefinite |  |  |
| Hip/Groin      | Avoid substantially aggravating irritating               | Sedentary                                    | 0 to 1 days     | Up to 14 days    |  |  |
| Pain (includes | activities (e.g., heavy lifting, prolonged or            | Light                                        | 0 to 3 days     | Up to 14 days    |  |  |
| sprain,        | repeated bending or stooping, prolonged                  | Moderate                                     | 0 to 14 days    | Up to 56 days    |  |  |
| relocated/     | maintenance of any one posture                           | Heavy                                        | 3 to 28 days    | Up to 84 days    |  |  |
| alsiocated hip | Including sitting, rotating on a fixed foot,             | Very Heavy                                   | 3 to 42 days    | Up to 84 days    |  |  |
| strains)       | squatting) until full activity possible or 90            |                                              |                 |                  |  |  |
|                | days have elapsed.                                       |                                              |                 |                  |  |  |
| Osteonecrosi   | Avoid substantially aggravating irritating               | Sedentary                                    | 0 to 14 days*   | Up to 42 days*   |  |  |
| S              | activities (e.g., lifting, stooping,                     | Light                                        | 0 to 21 days*   | Up to 56 days*   |  |  |
|                | or repeated crouching and squatting) or                  | Moderate                                     | 14 to 42 days*  | Up to 84 days*   |  |  |
|                | until surgical procedure has occurred                    | Heavy                                        | 91 to 119       | Up to 182        |  |  |
|                | and work ability is assessed based on                    | Very Heavy                                   |                 | uays             |  |  |
|                | surgical result.                                         |                                              | days*           | days*            |  |  |
| Greater        | Avoid pressure on affected hip. Avoid                    | Sedentary                                    | 1 to 7 days     | 14 days          |  |  |
| Trochanteric   | activities that substantially aggravate                  | Light                                        | 1 to 14 days    | 21 days          |  |  |
| Bursitis       | symptoms                                                 | Moderate                                     | 1 to 21 days    | 42 days          |  |  |
|                |                                                          | Heavy                                        | 1 to 56 days    | Indefinite       |  |  |
|                |                                                          | Very Heavy                                   | 1 to 91 days    | Indefinite       |  |  |
| Hip Fracture   | After pinning, graded increase in activity over 3 months |                                              | 30 to 60 days   | 120 days         |  |  |

Table 7. Guidelines for Modification of Work Activities and Disability Duration\*

\*Assumes good results with non-operative treatment and arthroplasty or coring is not required.

Disability durations primarily reflect consensus of the Evidence-based Practice Hip Panel. Disability duration data also reviewed with permission from Reed Group, Ltd. (Reed P. *The Medical Disability Advisor. Workplace Guidelines for Disability Duration, 5<sup>th</sup> Ed.* 2005. Westminister, Colorado: Reed Group, Ltd.)(215) Additional consensus recommendations and actual data on disability durations are available in *The Medical Disability Advisor. Workplace Guidelines for Disability Duration, 5<sup>th</sup> Ed.* 

Note: The highlight above is a footnote

### ERGONOMIC INTERVENTIONS

The physician may recommend work and activity modifications or ergonomic redesign of the workplace in order to facilitate recovery and prevent recurrence of the problem. (216) Physicians may refer patients for an ergonomic evaluation to be conducted on-site by a qualified professional such as an ergonomist, occupational or physical therapist, or other health safety specialist. The employer's role is to accommodate activity limitations and prevent further problems through ergonomic changes which may help return an employee to full activity. In some cases, it may be desirable to conduct an ergonomic analysis of the activities that are thought to be contributing to the symptoms, although there are no quality ergonomic survey instruments for the lower extremity. However, it is important for the patient, physician, and employer to know that there are no quality studies regarding ergonomic interventions to prevent hip and groin conditions, nor are there quality studies regarding return to work and secondary prevention. Thus, suggested changes to the work environment are necessarily empiric. As falls result in considerable hip morbidity (including fractures) and fall protection equipment has resulted in far fewer fatalities in industry over the past few decades, fall protection is a priority for preventing acute injuries.

#### 1. Recommendation: Fall Protection

#### Measures to prevent falls are recommended.

Strength of Evidence – Recommended, Insufficient Evidence (I)

2. Recommendation: Ergonomic Interventions for Hip or Groin Disorders There is no recommendation for or against the use of ergonomic interventions to prevent or facilitate recovery from hip or groin disorders.

Strength of Evidence – No Recommendation, Insufficient Evidence (I)

#### Rationale for Recommendations

Ergonomic interventions for upper extremity disorders have been attempted in numerous occupational settings.(217) However, there are no quality studies evaluating these interventions for the lower extremity (in the upper extremity, some interventions thought beneficial were found to be unhelpful). Thus, without quality evidence, there is no recommendation for or against the use of ergonomic interventions to prevent or facilitate recovery from hip or groin disorders. However, as falls continue to cause morbidity and deaths, fall protection equipment is recommended.

### EXERCISE

#### Exercise for Osteoarthrosis

Exercises have been utilized for treatment of osteoarthrosis – these include aerobic, strengthening, and flexibility exercises.(218-247) There are reports of low physical activity levels in arthritic patients,(248) and some evidence for efficacy of strengthening exercises among these patients.(231) Others have concluded that there is little evidence in support of efficacy of strengthening and aerobic exercise in hip OA patients and no evidence to support home versus group therapy.(222) Multiple studies have attempted to examine effectiveness for patients with rheumatoid arthritis.(249, 250) There are many studies involving knee pain patients (220, 228, 251-260) (see Knee Disorders chapter); however, whether those results are generalizable to patients with hip pain is unclear and many studies mixed knee and hip osteoarthrosis patients. While some research indicates that there is a lack of evidence supporting efficacy, others have opined that "Exercise may be the most effective, malleable, and inexpensive modality available to achieve optimal outcomes for people with osteoarthritis." (261)

Available research consists mostly of low- to moderate-quality trials (see exercise evidence table). Some research has included both inflammatory conditions as well as osteoarthrosis, thus the entire body of exercise-related articles has been included. Most studies have combined different exercises into programs that at least partially obscure effects of a specific exercise prescription (e.g., flexibility versus aerobic versus strengthening). However, some patterns do appear present in the available literature. While these recommendations are specific to hip or knee osteoarthrosis, the reader may be interested that these recommendations also appear to apply to the rheumatoid arthritis patient, as materially different results were not found with that population (see exercise evidence table).

### Aerobic exercise is moderately recommended for treatment of hip osteoarthrosis.

*Indications* – Hip osteoarthrosis. Patients with significant cardiac disease or potential for cardiovascular disease should be evaluated prior to instituting vigorous exercises following ACSM *Guidelines for Exercise Testing and Prescription,* 7th ed.,(262) in regards to health screening and risk stratification. A self-directed program is recommended for all patients. Supervised programs may be

particularly indicated for patients who require supervision to initiate a program or otherwise need assistance with motivation or concomitant fear avoidant belief training for a few appointments to help initiate the program.

*Frequency/Duration* – Dose is unclear. Walking at least 4 times a week at 60% of predicted maximum heart rate (220 - age = maximum heart rate) is recommended.(263, 264) Nearly all patients should be encouraged to maintain aerobic exercises on a long-term basis for fitness purposes, including lower extremity muscle strength, as well as to maintain optimal health.

Indications for Discontinuation – Intolerance (rarely occurs), development of other disorders.

#### Strength of Evidence – Moderately Recommended, Evidence (B)

2. Recommendation: Stretching Exercises for Hip Osteoarthrosis Stretching exercises are recommended for select patients with significant reductions in range of motion that are not thought to be fixed deficits.

*Indications* – Patients with significant reductions in range of motion that are thought to be non-fixed deficits (e.g., limitations based on stiffness or disuse rather than osteophytes).

Frequency/Duration – Generally taught as home exercises – 1 to 3 appointments.

*Indications for Discontinuation* – Worsening of symptoms, identification that deficits are fixed, or achievement of exercise program goals.

#### Strength of Evidence - Recommended, Insufficient Evidence (I)

3. Recommendation: Strengthening Exercises for Hip Osteoarthrosis Strengthening exercises are moderately recommended for treatment of hip osteoarthrosis.

*Indications* – May be added with aerobic exercises as an exercise program. In limited circumstances where range-of-motion deficits are considerable but thought to not be fixed, strengthening is sometimes added after beginning flexibility exercises.

*Frequency/Duration* – Home program frequency at least 2 to 3 times a week for hip osteoarthrosis. Supervised treatment frequency and duration is dependent on symptom severity and acuity and presence of comorbid conditions.

Indications for Discontinuation – Development of a strain, failure to improve.

#### Strength of Evidence – Moderately Recommended, Evidence (B)

#### Rationale for Recommendations

There are multiple RCTs addressing exercise for hip and/or knee osteoarthrosis patients. As there is not a strong rationale for believing there are major differences in efficacy for hip versus knee OA, this summary assumes the outcomes are similar in both sets of patients. Most of these studies combined different exercises. Some exercise programmatic components were unstructured and others did not clearly describe the interventions. These limitations restrict drawing strong evidence-based conclusions regarding any single intervention. Yet, there are quality studies comparing exercise to non-exercise controls that allow drawing evidence-based conclusions on the relative value of aerobic, stretching, and strengthening exercises.

Authors of a meta-analysis concluded the literature demonstrates efficacy of exercises for hip osteoarthrosis patients, especially for those containing strengthening exercises.(231) However, a high-quality trial of knee OA suggests while both aerobic and resistance training are helpful, aerobic exercises are modestly superior to resistance training and far superior to an educational control,(256) which suggests weight bearing may be beneficial and raises questions about which exercise may be superior for hip osteoarthrosis patients.

All quality studies including a major component of documented compliance with increased aerobic exercise found benefits of aerobic exercise.(263, 265, 266) Strengthening exercise results appear similar. There is not clear superiority of aerobic or strengthening exercises or vice versa. The available

quality evidence suggests aerobic and strengthening exercises are superior to flexibility or range of motion exercises.(263) Some but not all data suggest increased exercise intensity results in superior outcomes. But not all studies that have assessed inflammatory markers and joint scores among those with OA or RA have found reductions in erythrocyte sedimentation rates and lower joint scores among those exercising. Pool-based programs have been evaluated and evidence of superiority of water-based programs is lacking (see aquatic therapy below).

Problems with compliance and persistence with exercise programs after discharge are considerable. Evidence is mixed regarding whether supervised exercise programs are necessary or whether homebased programs are sufficient. Physicians need to encourage ongoing patient compliance with these programs. Exercise programs are not invasive, have low adverse effects, and are low to moderate cost depending on numbers of supervised appointments. Programs emphasizing aerobic and strengthening exercises are moderately recommended and stretching is recommended for patients with considerable reductions in range of motion that do not appear fixed.

#### Evidence for the Use of Exercise for Osteoarthrosis

There are 2 high-quality and 20 moderate-quality RCTs or crossover trials incorporated in this analysis. There is 1 low-quality RCT in Appendix 2.

| Author/Yea                         | Score  | Sample   | Comparison Results |                                             | Conclusion                | Comments           |  |  |  |  |
|------------------------------------|--------|----------|--------------------|---------------------------------------------|---------------------------|--------------------|--|--|--|--|
| r<br>Study Type                    | (0-11) | Size     | Group              |                                             |                           |                    |  |  |  |  |
| Exercise Advice for Osteoarthrosis |        |          |                    |                                             |                           |                    |  |  |  |  |
| Veenhof                            | 40     | N = 200  | Behavioral         | VAS pain                                    | "Because both             | Cluster            |  |  |  |  |
| 2006                               | 1.0    | 11 - 200 | graded activity    | (baseline/change at 13                      | interventions resulted    | randomization by   |  |  |  |  |
| 2000                               |        | Hip or   | program vs         | weeks/65 weeks): BGA                        | in beneficial long-term   | physical therapist |  |  |  |  |
| RCT                                |        | knee OA  | usual care for     | 4 3+2 8/-0 61/-1 01 vs                      | effects the superiority   | Baseline data      |  |  |  |  |
|                                    |        |          | 12 weeks and a     | UC 3.7±2.5/-0.47/-0.58.                     | of (behavioral graded     | somewhat worse     |  |  |  |  |
|                                    |        |          | maximum 18         | WOMAC pain scores and                       | activity program) over    | disease in usual   |  |  |  |  |
|                                    |        |          | sessions, then     | WOMAC physical                              | (usual care) has not      | care group. Many   |  |  |  |  |
|                                    |        |          | up to 5 booster    | function subscales not                      | been demonstrated.        | protocol           |  |  |  |  |
|                                    |        |          | sessions.          | different between groups.                   | Therefore, BGA seems      | deviations. Data   |  |  |  |  |
|                                    |        |          |                    | Patient global                              | to be an acceptable       | suggest            |  |  |  |  |
|                                    |        |          |                    | assessments %                               | method to treat           | behavioral graded  |  |  |  |  |
|                                    |        |          |                    | improved (13 weeks/65                       | patients with hip and/or  | exercise program   |  |  |  |  |
|                                    |        |          |                    | weeks): BGA 41/56 vs.                       | knee OA, with             | ineffective        |  |  |  |  |
|                                    |        |          |                    | UC 36/49 (NS).                              | equivalent results        | compared with      |  |  |  |  |
|                                    |        |          |                    |                                             | compared with UC."        | usual care.        |  |  |  |  |
|                                    | T      | 1        | Exerc              | cise for Osteoarthrosis                     |                           | r                  |  |  |  |  |
| Ettinger                           | 8.0    | N = 439  | Aerobic exercise   | 6-minute walk test:                         | "Older disabled           | Exercise superior  |  |  |  |  |
| 1997                               |        |          | program (3-        | aerobic 1507 vs.                            | persons with              | to education.      |  |  |  |  |
| DOT                                |        | Knee OA  | month facility-    | resistance 1406 vs.                         | osteoarthritis of the     | Data also suggest  |  |  |  |  |
| RCI                                |        |          | based, 15          | education 1349 feet, p                      | knee had modest           | weight             |  |  |  |  |
|                                    |        |          | month nome         | <0.02 compared with                         | Improvements in           | bearing/waiking    |  |  |  |  |
|                                    |        |          | walking, 1 hour    | education. Stair climb:                     | measures of disability,   | may be modestly    |  |  |  |  |
|                                    |        |          | with 40 minutes    | -0.05 porobic c/w                           | and pain from             |                    |  |  |  |  |
|                                    |        |          | waiking a          | = 0.05 aerobic C/w                          | and pain norm             | training for knoo  |  |  |  |  |
|                                    |        |          | sessions a         | resistance c/w                              | an aerobic or a           |                    |  |  |  |  |
|                                    |        |          | week) vs           | education) Lift and carry                   | resistance exercise       | was                |  |  |  |  |
|                                    |        |          | resistance         | task: $91 \text{ vs}$ $93 \text{ vs}$ $100$ | program These data        | approximately      |  |  |  |  |
|                                    |        |          | exercise           | s. p <0.002. Disease                        | suggest that exercise     | 69% and results    |  |  |  |  |
|                                    |        |          | program (2 sets    | activity intensity score                    | should be prescribed      | were better with   |  |  |  |  |
|                                    |        |          | of 12 reps, 1      | 2.14 vs. 2.21 vs. 2.40 (p                   | as part of the treatment  | more compliance.   |  |  |  |  |
|                                    |        |          | hour class with    | = 0.001, p = 0.02). Peak                    | for knee osteoarthritis." | especially with    |  |  |  |  |
|                                    |        |          | 40-minute          | VO2 18.3 vs. 17.9 vs.                       |                           | the aerobic        |  |  |  |  |
|                                    |        |          | resistance         | 17.5 mL/kg/minute. Knee                     |                           | training.          |  |  |  |  |
|                                    |        |          | exercise, 3 days   | extension strength 89.0                     |                           | -                  |  |  |  |  |
|                                    |        |          | a week for 18      | vs. 90.2 vs. 87.0 Nm at                     |                           |                    |  |  |  |  |
|                                    |        |          | months; leg        | 30°. Overall self-reported                  |                           |                    |  |  |  |  |
|                                    |        |          | extension, curl,   | disability scores: 1.72 vs.                 |                           |                    |  |  |  |  |

|                         |     |                                                   | step up, heel<br>raise, chest fly,<br>upright row,<br>military press,<br>biceps curl,<br>pelvic tilt) vs.<br>health education<br>program<br>(monthly 1.5<br>hour education<br>session for 3<br>months,<br>included<br>exercise topics). | 1.74 vs. 1.90 ( $p < 0.001$<br>and $p = 0.003$ ). Pain<br>intensity scores 2.14 vs.<br>2.21 vs. 2.46. Self-<br>reported disability by<br>compliance with aerobic<br>exercise (0-39%/40-<br>79%/80-100%):<br>2.08/1.88/1.70 vs.<br>resistance:<br>1.96/1.95/1.87.                                                                                                                                                                           |                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                 |
|-------------------------|-----|---------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Hoeksma<br>2004<br>RCT  | 8.0 | N = 109<br>Hip OA                                 | Manual therapy<br>(stretching,<br>manipulation<br>and mobilization<br>of hip joint) vs.<br>exercise<br>program<br>(tailored to<br>patients needs).<br>Both 2 times a<br>week for 9<br>treatments.                                       | Percent improved after 5<br>weeks 81% manual<br>therapy vs. 50%<br>exercise, p <0.05. SF-36<br>(baseline/week 29):<br>manual therapy<br>(41.1±18/51.4±22) vs.<br>exercise<br>(37.9±18/49.9±24), NS.<br>Harris hip scores manual<br>(54.0±15/70.2±20) vs.<br>exercise (53.1±14/59.7±<br>18), p <0.05. Pain scores<br>at rest not significant.<br>Pain scores walking<br>favored manual therapy<br>(p <0.05).                                | "The effect of the<br>manual therapy<br>program on hip<br>function is superior to<br>the exercise therapy<br>program in patients<br>with OA of the hip."             | Exercise program<br>unstructured.<br>Manual therapy<br>group also<br>included advice to<br>exercise,<br>potentially<br>confounding<br>results and<br>impairing an<br>ability to draw a<br>firm conclusion.                                                                                                                                                                                                      |
| Van Baar<br>1998<br>RCT | 7.5 | N = 201<br>Hip or<br>knee OA                      | Individual<br>exercise therapy<br>with PT<br>(strength, ROM,<br>ADLs) 1 to 3<br>times a week vs.<br>no exercise for<br>12 weeks<br>treatment and<br>24 weeks follow-<br>up. Both groups<br>treated with<br>education and<br>medication. | Most patients reported<br>adherence. Baseline<br>paracetamol use higher<br>in exercise group (52%<br>vs. 38%). Pain in past<br>week reduced after<br>treatment: exercise -22.8<br>vs. controls -5.7 (p<br><0.01). NSAID<br>medication use 42% vs.<br>36%, p = 0.38.<br>Paracetamol use 35%<br>vs. 51%, p = 0.02.<br>Observed disability -0.21<br>vs0.02, p = 0.04. No<br>significant effectiveness<br>differences between hip<br>and knee. | "[E]xercise therapy<br>reduces pain and<br>disability in patients<br>with OA of the hip or<br>knee. The size of the<br>effects is medium to<br>small, respectively." | Physical therapy,<br>exercise groups<br>not structured,<br>precluding<br>assessment of<br>value of specific<br>treatments.<br>Physical therapy<br>program as<br>described had<br>modest effect<br>over home<br>exercise<br>education when<br>used in<br>conjunction with<br>regular care. Pain<br>and disability<br>assessments<br>improved<br>although no<br>difference in<br>amount of<br>NSAIDS<br>consumed. |
| Nguyen<br>1997<br>RCT   | 6.5 | N = 180<br>Lumbar<br>spine,<br>knee and<br>hip OA | Spa therapy vs.<br>"usual therapy"<br>for 3 weeks.<br>Spa included<br>"journey, rest,<br>blaneotherapy,<br>spring water and<br>medical                                                                                                  | NSAID tablets consumed<br>over 24-week follow-up<br>period: spa 144±192 vs.<br>216±240, p = 0.01.<br>Graphic data suggest<br>reduction in benefits over<br>time. VAS pain scores (9<br>baseline/4 weeks/24                                                                                                                                                                                                                                 | "This study suggests<br>that spa therapy of 3<br>weeks duration has a<br>prolonged, beneficial,<br>symptomatic effect in<br>osteoarthritis."                         | Treatments likely<br>heterogeneous<br>with multiple co-<br>interventions,<br>precluding strong<br>conclusions. No<br>long-term follow-<br>up beyond 6                                                                                                                                                                                                                                                           |

|                                |     | h. 007                                                                              | attention."                                                                                                                                                                                                                                                                                                                                                      | weeks): spa (50±20/-<br>15±29/-9±28) vs. controls<br>(47±22/1±22/3±24), p<br><0.0001.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                        | months; results<br>not significantly<br>different by<br>months 4-6 by<br>tablet count.                                                                                                                                                                                                                                              |
|--------------------------------|-----|-------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Ravaud<br>2004<br>RCT          | 6.0 | N = 867<br>rheuma-<br>tologists<br>N = 2,957<br>(2216<br>knee OA;<br>741 hip<br>OA) | Standardized<br>tools (adjusted<br>medications) vs.<br>booklet with<br>exercises and<br>videotape (ROM<br>and strength) for<br>HEP 4 times a<br>week/6 months<br>vs. standardized<br>tools and<br>exercise vs.<br>usual medical<br>care by<br>rheumatologists.<br>All patients<br>given rofecoxib<br>12.5mg QD first<br>month and<br>25mg QD after if<br>needed. | VAS pain ST (-<br>17.6 $\pm$ 27.2) vs. exercise (-<br>19.7 $\pm$ 28.7) vs. ST+EX (-<br>14.5 $\pm$ 26.5) vs. usual care<br>(-19.1 $\pm$ 28.8). WOMAC<br>function and global<br>assessments also not<br>different as improved in<br>all 4 arms (p <0.001).<br>Diaries completed by<br><50%. Patients in EX<br>and ST+EX groups more<br>likely to agree that<br>rheumatologists provided<br>advice about muscular<br>strengthening (p 0.001)<br>and that he "has done his<br>best to preserve their<br>muscular function and<br>their physical activities"<br>(p <0.001). | "Although patients'<br>assessments favoured<br>the exercise<br>programme, results<br>from this study failed to<br>demonstrate a short<br>term symptomatic<br>effect of the two non-<br>pharmacological<br>treatments (weekly<br>recording of condition<br>and exercise) in<br>patients with OA<br>concurrently receiving<br>nonsteroidal anti-<br>inflammatory drugs." | Cluster<br>randomized<br>controlled study<br>with<br>randomization at<br>physician level<br>may result in<br>relative lack of<br>homogeneity of<br>interventions.<br>Study data do not<br>clearly support<br>exercise program,<br>but<br>implementation of<br>rofecoxib as a co-<br>intervention may<br>have confounded<br>results. |
| Tak<br>2005<br>RCT             | 5.5 | N = 109<br>Hip OA                                                                   | Hop with the Hip<br>exercise<br>program<br>(strengthening,<br>treadmill, weight<br>control, assistive<br>devices) weekly<br>1-hour<br>appointments<br>for 8 weeks vs.<br>no intervention.                                                                                                                                                                        | VAS pain (baseline/post/<br>follow-up): Exercise<br>$(3.8\pm2.1/3.6\pm2.5/3.5\pm2.1)$<br>vs. control $(4.2\pm2.2/4.1\pm$<br>$2.1/5.1\pm2.3)$ (p = 0.38<br>and p = 0.02 at follow-<br>up). Harris Hip Score:<br>exercise (71.1±<br>12.9/77.0±11.6/75.4±14.<br>6) vs. control (71.0±13.3/<br>71.2±13.2/71.1±15.1) (p<br>= 0.031 and p = 0.081).<br>Lower level of restrictions<br>in exercise group but NS.<br>Physical subscale of SIP<br>improved in exercise<br>group at follow-up (p<br><0.05).                                                                      | "The exercise program<br>had positive effects on<br>pain and hip function,<br>which are important<br>mediators of disability.<br>This study fulfilled a<br>need for older adults<br>with hip OA and<br>provides evidence of<br>the benefit of exercise<br>in the management of<br>hip OA."                                                                             | Non-<br>interventional<br>control group may<br>bias in favor of<br>intervention.<br>Dropouts had<br>worse disease<br>measures. Data<br>suggest exercise<br>benefits hip OA<br>patients.                                                                                                                                             |
| Hopman-<br>Rock<br>2000<br>RCT | 5.0 | N = 120<br>Hip or<br>knee OA                                                        | Two hour<br>weekly exercise<br>sessions (1.25<br>hour education,<br>45-minute<br>exercises with<br>HEP at least 3<br>times a week for<br>6 weeks vs.<br>non-<br>interventional<br>controls.                                                                                                                                                                      | IRGL pain scale<br>(baseline/post/followup):<br>exercise<br>(14.0 $\pm$ 4.0/13.6 $\pm$ 3.6/14.2 $\pm$<br>4.0) vs. controls<br>(13.7 $\pm$ 3.5/14.9 $\pm$ 3.8/14.3 $\pm$<br>4.0), p = 0.045. Pain<br>intolerance also favored<br>exercise (p = 0.011) as<br>did quality of life (p =<br>0.039).                                                                                                                                                                                                                                                                         | "[T]his self-<br>management program<br>was reasonably<br>effective in terms of the<br>educational and<br>exercise components."                                                                                                                                                                                                                                         | Non-<br>interventional<br>control group may<br>bias in favor of<br>intervention.<br>Exercises appear<br>unstructured and<br>not well<br>described. Data<br>support<br>exercises,<br>although results<br>did not persist at<br>follow-up.                                                                                            |
| Mangione<br>1999<br>RCT        | 5.0 | N = 39<br>Knee OA                                                                   | High (70% heart<br>rate max from<br>graded exercise<br>test) vs. low<br>(40% HR max)<br>intensity                                                                                                                                                                                                                                                                | Chair rise time (baseline/<br>post): HI 23.54±10.15/<br>19.26±8.18 vs. LO 23.09<br>±8.21/18.96±4.83 (NS).<br>6-minute walk test: HI<br>488.06±117.72/540.62±9                                                                                                                                                                                                                                                                                                                                                                                                          | "Cycling may be<br>considered as an<br>alternative exercise<br>modality for patients<br>with knee OA. Low-<br>intensity cycling was as                                                                                                                                                                                                                                 | Data suggest no<br>meaningful<br>differences<br>between low vs.<br>high bicycle<br>exercise program.                                                                                                                                                                                                                                |

|                               |          |                                                          | stationary<br>cycling for 1<br>hour session, 3<br>times a week for<br>10 weeks.                                                                                                                                               | 8.72 vs. LO 491.12±<br>103.74/526.94± 113.74<br>(NS).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | effective as high-<br>intensity cycling in<br>improving function and<br>gait, decreasing pain,<br>and increasing aerobic<br>capacity."                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                        |
|-------------------------------|----------|----------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Halbert<br>2001<br>RCT        | 4.5      | N = 69<br>Hip or<br>knee OA                              | Individualized<br>physical activity<br>advice (at 0, 3, 6<br>months;<br>emphasis on<br>aerobic 3<br>sessions a week<br>for ≥20minutes)<br>vs. nutritional<br>pamphlet.                                                        | More intervention moved<br>up category or 2 to<br>intend to exercise (p =<br>0.013). Somewhat more<br>exercise in the<br>intervention group. OA<br>symptoms unchanged<br>and not different between<br>groups. Well being did<br>not change between<br>groups.                                                                                                                                                                                                                                                                                                                                       | "An offer of primary<br>care-based physical<br>activity advice, with an<br>emphasis on the<br>benefits for general<br>health (rather than<br>"treatment" for OA), will<br>attract individuals with<br>OA symptoms.<br>Although the present<br>study was unable to<br>demonstrate<br>intervention-control<br>group differences for<br>the majority of<br>outcomes, intention to<br>exercise did appear to<br>be positively<br>influenced " | Differences in<br>exercising<br>between groups<br>minimal,<br>suggesting advice<br>had minimal<br>influence.                                                                                                                                                                                                                                           |
| Minor<br>1989<br>RCT          | 4.0      | N = 120<br>OA (hip,<br>knee, or<br>tarsal) or<br>RA      | Aerobic walking<br>vs. aerobic pool<br>vs. range of<br>motion exercise<br>classes, 1 hour<br>sessions, 3<br>sessions a week<br>for 12 weeks.<br>Both aerobic<br>groups targeted<br>60-80% of HR<br>Maximum for 30<br>minutes. | Aerobic capacity<br>(baseline/ 12 weeks):<br>walk (18.9 $\pm$ 4.8<br>/22.4 $\pm$ 4.8mL/kg/minutes)<br>vs. pool (19.3 $\pm$ 6.7/23.2 $\pm$<br>7.2) vs. ROM (17.4 $\pm$ 5.9/<br>17.3 $\pm$ 3.6) (p = 0.009<br>comparing walk plus pool<br>vs. ROM). AIMS pain<br>scores (baseline/12<br>weeks): walk<br>(5.1 $\pm$ 1.9/3.9 $\pm$ 1.9) vs.<br>pool (5.0 $\pm$ 1.6/4.4 $\pm$ 1.7)<br>vs. ROM<br>(5.5 $\pm$ 1.6/4.8 $\pm$ 1.9) (p =<br>0.22). Active joints (n):<br>aerobic OA -2.0 $\pm$ 5.2 vs.<br>ROM (-1.8 $\pm$ 5.9). Active<br>RA joints aerobic (-6.8 $\pm$<br>11.8) vs. ROM<br>(3.3 $\pm$ 10.9). | "Our findings document<br>the feasibility and<br>efficacy of conditioning<br>exercise for people<br>who have rheumatoid<br>arthritis or<br>osteoarthritis."                                                                                                                                                                                                                                                                               | Data suggest<br>efficacy of walking<br>or pool exercise<br>for arthritis<br>patients. Targeted<br>60-80% HR<br>maximum in<br>walking/pool<br>groups. Improve<br>greater OA vs. RA<br>for exercise<br>endurance but<br>better for total<br>active RA joints.<br>Both appear to<br>benefit. Suggests<br>aerobic exercise<br>reduces active RA<br>joints. |
|                               | <u> </u> | 4                                                        | Exercise                                                                                                                                                                                                                      | e for Rheumatoid Arthritis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1                                                                                                                                                                                                                                                                                                                                                      |
| Lyngberg<br>1994<br>RCT       | 6.0      | N = 24<br>RA with<br>low dose<br>steroids<br>for 2 years | Progressive<br>interval training<br>– aerobic with<br>ergometer –<br>bicycling and<br>strengthening<br>exercises,<br>stretching<br>trained muscles<br>twice a week, 45<br>minutes for 3<br>months vs. no<br>program.          | Tended towards lower<br>tender joints with<br>exercise. Changes in<br>medication use NS.<br>Borderline reduction in<br>number of swollen joints<br>( $p = 0.06$ ). ESR<br>(baseline/post): training<br>(33/22) vs. control<br>(17/23) favored treatment<br>p = 0.13.                                                                                                                                                                                                                                                                                                                                | "Individually adapted<br>exercise programs can<br>therefore be<br>recommended for<br>elderly rheumatoid<br>arthritis patients on<br>steroid treatment."                                                                                                                                                                                                                                                                                   | Data suggest<br>physical training<br>in elderly, fragile<br>patients does not<br>increase RA<br>disease activity<br>measured by<br>blinded assessor.<br>ESR reduced with<br>exercise<br>compared with<br>controls.                                                                                                                                     |
| Lyngberg<br>1988<br>Crossover | 6.0      | N = 20<br>RA,<br>moderatel                               | Training<br>program of<br>aerobic capacity<br>training and                                                                                                                                                                    | No significant change in<br>ESR, C3. Number of<br>swollen joints decreased<br>after training (77 to 56, p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | "RA-patients with some<br>activity are trainable<br>without aggravating the<br>disease, even in the                                                                                                                                                                                                                                                                                                                                       | Main outcomes of<br>serological<br>markers of<br>inflammation                                                                                                                                                                                                                                                                                          |

| Trial                          |     | y active<br>disease                              | dynamic<br>strength<br>exercises 45<br>minutes twice a<br>week for 8<br>weeks vs. no<br>program                                                                                                                                                                                                                                                                                                                                                                                                                    | <0.02). No comparable<br>reduction in swollen<br>joints during control<br>period (42 to 49).<br>Hemoglobin level<br>increased approximately<br>8% (p<0.01) with<br>training.                                                                                                                                                                                                                                                                                                                                                                 | chronically swollen<br>joints. The rheumatoid<br>arthritis activity<br>decreased with fewer<br>swollen joints and<br>higher hemoglobin level<br>after training."                                                                                          | negative.<br>However, disease<br>activity reduced<br>with exercise as<br>measured with<br>blinded assessor.                                                                                                                                                                                                                                                                                                                                                                                                           |
|--------------------------------|-----|--------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Baslund<br>1993<br>RCT         | 4.5 | N = 18<br>RA                                     | Progressive<br>bicycle training<br>(ergometric<br>bicycle 4-5<br>times a week<br>with 3 short<br>exercise periods<br>of 5 minutes to<br>target HR) vs.<br>controls for 8<br>weeks.                                                                                                                                                                                                                                                                                                                                 | VO2max training<br>(27.2 $\pm$ 1.7/ 33.3 $\pm$ 1.9) vs.<br>controls (20.9<br>$\pm$ 2.9/22.2 $\pm$ 2.6) mL/kg/min<br>(p = 0.04). HR decreased,<br>RPE reduced, work load<br>increased in exercise<br>group. No difference in<br>leukocytes, lymphocytes,<br>neutrophils, C-reactive<br>protein or erythrocyte<br>sedimentation rate.<br>Concentrations of IL-1 $\alpha$ ,<br>IL-1 $\beta$ , and IL-6 not<br>changed in training group.<br>NK cell activity and<br>lymphocyte proliferative<br>responses did not differ.                       | "8 wk of bicycle training<br>does not influence the<br>immune system of<br>patients with<br>rheumatoid arthritis."                                                                                                                                        | Small sample<br>size. Baseline<br>higher VO2max in<br>training group<br>(27.2 ±1.7 vs.<br>20.9±2.9<br>mL/kg/min). No<br>immunological<br>effects found<br>(were trial's<br>primary outcome<br>measures).<br>Training group's<br>VO2max<br>improved despite<br>use of short<br>bursts of<br>exercise.                                                                                                                                                                                                                  |
| van den<br>Ende<br>1996<br>RCT | 4.5 | N = 100<br>RA                                    | High intensity<br>group exercises<br>(12 exercises,<br>20 minute<br>cycling to 70-<br>85% HR Max, 1<br>hour sessions, 3<br>times a week),<br>vs. low intensity<br>group exercise<br>program (ROM,<br>isometric<br>strengthening, 1<br>hour sessions,<br>twice a week)<br>vs. low intensity<br>individual<br>exercise<br>program (same<br>exercises,<br>durations<br>unclear) vs.<br>home exercise<br>program (ROM<br>and isometric<br>exercises at<br>least 2 times a<br>week for 15<br>minutes); all 12<br>weeks. | Mean aerobic capacity<br>(V0 <sub>2</sub> max) increases: high<br>intensity (27.6 to 32.3)<br>+4.7mL/kg/min (17%) vs.<br>low group +0.9 vs. low<br>individual -1.2 vs. home<br>+0.3 (p <0.001 for high<br>intensity group). Joint<br>mobility (EPM-ROM)<br>improved from 10.9 to<br>9.2 (15.6%) in high<br>intensity group (p<br><0.001) compared with<br>other groups. Muscle<br>strength in high intensity<br>group superior to HEP (p<br>= 0.02), but not to low<br>intensity groups; HAQ<br>and Dutch AIMS NS.<br>Medications unchanged. | "Intensive dynamic<br>training is more<br>effective in increasing<br>aerobic capacity, joint<br>mobility, and muscle<br>strength than ROM<br>exercises and isometric<br>training in rheumatoid<br>arthritis patients with<br>well controlled<br>disease." | High intensity<br>group tended<br>towards longer<br>disease duration<br>and more active<br>disease at<br>baseline,<br>potentially biasing<br>against that<br>group. Unequal<br>treatment contact<br>times among<br>groups. Pain<br>and/or physical<br>fitness impaired<br>ability of some to<br>complete<br>ergometer test.<br>Data suggest best<br>improvements in<br>aerobic capacity<br>and joint mobility<br>with high intensity<br>exercises. Data<br>also suggest<br>results did not<br>persist to 24<br>weeks. |
| Daltroy<br>1995                | 4.5 | N = 71                                           | 12-week home<br>cardio-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Measures favored<br>exercise (mostly NS).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | "[A]Ithough safe, un-<br>supervised home                                                                                                                                                                                                                  | Data suggest<br>exercise program                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| RCT                            |     | RA or<br>systemic<br>lupus<br>erythe-<br>matosus | pulmonary<br>conditioning<br>program with<br>stationary<br>bicycles<br>provided.                                                                                                                                                                                                                                                                                                                                                                                                                                   | ETT minutes at 12 weeks:<br>exercise 9.6 vs. 9.2<br>minutes controls (p =<br>0.33). CES-D depression<br>scores 11.3 vs. 15.0 (p =<br>0.07). POMS fatigue 7.6                                                                                                                                                                                                                                                                                                                                                                                 | exercise programmes<br>may benefit few<br>patients."                                                                                                                                                                                                      | may be relatively<br>unsuccessful,<br>although fatigue<br>measures<br>positive. Mixed<br>rheumatological                                                                                                                                                                                                                                                                                                                                                                                                              |

|                       |     |              | Prescription 60-<br>80% HR max, 3<br>times a week for<br>30 minute<br>sessions vs.<br>controls to<br>maintain current<br>activity level for<br>12 weeks.                                                                                                                                                                                                                                                                                                                                    | vs. 10.3, $p = 0.03$ .<br>Exercise group averaged<br>2.7 sessions a week.<br>Patients reporting greater<br>physical activity had<br>greater baseline exercise<br>tolerance, $p = 0.0003$ and<br>at 3 months, $p = 0.002$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                              | disorders. RA<br>controls exercised<br>somewhat longer<br>at baseline,<br>providing some<br>potential bias<br>against exercise.                                                                                                                                                                                                                                                                                                                  |
|-----------------------|-----|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Hansen<br>1993<br>RCT | 4.5 | N = 75<br>RA | Five groups: 1<br>non-exercise<br>controls (E). All<br>exercise groups<br>self training with<br>15 minute<br>overall training<br>and 30 minute<br>aerobic (swim,<br>cycle, run, jog) 3<br>times a week,<br>up to 90 minutes<br>a day: A) self<br>training only; B)<br>weekly PT (15<br>minute standard<br>program, 15<br>minute biking,<br>15 minute<br>relaxation; C)<br>weekly in-<br>hospital training<br>as per B; D)<br>same as C but<br>hot pool instead<br>of bikes; all 2<br>years. | ESR (baseline/24<br>months): A (35/22) vs. B<br>(28/19) vs. C (20/17) vs.<br>D 22/16) vs. E (23/28).<br>Numbers of swollen<br>joints not different. Pain<br>scores: A (1.6/1.4) vs. B<br>(1.8/1.9) vs. C (1.9/2.1)<br>vs. D (1.9/1.4) vs. E<br>(1.9/1.9). Average<br>aerobic fitness declined<br>in all 5 groups.<br>Attendance rate for<br>training sessions >50%<br>for groups B, C, and D.<br>"There were no<br>statistically significant<br>effect of the training on<br>any of the measured<br>variables. 66% of all<br>patients experienced a<br>general improvement of<br>disease activity or activity<br>of daily living. [T]here<br>were no statistically<br>significant differences<br>between the groups." | "[A]Ithough most<br>patients are in favour of<br>training, the present<br>study does not support<br>that training lessons<br>per se affect the<br>disease activity or the<br>progression of the<br>disease." | Subgroups are<br>small at 15<br>subjects each<br>arm. No<br>aggregate<br>analyses reported<br>although some<br>groups may have<br>been comparable.<br>Only no-exercise<br>controls had rise<br>in ESR. Lack of<br>increases in<br>aerobic capacity<br>suggest lack of<br>compliance with<br>HEP. Lack of data<br>from end of<br>training impair<br>ability to conclude<br>short to<br>intermediate term<br>efficacy (or lack)<br>of the program. |
| Smith<br>1998<br>RCT  | 4.5 | N = 24<br>RA | Aquaerobics 1<br>hour, 3 times a<br>week vs. 8-10<br>ROM exercises,<br>isometric<br>strengthening<br>(possibly home<br>exercise<br>program) 10<br>each, 2-3 times<br>a day/10 weeks.                                                                                                                                                                                                                                                                                                        | Active joints (baseline/11<br>weeks): aquaerobics<br>(8.3±6.0/7.5±6.1) vs.<br>ROM (10.6±5.6/7.1±4.6).<br>Both groups improved<br>duration on treadmill.<br>ROM group alone<br>showed improvement in<br>walking category and<br>total HAQ.                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | "[P]articipation in either<br>program may results in<br>improved exercise<br>tolerance without<br>exacerbating joint<br>activity."                                                                           | Small sample<br>size. Arthritis<br>duration longer in<br>controls. Controls<br>not well<br>described,<br>appears a home<br>exercise program<br>which would<br>provide different<br>treatment contact<br>times between 2<br>groups biased in<br>favor of<br>aquaerobics.<br>Active joints<br>trended to ROM<br>group by blinded<br>assessor. Other<br>data also favor<br>ROM group.                                                               |
| Ekdahl<br>1990<br>RCT | 4.5 | N = 67<br>RA | Dynamic<br>program,<br>strengthening<br>and aerobic<br>capacity 12<br>visits (2 a<br>week/6 weeks)                                                                                                                                                                                                                                                                                                                                                                                          | VO2Max (baseline-6<br>weeks<br>difference/baseline-18<br>weeks): dynamic<br>(5.6/2.6) vs. static (0.9/-<br>0.1). VAS pain muscle<br>tests (-0.5/0.0) vs. (-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | "[D]ynamic training<br>gives a greater<br>increase in physical<br>capacity than does<br>static training."                                                                                                    | No differences<br>between 4 and 12<br>visits, so data<br>collapsed. Data<br>suggest dynamic<br>exercise superior<br>to static.                                                                                                                                                                                                                                                                                                                   |

|                         |     |                                                              | vs. dynamic<br>program, ROM<br>and<br>strengthening<br>exercises 4<br>visits (2 at 1<br>week, 1 at 3<br>weeks, 1 at 6<br>weeks) vs. static<br>program 12<br>visits vs. 4 visits.<br>HEP daily                                                                                                                                                                                              | 0.2/0.4). Walking 60m (-<br>3.7/-1.9s) vs0.5/0.1).<br>All changes for dynamic<br>group on 25 subtests<br>were positive vs. 12<br>subtests negative among<br>static group. During 18<br>weeks, significant<br>difference on 17 of 25<br>subtests.                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                  |
|-------------------------|-----|--------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Ekblom<br>1975<br>RCT   | 4.5 | N = 34<br>RA,<br>hospitalize<br>d but<br>"non-acute<br>stage | "Ordinary"<br>physical rehab<br>program – QAM,<br>5 a day 1 week<br>(control) vs.<br>ordinary<br>program plus<br>training group<br>(bicycle<br>ergometer and<br>quadriceps table<br>strengthening)<br>20-40 minutes<br>BID for 5 weeks                                                                                                                                                     | 850m walk test<br>(baseline/post): training<br>group (9.36/8.02, p<br><0.05) vs. control group<br>(9.17/8.97). Stair test up:<br>TG (6.92/5.25s) vs.<br>control (5.53/4.54).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | "[T]he intensive<br>physical training<br>program resulted in a<br>considerable<br>improvement in<br>physical performance<br>capacity, cardio-<br>respiratory fitness and<br>leg muscle strengths in<br>the (training group),<br>indicating that lack of<br>physical activity could<br>be a major reason for<br>the low physical fitness<br>in the RA patient." | Practicality of a 6-<br>week hospital<br>stay limits the<br>utility of the<br>results. Group<br>sizes unequal and<br>possible 2:1<br>randomization<br>process, but not<br>described. Data<br>suggest training<br>program<br>successful.                                                                                                                          |
| Harkcom<br>1985<br>RCT  | 4.0 | N = 20<br>women<br>RA,<br>functional<br>class II             | Bicycle<br>ergometer 3<br>times a week for<br>12 weeks, 3<br>different<br>exercise time<br>progressions.                                                                                                                                                                                                                                                                                   | Aerobic capacity Group<br>A (lowest) vs. B vs. C<br>(baseline/post): A (14.6 $\pm$<br>4.9/21.5 $\pm$ 6.5) vs. B<br>(20.3 $\pm$ 15.8/22.9 $\pm$ 17.9)<br>vs. C (21.9<br>$\pm$ 9.0/29.1 $\pm$ 17.4). Joint<br>count: A (38.0 $\pm$ 21.7/24.0<br>$\pm$ 10.9) vs. B (26.0 $\pm$ 15.1/<br>10.3 $\pm$ 7.0) vs. C (32.5 $\pm$<br>19.4/23.0 $\pm$ 10.7).                                                                                                                                                                                                                                                                                                                                                                        | "Exercise duration up<br>to 35 minutes of<br>exercise 3 times/ week<br>is sufficient to improve<br>aerobic capacity in<br>rheumatoid arthritis<br>patients with severe<br>limitations."                                                                                                                                                                        | Pseudorandom-<br>ization (patient<br>chose a time<br>block to show up<br>for assignment).<br>Suggests<br>increased<br>benefits with<br>increased<br>exercise time.                                                                                                                                                                                               |
| Häkkinen<br>2001<br>RCT | 4.0 | N = 70<br>RA                                                 | Strength training<br>(50-70%<br>repetition max)<br>vs. ROM<br>exercise 45<br>minute<br>sessions, twice<br>a week for 24<br>months.<br>Strength group<br>encouraged to<br>do recreational<br>physical activity<br>(walk, cycle,<br>swim, ski) 2-3<br>times a week<br>30-45 minutes<br>vs. ROM "free to<br>continue their<br>recreational<br>physical<br>activities" except<br>strengthening | ESRs (baseline/6<br>months/12 months/24<br>months): strengthening<br>(24.4 $\pm$ 17.8/<br>9.7 $\pm$ 9.5/9.5 $\pm$ 7.5/10.9 $\pm$ 9.8)<br>vs. controls<br>(24.8 $\pm$ 15.7/16.7<br>$\pm$ 12.7/17.3 $\pm$ 16.1/15.4 $\pm$ 11.<br>5). VAS: strengthening<br>(41.7 $\pm$<br>19.5/20.0 $\pm$ 16.4/21.1 $\pm$ 20.6<br>/ 13.7 $\pm$ 16.2) vs. controls<br>(41.3<br>$\pm$ 27.1/28.6 $\pm$ 23.1/24.2 $\pm$<br>22.7/24.9 $\pm$ 22.8) (p <0.05<br>Months 18-24).<br>Compliance average 1.5<br>times a week first 12<br>months; 1.4 times a week<br>Months 13-24 both<br>groups. Muscle strength<br>increased with strength<br>training except trunk<br>flexion, p = 0.002-0.025.<br>Joint damage not<br>significant. Walking speed | "Regular dynamic<br>strength training<br>combined with<br>endurance-type<br>physical activities<br>improves muscle<br>strength and physical<br>function, but not (bone<br>mineral density), in<br>patients with early RA,<br>without detrimental<br>effects on disease<br>activity."                                                                           | Data suggest<br>superiority of<br>strength training<br>likely combined<br>with aerobic<br>exercise to range<br>of motion<br>exercises. As<br>aerobic activities<br>handled<br>differently in the<br>two groups,<br>impacts of either<br>strengthening or<br>aerobic exercise<br>alone are unclear.<br>Strength training<br>reduced ESR and<br>pain ratings more. |

| I |  |                         |  |
|---|--|-------------------------|--|
|   |  | increased 16±17% in     |  |
|   |  | strength training, p    |  |
|   |  | <0.001, vs. 9±12%       |  |
|   |  | controls, $p = 0.025$ . |  |

#### AQUATIC THERAPY (HYDROTHERAPY)

Aquatic therapy involves the performance of aerobic and/or flexibility and/or strengthening exercises in a pool to minimize the effects of gravity, particularly where reduced weight-bearing status is believed to be desirable. (263, 267-269)

1. Recommendation: Aquatic Therapy for Hip Osteoarthrosis

A trial of aquatic therapy is recommended for patients with hip osteoarthrosis who meet the referral criteria for supervised exercise therapy and have co-morbidities (e.g., extreme obesity, significant degenerative joint disease, etc.) that preclude effective participation in a weight-bearing physical activity and who will either transition to a land-based program or a self-administered water-based program.

*Frequency/Duration* – Begin with 3 to 4 visits a week, with demonstrated evidence of functional improvement within the first 2 weeks to justify additional visits. The program should include up to 4 weeks of aquatic therapy with progression towards a land-based, self-directed physical activity or self-directed aquatic therapy program by 6 weeks. For some patients with hip osteoarthrosis, aquatic exercise may be the preferred method. In these few cases, the program should become self managed and if any membership to a pool is covered, coverage should be continued if it can be documented that the patient is using the facility at least 3 times per week and following the prescribed exercise program.

*Indications for Discontinuation* – Non-tolerance, failure to progress, or reaching a 4 to 6 week timeframe.

#### Strength of Evidence - Recommended, Insufficient Evidence (I)

#### Rationale for Recommendations

Aerobic exercise is beneficial for treatment of hip osteoarthrosis compared to no program; (267) however, evidence of superiority to land-based programs is lacking.(263, 268, 269) Instead, the quality literature appears to document comparable efficacy between land- and water-based exercise programs.(263, 268, 269) Aquatic programs are performed in lukewarm rather than higher temperature. As noted previously, other forms of exercise have been shown to be effective in the treatment of hip OA, but for a few select patients who are unable to tolerate those land-based therapies, aquatic therapy is moderate cost, not invasive, and has little potential for adverse effects.

#### Evidence for the Use of Aquatic Therapy

There is 1 high-quality and 3 moderate-quality RCTs incorporated in this analysis.

| Author/Yea<br>r<br>Study<br>Type | Score<br>(0-11) | Sampl<br>e Size                | Comparison<br>Group                                                                                                              | Results                                                                                                                                                                                                                                                                | Conclusion                                                                                                                                                                                                                      | Comments                                                                                                                                                                                         |
|----------------------------------|-----------------|--------------------------------|----------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Hinman<br>2007<br>RCT            | 8.0             | N = 71<br>Hip or<br>knee<br>OA | Aquatic physical<br>therapy (45-60<br>minute<br>sessions, twice<br>weekly) vs. no<br>aquatic physical<br>therapy for 6<br>weeks. | WOMAC pain scores<br>(baseline/6 weeks): aquatic<br>( $202\pm79/143\pm79$ ) vs. controls<br>( $199\pm85/198\pm108$ ), p <0.001.<br>VAS pain with movement (p =<br>0.003), WOMAC stiffness (p<br>= 0.007), WOMAC function (p<br><0.001) all favored aquatic<br>therapy. | "[A] 6-week program<br>of aquatic physical<br>therapy results in<br>small improvements<br>in pain, stiffness, hip<br>strength, and quality<br>of life in people with<br>hip OA or knee OA<br>compared with no<br>intervention." | Data suggest<br>aquatic therapy<br>program superior<br>to no aquatic<br>therapy program,<br>although study<br>design is biased<br>towards<br>intervention as<br>controls had no<br>intervention. |
| Foley<br>2003                    | 6.5             | N =<br>105                     | Water exercise<br>(walking,<br>strengthening)                                                                                    | WOMAC function (baseline/<br>follow-up): hydro (34.0/ 33.0)<br>vs. gym (28.0/27.0) vs.                                                                                                                                                                                 | "[B]oth the gym and<br>hydrotherapy<br>interventions                                                                                                                                                                            | Some baseline<br>differences with<br>less distance                                                                                                                                               |

| RCT         |     | Hip<br>and/or<br>knee<br>OA                          | vs. gym (cycling,<br>strengthening)<br>vs. no-exercise.<br>Exercise<br>sessions 3 a<br>week for 6<br>weeks. Control<br>group had<br>nightly phone<br>calls to record<br>changes in<br>condition, drug<br>use, or injuries. | control (37.0/37.0). No<br>differences in pain and most<br>other measures. Walking<br>speed and distance improved<br>significantly from baseline in<br>both exercise groups, p<br><0.001. Increases in some<br>strength measures in both<br>exercise groups. Stated<br>decline in WOMAC from<br>baseline in hydrotherapy, but<br>data do not support a change<br>(both 10.0).                                                                                                                                                                    | produce positive<br>functional outcomes<br>for patients with<br>OA."                                                                                                                                                                                                                                                                          | walked in<br>hydrotherapy<br>(257m) vs. gym<br>(336m) vs. control<br>(388m). WOMAC<br>function also<br>different. Graphic<br>data support<br>increases in<br>distance walked<br>and walking speed.                                                                                                                                                  |
|-------------|-----|------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sylvester   | 4.5 | N = 14                                               | Hydrotherapy                                                                                                                                                                                                               | VAS pain (median pre/post                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | "Functional ability                                                                                                                                                                                                                                                                                                                           | Small sample size.                                                                                                                                                                                                                                                                                                                                  |
| 1990<br>RCT |     | Hip OA                                               | (2-1/2 hour<br>sessions a<br>week for 6<br>weeks) vs.<br>diathermy and<br>supervised<br>exercises (same<br>exercises as in<br>pool).                                                                                       | treatment): hydrotherapy<br>78/41 vs. 83/51. Oswestry<br>questionnaires: hydrotherapy<br>49/27 vs. 67/58.                                                                                                                                                                                                                                                                                                                                                                                                                                        | had improved in the<br>group treated by<br>hydrotherapy<br>(p<0.05, who also<br>reported a higher<br>score on the life<br>satisfaction scaleIt<br>would be of interest<br>to expand this study<br>to include a greater<br>number of subjects<br>in order to attempt to<br>validate the use of<br>hydrotherapy in this<br>patient population." | Pilot study. Both<br>groups improved<br>markedly on VAS<br>but hydrotherapy<br>improved more.                                                                                                                                                                                                                                                       |
| Minor       | 4.0 | N =                                                  | Aerobic walking                                                                                                                                                                                                            | Aerobic capacity (baseline/12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | "Our findings                                                                                                                                                                                                                                                                                                                                 | Data suggest                                                                                                                                                                                                                                                                                                                                        |
| 1989<br>RCT |     | 120<br>OA<br>(hip,<br>knee<br>or<br>tarsal)<br>or RA | vs. aerobic pool<br>vs. range-of-<br>motion exercise<br>classes, 1 hour<br>sessions, 3<br>sessions a<br>week for 12<br>weeks. Both<br>aerobic groups<br>targeted 60-<br>80% of HR<br>Maximum for 30<br>minutes.            | weeks): walk<br>(18.9 $\pm$ 4.8/22.4 $\pm$ 4.8<br>mL/kg/min) vs. pool<br>(19.3 $\pm$ 6.7/23.2 $\pm$ 7.2) vs. ROM<br>(17.4 $\pm$ 5.9/17.3 $\pm$ 3.6) (p =<br>0.009 comparing walk plus<br>pool vs. ROM). AIMS pain<br>scores (baseline/12 weeks):<br>walk (5.1 $\pm$ 1.9/3.9 $\pm$ 1.9) vs.<br>pool (5.0 $\pm$ 1.6/4.4 $\pm$ 1.7) vs.<br>ROM (5.5 $\pm$ 1.6/4.8 $\pm$ 1.9) (p =<br>0.22). Active joints (n):<br>aerobic OA -2.0 $\pm$ 5.2 vs. ROM<br>(-1.8 $\pm$ 5.9). Active RA joints<br>aerobic (-6.8 $\pm$ 11.8) vs. ROM<br>(3.3 $\pm$ 10.9). | document the<br>feasibility and<br>efficacy of<br>conditioning<br>exercise for people<br>who have<br>rheumatoid arthritis<br>or osteoarthritis."                                                                                                                                                                                              | efficacy of walking<br>or pool exercise for<br>arthritis patients.<br>Targeted 60-80%<br>HR maximum in<br>walking and pool<br>groups.<br>Improvements<br>greater in OA vs.<br>RA for exercise<br>endurance, but<br>better for total<br>active RA joints.<br>Both appear to<br>benefit. Suggests<br>aerobic exercise<br>reduces active RA<br>joints. |

#### YOGA

Yoga has been used to treat patients with low back pain (270-272) (see Low Back Disorders chapter).

Recommendation: Yoga for Chronic Persistent Hip Pain

There is no recommendation for or against the use of yoga for treatment of chronic persistent hip pain.

Strength of Evidence – No Recommendation, Insufficient Evidence (I)

#### Rationale for Recommendation

There are no quality studies of yoga for treatment of patients with chronic persistent hip pain. Yoga may be appropriate for highly motivated patients; however, compliance is an issue.

### **GENERAL PRINCIPLES OF TREATMENT/FOLLOW-UP VISITS**

Copyright© 2016 Reed Group, Ltd.

Patients need individualized treatment and follow-up that incorporates the severity of the condition, comorbidities, occupational demands, psychosocial factors, patient motivation, and need for encouragement. The speed and ability to return to work is one of the critical factors that requires either more or fewer follow-up appointments with more appointments generally required for those whose limitations have not been accommodated. The worker should be transitioned to work or from modified work to full work, at the earliest date possible, and should be supported during that transition, and told of the likelihood of increased symptoms in conjunction with being reassured that pain does not equate to injury.

#### **ACTIVITY MODIFICATION**

Recommendation: Activity Modification for Acute, Subacute, or Chronic Hip or Groin Pain Activities that do not substantially aggravate symptoms are recommended for most patients with acute, subacute, or chronic hip or groin pain.

#### Strength of Evidence – Recommended, Insufficient Evidence (I)

#### Rationale for Recommendation

There are no quality studies evaluating modification of activity for hip or groin pain. Common postarthroplasty limitations have included no lifting over a weight limit, no running, and no jumping. Lifting limits may commonly be 50 pounds, but are frequently based on prior weight lifting capabilities and anticipated future abilities. However, there are no quality studies proving that these limitations are required and many patients resume and exceed pre-operative physical activity levels. While modification of activity is not invasive, it may result in increased disability through disuse, or increased cardiovascular mortality through lack of exercise. It also may result in high cost through lost productivity. Thus implementation of activity modifications should be carefully balanced against increased longer term morbidity and other costs. In cases where the activity does not aggravate the symptoms or disease, activity modifications are not recommended, rather activity is recommended.

#### Evidence for the Use of Activity Modification

There are no quality studies evaluating the use of activity modification for hip and groin pain.

#### **BED REST**

 Recommendation: Bed Rest for Patients with Acute, Subacute, or Chronic Hip Pain Bed rest is not recommended for patients with acute, subacute, or chronic hip pain.
Strength of Evidence – Not Recommended, Insufficient Evidence (I)

2. Recommendation: Bed Rest for Unstable Fractures Bed rest is recommended for patients with clear contraindication to weight-bearing status such as an unstable fracture.

Strength of Evidence – Recommended, Insufficient Evidence (I)

#### Rationale for Recommendations

Bed rest is unlikely to be beneficial and generally should be avoided for all patients other than those with clear contraindication to weight-bearing status due to an unstable fracture.

#### Evidence for the Use of Bed Rest

There are no quality studies evaluating the use of bed rest for hip and groin pain.

### **MEDICATIONS**

#### ANTI-DEPRESSANTS

Anti-depressants have been used to treat chronic pain including low back pain (see Chronic Pain and Low Back Disorders chapters). There are two main classes of anti-depressant medication used to manage pain. The first class, tricyclic anti-depressants (TCAs), primarily work through inhibiting the re-uptake of norepinephrine and include the antidepressants amitriptyline, doxepin, imipramine,

desipramine, nortriptyline, protriptyline, maprotiline, and clomipramine. The second class, the selective serotonin reuptake inhibitors (SSRIs), includes fluoxetine, sertraline, paroxetine, fluvoxamine, citalopram, escitalopram, and duloxetine.

1. Recommendation: Norepinephrine Reuptake Inhibiting Anti-depressants for Hip Osteoarthrosis or Subacute or Chronic Hip Pain

There is no recommendation for or against the use of norepinephrine reuptake inhibiting antidepressants for treatment of hip osteoarthrosis or subacute or chronic hip pain (see Chronic Pain chapter for more details).

Strength of Evidence – No Recommendation, Insufficient Evidence (I)

2. Recommendation: Norepinephrine Reuptake Inhibiting Anti-depressants for Acute Hip Pain Norepinephrine reuptake inhibiting anti-depressants are not recommended for treatment of acute hip pain.

Strength of Evidence – Not Recommended, Insufficient Evidence (I)

3. Recommendation: Selective Serotonin Reuptake Inhibitors for Acute, Subacute, or Chronic Hip Pain Selective serotonin reuptake inhibitors (SSRIs) are not recommended for treatment of acute, subacute, or chronic hip pain.

Strength of Evidence – Not Recommended, Insufficient Evidence (I)

#### Rationale for Recommendations

Norepinephrine reuptake inhibiting anti-depressants (e.g., amitriptyline, doxepin, imipramine, desipramine, nortriptyline, protriptyline, maprotiline, and clomipramine) and mixed norepinephrine and serotonin inhibitors (e.g., venlafaxine, bupropion, and duloxetine) have evidence of efficacy for treatment of chronic low back pain and other chronic pain conditions (see Low Back Disorders chapter). There is strong evidence of lack of efficacy for treatment of chronic low back pain with SSRIs, thus they appear unlikely to successfully treat hip pain. However, there is no quality evidence evaluating these medications for treatment of hip osteoarthrosis or other hip pain. There also are no clear analogous disorders for which evidence-based guidance may be reliably derived.

# Evidence for the Use of Norepinephrine Reuptake Inhibiting Anti-depressants and Mixed Norepinephrine and Serotonin Inhibitors

There are no quality studies evaluating the use of norepinephrine reuptake inhibiting anti-depressants and mixed norepinephrine and serotonin inhibitors for treatment of hip osteoarthrosis or other hip pain.

#### ANTI-CONVULSANT AGENTS (including Gabapentin and Pregabalin)

Since the 1960s, anti-convulsant agents have been used off-label to treat certain chronic pain syndromes, (273) particularly neuropathic pain. (274) Anti-convulsants are thought to have analgesic properties. Several have been used to manage chronic pain conditions including carbamazepine, valproic acid, gabapentin, phenytoin, clonazepam, lamotrigine, tiagabine, pregabalin, topiramate, levetiracetam, oxcarbazepine, and zonisamide (see Chronic Pain chapter for more details).

1. Recommendation: Topiramate for Hip Osteoarthrosis or Subacute or Chronic Hip Pain There is no recommendation for or against the use of topiramate to treat hip osteoarthrosis or other subacute or chronic hip pain.

Strength of Evidence - No Recommendation, Insufficient Evidence (I)

- Recommendation: Topiramate for Acute Hip Pain Topiramate is not recommended to treat acute hip pain.
  Strength of Evidence – Not Recommended, Insufficient Evidence (I)
- 3. Recommendation: Gabapentin for Hip Osteoarthrosis or Subacute or Chronic Hip Pain

There is no recommendation for or against the use of gabapentin to treat hip osteoarthrosis or subacute or chronic hip pain (see Chronic Pain chapter for more details).

Strength of Evidence - No Recommendation, Insufficient Evidence (I)

- Recommendation: Gabapentin for Acute Hip Pain Gabapentin is not recommended to treat acute hip pain.
  Strength of Evidence – Not Recommended, Insufficient Evidence (I)
- Recommendation: Gabapentin for Peri-operative Management of Hip Pain Gabapentin is strongly recommended for peri-operative management of hip pain to reduce need for opioids, particularly in patients with adverse effects from opioids.

Indications – Peri-operative pain management.

Frequency/Dose – Limit to immediate peri-operative period, usually a few days.

Indications for Discontinuation - Resolution, intolerance.

Strength of Evidence - Strongly Recommended, Evidence (A)

#### Rationale for Recommendations

There are no quality studies to support the use of anti-convulsant agents for hip pain patients. Quality evidence suggests topiramate is weakly effective for treatment of low back pain patients and gabapentin is unhelpful. However, there is quality evidence that gabapentin reduces need for opioids when administered as part of perioperative pain management.(275-278)

Evidence for the Use of Anti-convulsant Agents

There are no quality studies evaluating the use of topiramate or gabapentin for hip osteoarthrosis or other hip pain. There are 4 high-quality RCTs incorporated in the analysis for peri-operative pain(275-278) (see Chronic Pain chapter for a description of these studies).

#### **BISPHOSPHONATES**

Bisphosphonates are a class of pharmaceutical agents that reduce osteoclastic activity in the bones resulting in net gain of bone mass. These medications appear efficacious in treatment of complex regional pain syndrome patients (see Chronic Pain chapter). However, they are more commonly utilized for treatment of osteoporosis, as well as primary and secondary prevention of fractures. Adverse effects include gastritis, reflux esophagitis (can be severe and erosive causing stricture and achalasia), and osteonecrosis of the jaw (uncommon).(279)

#### Recommendation: Bisphosphonates for Hip Fracture Patients

# Bisphosphonates are strongly recommended for select patients with osteopenia-related hip fractures.

*Indications* –Patients with hip fractures thought to be due to osteoporosis or osteopenia to prevent additional fractures. Patients should have cause of the osteopenia established and osteomalacia ruled out. Adequate Vitamin D and calcium must be present to initiate restoration therapy.

Frequency/Duration – Taken in oral or parenteral formulations as per manufacturer recommendations.

Indications for Discontinuation – Resolution of bone mass decrements, adverse effects, intolerance.

#### Strength of Evidence – Strongly Recommended, Evidence (A)

#### Rationale for Recommendation

There are numerous quality studies of bisphosphonates for primary and secondary prevention of fractures with a uniform conclusion that they prevent hip fractures.(280-304) By definition, patients with hip fractures had insufficient bone mass resulting in failure. Some occupational patients might not require these medications if they suffered a high-energy impact. However, the vast majority of patients with hip fracture are candidates for treatment if for no reason other than tertiary prevention. There is quality

evidence that hip fracture patients develop more bone mass, thus bisphosphonates are strongly recommended.

#### CALCITONIN

Calcitonin increases calcium uptake from the gastrointestinal tract while also decreasing bone resorption. The salmon calcitonin formulation that is nasally inhaled has been most used more recently due to ease of administration and longer half-life than human calcitonin. Adverse effects are relatively rare and include nausea, vomiting, decreased appetite, abdominal pain, injection site reactions, nasal symptoms, rhinitis, sinusitis, anaphylaxis, bronchospasm, hypersensitivity reactions, osteogenic sarcoma, and hypocalcemic tetany.

#### Recommendation: Calcitonin for Hip Fracture Patients

Calcitonin is recommended as a treatment option for patients with hip fracture, particularly those who are either intolerant to or have other contraindications for bisphosphonates.

*Indications* – Hip fracture patients who are intolerant to or have contraindications for bisphosphonate use.

*Frequency/Duration* – Parenteral administration may be preferred as potential less benefit with intranasal administration; duration of use indefinite depending on status of bone mass.

Indications for Discontinuation – Recovery of normal bone mass, intolerance, adverse effects.

#### Strength of Evidence - Recommended, Insufficient Evidence (I)

#### Rationale for Recommendations

There is one high-quality study suggesting modest benefits from calcitonin in hip fracture patients.(305) Thus, there is weak evidence of efficacy in contrast with literature on bisphosphonates, which have much better evidence for efficacy. Calcitonin is minimally invasive, has relatively few adverse effects, and is moderately costly. Calcitonin is recommended for patients who have adverse effects or contraindications for a bisphosphonate.

#### Evidence for the Use of Calcitonin

There is 1 high-quality RCT incorporated in this analysis.

| Author/Year   | Score  | Sample   | Comparison     | Results                                  | Conclusion               | Comments           |
|---------------|--------|----------|----------------|------------------------------------------|--------------------------|--------------------|
| Study Type    | (0-11) | Size     | Group          |                                          |                          |                    |
| Huusko        | 8.5    | N = 260  | Intranasal     | At 3-month follow up, median intensity   | "[I]ntranasal calcitonin | Data trend towards |
| Calcif Tissue |        |          | salmon         | of pain on VAS scale 0mm in              | might be useful for hip  | suggesting weak    |
| Int           |        | Acute    | calcitonin 200 | calcitonin group vs. 4mm in placebo (p   | fracture patients but    | efficacy.          |
| 2002          |        | hip      | IU daily vs.   | = 0.15). Median change in IADL score     | the clinical             |                    |
|               |        | fracture | placebo        | from baseline to 3 months: -1            | significance of this     |                    |
| RCT           |        |          | nasal spray    | calcitonin vs2 placebo (p = 0.74).       | finding needs to be      |                    |
|               |        |          | for 3 months.  | "The mean change in calcaneal bone       | confirmed by studies     |                    |
|               |        |          |                | mineral density from baseline to 3       | with more participants,  |                    |
|               |        |          |                | months was not statistically significant | a longer treatment       |                    |
|               |        |          |                | between the groups -0.004 (95% CI -      | period, a longer follow- |                    |
|               |        |          |                | 0.008 to -0.001) in the calcitonin group | up, and perhaps a        |                    |
|               |        |          |                | and -0.007 (95% CI -0.012 to             | higher dose of           |                    |
|               |        |          |                | -0.003) in the placebo group (P =        | calcitonin."             |                    |
|               |        |          |                | 0.28)."                                  |                          |                    |

# NON-STEROIDAL ANTI-INFLAMMATORY DRUGS (NSAIDs) AND ACETAMINOPHEN (Including Cytoprotection)

Nonsteroidal anti-inflammatory drugs (NSAIDs) are widely used for treatment of osteoarthrosis and are considered efficacious, although most studies did not last longer than 6 weeks (see

NSAIDs/acetaminophen evidence table).(306-308) Most quality studies included both knee and hip OA patients; however, meaningful differences in outcomes between these two patient populations were not apparent in the studies that included stratified analyses.

NSAIDs inhibit prostaglandin synthesis thus impairing inflammation. However, the mechanism of action for treatment of hip pain is somewhat unclear. There are several classes of NSAIDS: 1) salicylates – aspirin, diflunisal, salicyl salicylate (salsalate); 2) arylalkanoic acids – diclofenac, etodolac, ketorolac, nabumetone, sulindac, tolmetin; 3) 2-arylpropionic acids – ibuprofen, fenoprofen, ketoprofen, naproxen; 4) n-arylanthranilic acids – mefenamic acid; 5) oxicams – piroxicam, meloxicam; 6) COX-2 inhibitors – celecoxib, rofecoxib, etoricoxib; and 7) sulphonanilides – nimesulide. Acetaminophen is considered an analgesic, not an anti-inflammatory agent, and blocks the activation of COX by another enzyme, peroxidase. Tissues with high levels of peroxidase (i.e., platelets and immune cells) are "resistant" to acetaminophen, but tissues with low levels of peroxidase (i.e., nerve and endothelial cells that participate in pain and fever) are "sensitive" to acetaminophen.(309) There have been recent suggestions that NSAIDs may reduce cartilage synthesis;(310) however, there also are many studies documenting reductions in inflammatory mediators,(311-314) thus raising the possibility that NSAIDs actually delay cartilage destruction.

There are four commonly used cytoprotective classes of drugs – misoprostol, sucralfate, histamine Type 2 receptor blockers (famotidine, ranitidine, cimetidine, etc.), and proton pump inhibitors – esomeprazole, lansoprazole, omeprazole, pantoprazole, rabeprazole. There is not generally believed to be substantial differences in efficacy for prevention of gastrointestinal bleeding,(315) although evidence suggests the histamine-2 blockers are less effective for protecting the gastric mucosa and evidence also suggests sucralfate is weaker than proton pump inhibitors (see NSAIDs/acetaminophen evidence table). There are combination products of NSAIDs/misoprostol that have documented reductions in risk of endoscopic lesions (see NSAIDs/acetaminophen evidence table).

There are two isoenzymes of cyclooxygenase, COX-1 and Cox-2. NSAIDs are (non) selective to different degrees. COX-2 selective agents were designed to reduce inflammation while not increasing risks for gastrointestinal bleeding. It appears that certain COX-2 selective agents may increase the risk of cardiovascular events.

1. Recommendation: NSAIDs for Treatment of Acute Flares or Acute, Subacute, Chronic, or Postoperative Hip Pain

NSAIDs are strongly recommended for treatment of chronic hip pain especially if due to osteoarthrosis. NSAIDs are recommended for acute flares and acute, subacute, or post-operative hip pain.

Indications – Acute, subacute, chronic, or post-operative hip pain.

*Frequency/Dose/Duration* – Per manufacturer's recommendations. Over-the-counter (OTC) agents may suffice and be tried first. COX-2 selective NSAIDs should be used with caution, or avoided altogether in the acute post-operative period in situations where bone healing is required, such as in fracture repair or in hip replacements where cementless acetabular and/or femoral components are utilized.(316) Essentially all NSAIDs have proven efficacious for this indication (see NSAIDs/acetaminophen evidence table). As-needed-use may be reasonable; however, nearly all trials used scheduled doses. There is evidence that nocturnal dosing is superior for hip OA if the patient primarily has morning or nocturnal pain,(317) although the study was of indomethacin and may only apply to shorter half-life agents (reproducibility of these findings and generalizability to other NSAIDs such as celecoxib with a longer half-life has not been shown).(318)

*Indications for Discontinuation* – Resolution of hip pain, lack of efficacy, or development of adverse effects that necessitate discontinuation. Taking anti-coagulation regimens as concomitant use with non-selective COX inhibitors may increase the risk of hemorrhaging.

Strength of Evidence – Strongly Recommended, Evidence (A) – Chronic hip pain especially from OA

Recommended, Evidence (C) – Acute flares Recommended, Insufficient Evidence (I) – Acute, subacute, or postoperative hip pain

#### 2. Recommendation: NSAIDs for Patients at Risk for GI Adverse Effects

## Concomitant prescriptions of cytoprotective medications are recommended for patients at substantially increased risk for gastrointestinal bleeding.

*Indications* – Patients with a high-risk factor profile who also have indications for NSAIDs, cytoprotective medications, particularly if longer term treatment is contemplated. At-risk patients include those with a history of prior gastrointestinal bleeding, the elderly, diabetics, and cigarette smokers. Physicians are cautioned that H2 blockers might not protect from gastric ulcers.(319-321)

*Frequency/Dose/Duration* – Dose and frequency for proton pump inhibitors, sucralfate, and H2 blockers are as recommended by manufacturer. Duration is the extent of the NSAID therapy; use is at times permanent for those with recurrent bleeds or other complications.

*Indications for Discontinuation* – Intolerance, development of adverse effects, or discontinuation of NSAID.

Strength of Evidence – Strongly Recommended, Evidence (A) – Proton pump inhibitors,

misoprostol Moderately Recommended, Evidence (B) – Sucralfate Recommended, Evidence (C) – H2 blockers

#### Recommendation: NSAIDs for Patients at Risk for Cardiovascular Adverse Effects NSAIDs are recommended for patients with known cardiovascular disease or multiple risk factors for cardiovascular disease if the risks and benefits of NSAID therapy for pain are discussed.

*Dose/Frequency* – If needed, NSAIDs that are non-selective are preferred over COX-2 specific drugs. In patients receiving low-dose aspirin for primary or secondary cardiovascular disease prevention, to minimize the potential for the NSAID to counteract the beneficial effects of aspirin, the NSAID should be taken at least 30 minutes after or 8 hours before the daily aspirin.(322)

Strength of Evidence - Recommended, Insufficient Evidence (I)

 Recommendation: NSAIDs for Prevention of Heterotopic Bone Formation after Arthroplasty NSAIDs are moderately recommended for the prevention of heterotopic bone formation after arthroplasty.

*Indications* – Post-operative arthroplasty patients, particularly those with prior heterotopic bone formation. Due to their inhibitory effects on platelet function, non-selective COX inhibitors should be used with caution or avoided altogether in the post-operative period if patients are also receiving pharmacoprophylaxis (e.g., warfarin, low molecular weight heparins) to prevent venous thromboembolic disease. Concomitant use of non-selective COX inhibitors and anti-coagulation regimens may increase the risk of hemorrhage. There is also concern that COX inhibitors, particularly COX-2 inhibitors, may inhibit bone healing. Therefore, these agents should be used with caution, or avoided altogether, in the acute post-operative period in situations where bone healing is required, such as in fracture repair or in hip replacements where cementless acetabular and/or femoral components are utilized.(316)

*Dose/Frequency* – Dose and frequency per manufacturer's recommendations. Quality trials have utilized regimens of ibuprofen 400mg TID, diclofenac 75mg QD or BID, and indomethacin 25mg or 50mg TID (see NSAIDs/acetaminophen evidence table). As there are no quality head-to-head comparative trials, duration of treatment is unclear. Available studies utilized different treatment durations ranging from 4 days to 6 weeks. One trial compared 4 day with 8 day treatment and found the longer treatment duration superior.(323) Another trial evaluating 1 week versus 3 weeks treatment found no statistically significant different in outcome with duration; however, the trial appears underpowered and there was a trend towards benefit from the longer treatment

duration.(324) Post-operative patients have reportedly been particularly susceptible to gastrointestinal bleeding and consideration of prophylaxis has been recommended.(325)

*Indications for Discontinuation* – Completion of course of treatment, adverse effects, or intolerance (NSAIDs may cause an increased risk of gastrointestinal bleeding).

Strength of Evidence – Moderately Recommended, Evidence (B)

5. Recommendation: Acetaminophen for Treatment of Acute, Subacute, Post-operative, or Chronic Hip Pain

Acetaminophen (or the analog, paracetamol) is recommended for treatment of acute, subacute, chronic or post-operative hip pain particularly in patients who have contraindications for NSAIDs.

Indications - All hip pain, including acute, subacute, chronic and post-operative.

*Dose/Frequency* – Per manufacturer's recommendations; may be utilized on an as-needed basis. It has been suggested that 1gm doses are more effective than 650mg doses particularly in post-operative patients; (326, 327) however, this level is now above the maximum dose recommended by an FDA advisory committee of 650mg and evidence of hepatic toxicity has been reported at 4gms a day particularly among those consuming excessive alcohol. There also is no quality evidence for superiority of 1gm dosing for treatment of osteoarthrosis.(326)

Indications for Discontinuation – Resolution of pain, adverse effects, or intolerance.

Strength of Evidence – Recommended, Insufficient Evidence (I) – Acute, subacute, or postoperative

hip pain Strength of Evidence – Recommended, Evidence (C) – Chronic hip pain(328, 329)

6. Recommendation: Acetaminophen for Treatment of Hip Pain in Patients with Cardiovascular Disease Risk Factors

Acetaminophen or aspirin are strongly recommended as the first-line therapy for patients with cardiovascular disease risk factors.

Strength of Evidence – Strongly Recommended, Evidence (A)

Figure 2. Changes in Scores on A, the Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC), B, the Visual Analog Pain Scale of the Multidimensional Health Assessment Questionnaire (MDHAQ), and C, the Short Form 36 Health Survey Pain Scale



Lower scores on the WOMAC and MDHAQ pain scales indicate clinical improvement. Note greater declines in WOMAC and MDHAQ pain scores when patients took diclofenac 1 misoprostol than when they took acetaminophen.

Pincus T, Koch GG, Sokka T, Lefkowith J, Wolfe F, Jordan JM, Luta G, Callahan LF, Wang X, Schwartz T, Abramson SB, Caldwell JR, Harrell RA, Kremer JM, Lautzenheiser RL, Markenson JA, Schnitzer TJ, Weaver A, Cummins P, Wilson A, Morant S, Fort J. A randomized, doubleblind, crossover clinical trial of diclofenac plus misoprostol versus acetaminophen in patients with osteoarthritis of the hip or knee. *Arth Rheum.* 2001;44(7):1587-98. Reprinted with permission from John Wiley and Sons.

Rationale for Recommendations

There is abundant guality evidence that NSAIDs improve pain and produce higher functional status among chronic hip pain patients, particularly those with osteoarthrosis or rheumatoid arthritis. (329-343) There are a few studies of osteoarthrosis flares that also consistently document benefits. (340, 344, 345) There are no quality studies of acute, subacute or post-operative hip pain, however, by analogy to other MSDs including LBP (see Low Back Disorders chapter): successful treatment of hip pain may be reasonably anticipated. Results are positive whether considering COX-1 (non-selective) or COX-2 (selective) NSAIDs (see Figures 3 and 4), although the magnitude of benefit is not generally large for any given medication. While there are many quality trials comparing various NSAIDs, there is no consistent quality evidence of superiority of one over another or of one class over another nor is there consistent quality evidence for superiority of enteric-coated or sustained release preparations. Most studies have not found cyclooxygenase-2 selective medications to be superior to other NSAIDs for pain control: (306, 307, 346) however, there is quality evidence they reduce risk of gastrointestinal adverse effects (see Figure 6). (306, 307, 346) There is one quality study suggesting that evening dosing of indomethacin resulted in better pain control, but the study has not been replicated. (317) There is no similar result with the longer half-life agent celecoxib.(318) There is guality evidence that NSAIDs are less impairing than opioids, yet with comparable efficacy (see Chronic Pain and Low Back Disorders chapters). For most patients, generic ibuprofen, naproxen, or other older generation NSAIDs are recommended as first-line medications. Second-line medications should include one of the other generic medications.

Due to their inhibitory effects on platelet function, non-selective COX inhibitors should be used with caution, or avoided altogether, in the post-operative period if patients are also receiving pharmacoprophylaxis (e.g., warfarin, low molecular weight heparins) to prevent venous thromboembolic disease. Concomitant use of non-selective COX inhibitors and anti-coagulation regimens may increase the risk of hemorrhage. There is also concern that COX inhibitors, particularly COX-2 inhibitors, may inhibit bone healing. Therefore, these agents should be used with caution or avoided altogether in those acute post-operative period where bone healing is required, such as in fracture repair or hip replacements where cementless acetabular and/or femoral components are utilized.(316) There is evidence that NSAIDs are as effective for pain relief as opioids including tramadol,(347, 348) and dextropropoxyphene,(349) although slightly less efficacious than codeine.(350, 351)



Figure 3. Mean Change Plots of the Primary Efficacy End Points in the 6-week Ibuprofen Study

S indicates screening visit; R, randomization visit/baseline assessment

Saag K, van der Heijde D, Fisher C, Samara A, DeTora L, Bolognese J, Sperling R, Daniels B for the Osteoarthritis Studies Group. Rofecoxib, a new cyclooxygenase 2 inhibitor, shows sustained efficacy, comparable with other nonsteroidal anti-inflammatory drugs. A 6-week and a 1-year trial in patients with osteoarthritis. *Arch Fam Med.* 2000;9:1124-34. Reprinted with permission from the American Medical Association.



#### Figure 4. Treatment Effects over Time for the 3 Primary Clinical Efficacy End Points

S indicates screening visit; R, randomization visit; and WOMAC, Western Ontario and McMaster Universities Osteoarthritis Index. Error bars indicate 84% confidence intervals. All active treatments were superior to placebo (P<.001).

Day R, Morrison B, Luza A, Castaneda O, Strusberg A, Nahir M, Helgetveit KB, Kress B, Daniels B, Bolognese J, Krupa D, Seidenberg B, Ehrich E for the Rofecoxib/lbuprofen Comparator Study Group. A randomized trial of the efficacy and tolerability of the COX-2 inhibitor rofecoxib vs ibuprofen in patients with osteoarthritis. *Arch Intern Med.* 2000;160:1781-7. Reprinted with permission from the American Medical Association.





**Top.** The incidence among the overall study sample.

Bottom. The incidence among patients who used low-dose aspirin.

For both parts, Kaplan–Meier curves display the time course of cumulative incidence of discontinuations due to gastrointestinal adverse events by treatment group.

Lisse JR, Periman M, Johansson G, Shoemaker JR, Schechtman J, Skalky CS, Dixon ME, Polis AB, Mollen AJ, Geba GP for the ADVANTAGE Study Group. Gastrointestinal tolerability and effectiveness of rofecoxib versus naproxen in the treatment of osteoarthritis. A randomized, controlled trial. *Ann Intern Med.* 2003;139:539-46. Reprinted with permission from the American College of Physicians.

#### Figure 6. Daily Evaluation of Pain Control



+CAT; five point categorical scale (0-4)

Golden HE, Moskowitz RW, Minic M. Analgesic efficacy and safety of nonprescription doses of naproxen sodium compared with acetaminophen in the treatment of osteoarthritis of the knee. *Am J Therapeutics*. 2004;11:85-94. Reproduced with permission from Wolters Kluwer Health.





\*p<0.05, Student's t test

Reproduced from *Ann Rheum Dis*, Boureau F, Schneid H, Zeghari N, Wall R, Bourgeois P, The IPSO study: ibuprofen, paracetamol study in osteoarthritis. A randomized comparative clinical study comparing the efficacy and safety of ibuprofen and paracetamol analgesic treatment of osteoarthritis of the knee or hip, Vol. 63, pp. 1028-34, 2004 with permission from BMJ Publishing Group Ltd.

#### Figure 8. Evolution of the Pain Intensity over 14 days of Treatment Assessed by a VAS



\*p<0.05; \*\*p<0.005, Student's *t* test

Reproduced from *Ann Rheum Dis*, Boureau F, Schneid H, Zeghari N, Wall R, Bourgeois P, The IPSO study: ibuprofen, paracetamol study in osteoarthritis. A randomized comparative clinical study comparing the efficacy and safety of ibuprofen and paracetamol analgesic treatment of osteoarthritis of the knee or hip, Vol. 63, pp. 1028-34, 2004 with permission from BMJ Publishing Group Ltd.

A systematic review and meta-analysis of observational studies of NSAIDs found that the risk for serious cardiovascular events was elevated in combined analyses for some NSAIDs, but not for others.(352) Many of the studies supporting these estimates were based on large pharmaceutical databases that were adequately powered to detect effects, but had limited ability to control for potential confounding. There is one reported study of NSAIDs and myocardial infarctions that controlled for two major confounders – aspirin and body mass index.(353) Summary estimates from that study for non-selective NSAIDs suggested that they are protective against cardiovascular events. Study weaknesses included a

50% participation rate and reliance on recall. However, the American Heart Association has cautioned against the use of NSAIDs, especially COX-2.(322) Thus, current evidence is unclear if there is increased risk, no risk, or reduced risk of cardiovascular events from the use of any NSAIDs other than rofecoxib which appears to have a modestly elevated relative risk.(352) It is recommended that the risks of NSAIDs use, including cardiovascular risk factors, be discussed with patients.

Risks of gastrointestinal events are also recommended for assessment, particularly including prior history of gastrointestinal bleeding and source, length of treatment, age, smoking, diabetes mellitus and other medical factors. Those with greater risk should be considered for treatment with acetaminophen, NSAID plus misoprostol, proton pump inhibitors (see below), or a COX-2 selective agent (see NSAIDs/acetaminophen evidence table).(306, 307, 342, 346, 354, 355)

Gastrointestinal adverse events are generally considered the most significant of the risks of NSAIDs. A large volume of high- and moderate-guality evidence consistently shows proton pump inhibitors are effective for prevention and or treatment of gastric and duodenal ulcers and erosions. (356-365) There is only one quality head-to-head trial, and it found no difference in efficacy between pantoprazole and omeprazole. (358) Misoprostol has also been consistently shown to be effective compared with placebo.(366-375) Relatively fewer studies have shown sucralfate to be effective compared with placebo:(376) H2 blockers appear more effective for treatment of duodenal than gastric mucosa.(319-321) There are relatively few quality trials comparing efficacy of the different classes of agents. Pantoprazole but not lansoprazole has been found modestly superior to misoprostol.(315, 377) No difference was found between famotidine and lansoprazole. (378) Misoprostol has been reported superior to ranitidine, (379, 380) cimetidine, (381) and sucralfate. (371, 382) In short, while the evidence is not definitive, available quality evidence suggests proton pump inhibitors and misoprostol appear superior to H-2 blockers and sucralfate. While COX-2 selective agents have generally been recommended as either third- or fourth-line medications for routine use in osteoarthrosis patients, when there is a risk of gastrointestinal complications, they are often preferred. For patients at high risk of gastrointestinal bleeding, there is evidence that a combination of proton pump inhibitor plus COX-2 selective agent is efficacious.(383)

There is consistent quality evidence that NSAIDs prevent heterotopic bone formation in post-arthroplasty patients (See NSAIDs/acetaminophen evidence table),(323-325, 384, 385) although there is no quality evidence that prophylactic treatment with NSAIDs results in improved functional outcomes.(325) Still, these medications are successful at preventing heterotopic bone formation and these NSAIDs are moderately recommended for this purpose. Consideration should be given for concomitant use of gastro-protective medication for those patients treated with NSAIDs.

NSAIDs are not invasive, have low side effect profiles in a healthy working age patient population, and when generic medications are used are low cost. The potential for NSAIDs to increase the risk of cardiovascular events needs to be carefully considered in patients and will likely require additional quality studies to fully address.

Acetaminophen (or the analog, paracetamol) may be a reasonable alternative for treatment of acute, subacute, post-operative or chronic hip pain, (328, 329) although quality evidence is available that documents acetaminophen is consistently less efficacious in comparison with NSAIDs(336, 386-391) and at least two quality trials with placebo comparisons have been negative including one with a large sample size of 779 patients(336, 392) (see Figure 3). A recent FDA advisory committee recommended reduction of the maximum dose to 650mg, which is less than the 1gm dose used in most quality trials, thus the degree of successful treatment of osteoarthrosis with lower doses of acetaminophen is currently somewhat unclear.

All trials that compared acetaminophen with NSAIDs found either that the NSAID significantly reduced pain more than acetaminophen or the differences, while not statistically significant, favored the NSAID.(336, 386-391, 393) One trial found superior onset of symptom relief at 2 hours into treatment with ibuprofen compared to paracetamol with relief continuing for the full 2-week duration of the trial (see

Figures 7 and 8). These findings are consistent with quality evidence for treatment of low back pain (see Low Back Disorders chapter). Thus, there is quality evidence that NSAIDs are more efficacious than acetaminophen for pain relief of musculoskeletal conditions including osteoarthrosis. Sub-analyses have suggested NSAIDs are particularly more efficacious for those with more severe osteoarthrosis (see NSAIDs/acetaminophen evidence table). However, evidence also indicates higher rates of gastrointestinal adverse effects among NSAID users and generally lower overall adverse effects profiles for acetaminophen, providing rational for utilization of acetaminophen to treat some patients and some recommend acetaminophen as the initial treatment.

#### Evidence for the Use of NSAIDs and Acetaminophen

There are 26 high (one with two reports)(106, 325, 330, 331, 337, 338, 354, 356, 358-361, 368, 386, 387, 390, 394-404) and 125 moderate-quality (one with two reports)(315, 317-321, 323, 324, 328, 329, 332-336, 339-345, 347-351, 355, 357, 362-367, 369-382, 384, 385, 388, 389, 391, 392, 405-474) RCTs and randomized crossover trials incorporated in this analysis. There are 25 low-quality RCTs(475-499) and crossover trials in Appendix 2.

Note: Highlighted footnotes need to be strung together and numbered in order when superscripted. The older version of Endnote only let me add 50 citations in one group.

| Author/Year<br>Study Type                                           | Score<br>(0-11) | Sample<br>Size                       | Comparison<br>Group                                                                                                                              | Results                                                                                                                                                                                                                                                                                                   | Conclusion                                                                                                                                                                                                                                                                      | Comments                                                                                                                                                                                                                                       |  |
|---------------------------------------------------------------------|-----------------|--------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| NSAIDs vs. Placebo                                                  |                 |                                      |                                                                                                                                                  |                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                |  |
| Kruger<br>2007<br>RCT                                               | 9.5             | N = 167<br>Knee or<br>hip OA         | Oxaceprol<br>400mg TID<br>vs. placebo<br>for 3 weeks                                                                                             | Pain following exercise<br>(baseline/3 weeks):<br>Oxaceprol $61.8\pm14.9$ /<br>$45.2\pm22.2$ vs. placebo<br>$63.0\pm13.9/58.5\pm21.6$ (p<br>= 0.002). Adverse<br>effects in 50/77 (64.9%)<br>oxaceprol vs. 65/76<br>(85.5%) placebo.                                                                      | "A statistically<br>significant and<br>clinically relevant<br>efficacy of oxaceprol<br>was shown. The good<br>safety and tolerability<br>of oxaceprol was<br>confirmed."                                                                                                        | Forty-six (46) of 159<br>subjects excluded<br>after randomization<br>due to<br>inclusion/exclusion<br>or protocol<br>violations, which<br>were not included in<br>modified intent to<br>treat.                                                 |  |
| Pope<br>2004<br>N of 1 trials                                       | 8.5             | N = 51<br>Hip,<br>knee or<br>hand OA | Multiple<br>crossover<br>trials of<br>diclofenac<br>50mg plus<br>misoprostol<br>200µg vs.<br>placebo for 2<br>week<br>durations for 6<br>months. | In one group, 11<br>patients preferred<br>diclofenac, none<br>preferred placebo, and<br>11 had no preference.<br>NSAID appeared to be<br>effective in 81% of<br>patients.                                                                                                                                 | "N of 1 trials were<br>time-consuming in<br>these patients and are<br>more expensive, but<br>with slightly better<br>outcomes. In addition,<br>NSAID seem to be<br>effective in a majority<br>of subjects with OA<br>who have been<br>uncertain of their<br>benefit."           | Subjects at<br>enrollment were<br>"uncertain the<br>nonsteroidal anti-<br>inflammatory drugs<br>were helpful."<br>Results suggest<br>NSAIDs are<br>efficacious for<br>majority of patients<br>who were uncertain<br>if they were<br>effective. |  |
| Mejjad<br>2000<br>Randomized<br>Crossover<br>Experimenta<br>I Trial | 7.5             | N = 16<br>Unilatera<br>I hip OA      | Etodolac<br>300mg vs.<br>placebo one<br>dose.<br>Assessed<br>effects on<br>gait.                                                                 | Walking speed<br>increased significantly<br>between t0 and t180<br>under etodolac but not<br>placebo (p <0.0004).<br>Cadence expressed in<br>cycles/min, did not<br>differ. VAS scores<br>decreased between t0<br>and t180 for etodolac<br>and placebo groups (p<br><0.0009 and p <0.03,<br>respectively) | "[W]alking speed<br>increased under<br>etodolac, but not<br>placeboconclude that<br>gait improvement was<br>closely associated with<br>the administration of a<br>single, oral 300mg<br>dose of etodolac.<br>Three hours after<br>taking a single tablet,<br>gait was improved. | Small sample size.<br>Suggests drug had<br>positive effect on<br>gait in 3-hour<br>experiment.                                                                                                                                                 |  |

Note: Trials are aggregated within these categories to provide some structure. However, while many of these could be multiply listed in the different categories, they are listed only once to conserve space.

| Berry<br>1992<br>RCT                    | 5.5 | N = 184<br>Hip or<br>knee OA            | Lornoxicam<br>6mg QD vs.<br>4mg BID vs.<br>6mg BID vs.<br>placebo for 4<br>weeks                                                          | Mean pain relief scores<br>superior with lornoxicam<br>8mg daily (p <0.002)<br>and lornoxicam 12mg<br>daily (p <0.0001) vs.<br>placebo. (Graphic data).<br>Scores for lornoxicam<br>12mg daily greater than<br>lornoxicam 6mg daily (p<br><0.02). No differences<br>in adverse GI<br>symptoms, however<br>trend towards higher<br>adverse events at<br>higher doses (placebo<br>9% vs. 7, 12, 17%<br>lornoxicam doses). | "Lornoxicam at doses<br>of 8 mg and 12 mg<br>daily was significantly<br>more effective than<br>placebo in the relief of<br>joint pain associated<br>with osteoarthritis of<br>the hip and knee."                                                                                                                                                                                                          | High dropout rate<br>and possibility of<br>effects from co-<br>interventions. Data<br>suggest ornoxicam<br>effective. |
|-----------------------------------------|-----|-----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|
| Caroit<br>1976<br>Crossover<br>Trial    | 5.5 | N = 9<br>Hip OA                         | Ketoprofen<br>50mg TID vs.<br>placebo; 2<br>week<br>treatment<br>each                                                                     | Aggregate data not<br>presented on pain<br>ratings, etc. In 8<br>patients, ketoprofen<br>preferred; in 1 case no<br>preference.                                                                                                                                                                                                                                                                                         | "Nine cases were<br>sufficient to produce a<br>significant statistical<br>results in favour of<br>ketoprofen."                                                                                                                                                                                                                                                                                            | Very small sample.<br>Limited data<br>presented. Overall<br>preferences suggest<br>ketoprofen superior<br>to placebo. |
| Petrick<br>1983<br>2 RCTs               | 5.5 | N = 180<br>Hip OA<br>N = 237<br>Knee OA | treatment.<br>Meclo-<br>fenamate<br>sodium<br>100mg TID<br>vs. placebo<br>for 4 weeks.<br>Meclo-<br>fenamate<br>dose could be<br>reduced. | Night pain (baseline/4<br>weeks): meclofenamate<br>(1.24/-39%) vs. placebo<br>(1.49/-25%), p <0.03.<br>Similar results with pain<br>on walking, starting<br>motion, pain on passive<br>motion (p <0.01).<br>Meclofenamate sodium<br>caused more GI<br>symptoms.                                                                                                                                                         | "[T]he antirheumatic<br>efficacy and favorable<br>tolerance picture of<br>meclofenamate<br>sodium demonstrated<br>that the drug is also<br>clearly effective in the<br>management of acute<br>and chronic<br>osteoarthritis of the hip<br>and knee."                                                                                                                                                      | Blinding,<br>randomization,<br>unclear. Suggests<br>meclofenamate<br>superior to placebo.                             |
| Gillgrass<br>1984<br>Crossover<br>Trial | 4.5 | N = 18<br>Hip or<br>knee OA             | Nabumetone<br>1gm BID vs.<br>placebo for 2<br>weeks each.                                                                                 | Reduced pain ( $p < 0.02$ ).<br>Intermalleolar straddle,<br>intercondylar distance,<br>knee flexion and<br>extension showed little<br>variation. Clinical<br>assessment of<br>response with 11/17<br>better on nabumetone,<br>3 were same on both,<br>and 3 were better on<br>placebo ( $p = 0.037$ ).                                                                                                                  | "A 2-week, double-blind<br>controlled crossover<br>study in patients with<br>osteoarthrosis has<br>shown a statistically<br>significant drug-related<br>beneficial effect with<br>respect to patient<br>preference (P<0.001)<br>and clinical response<br>(P=0.037). Most clinical<br>parameters assessed<br>improved and no<br>significant side-effects<br>or drug-related adverse<br>events were noted." | Small sample size,<br>sparse study details.<br>Few data.                                                              |
| Famaey<br>1976                          | 4.0 | N = 20<br>Hip QA                        | Ketoprofen<br>50mg TID vs.                                                                                                                | Three of 20 (15%) did<br>not complete. Patients                                                                                                                                                                                                                                                                                                                                                                         | "[K]etoprofen was<br>significantly better than                                                                                                                                                                                                                                                                                                                                                            | Small sample size.<br>Lack of details and                                                                             |
| Possible<br>Crossover<br>Trial          |     |                                         | weeks.                                                                                                                                    | ketoprofen (p <0.05).                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                           | appears to be a crossover trial.                                                                                      |
|                                         |     |                                         | Acetamino                                                                                                                                 | ohen or Paracetamol vs. F                                                                                                                                                                                                                                                                                                                                                                                               | Placebo                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                       |
| Amadio<br>1983<br>Crossover<br>Trial    | 7.0 | N = 25<br>Knee OA                       | Acetaminophe<br>n 1gm QID vs.<br>placebo for 6<br>weeks                                                                                   | Pain at rest better on<br>acetaminophen (32 vs. 2<br>on placebo vs. 10 no<br>difference, $p = 0.0001$ ).<br>Pain on motion better on<br>acetaminophen (29 vs.<br>4, $p = 0.011$ ).                                                                                                                                                                                                                                      | "Acetaminophen in a<br>dose of 4000 mg/day<br>is an effective<br>alternative to<br>salicylates in the<br>treatment of<br>osteoarthritic pain of                                                                                                                                                                                                                                                           | Suggests efficacy of acetaminophen.                                                                                   |

| Miceli-<br>Richard<br>2004<br>RCT                                                                              | 6.5 | N = 779<br>Knee OA                                  | Paracetamol<br>1gm QID vs.<br>placebo for 6<br>weeks                                                           | Tenderness better on<br>acetaminophen (p =<br>0.0022). Swelling and<br>heat not different (p =<br>0.5). Time to walk 50<br>feet 17.6s; after placebo<br>17.4± 1.2 vs. after<br>acetaminophen<br>14.9±0.8, p = 0.05.<br>Changes in VAS scores<br>at 1 week: paracetamol<br>16±21 vs. placebo<br>15±21, p = 0.40; 6<br>weeks: paracetamol<br>23±27 vs. 23±26, p =<br>0.66. WOMAC scores<br>did not differ. Patient<br>global assessments at 1 | the knees, with few<br>adverse effects."<br>"A statistically<br>significant<br>symptomatic effect of<br>oral paracetamol 4<br>g/day over placebo<br>was not found,<br>suggesting that<br>paracetamol use in<br>symptomatic OA of the                                                                | Large sample size.<br>Suggests<br>paracetamol is not<br>clearly effective for<br>knee OA.                                                                                                                     |
|----------------------------------------------------------------------------------------------------------------|-----|-----------------------------------------------------|----------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                |     |                                                     |                                                                                                                | week: paracetamol $14\pm$<br>21 vs. 12 $\pm$ 22, p = 0.063;<br>6 weeks: 22 $\pm$ 26 vs.<br>20 $\pm$ 27, p = 0.23.                                                                                                                                                                                                                                                                                                                           | knee should be further explored."                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                               |
|                                                                                                                |     |                                                     | NSAIDs vs.                                                                                                     | Acetaminophen or Parac                                                                                                                                                                                                                                                                                                                                                                                                                      | etamol                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                               |
| Golden<br>2004<br>2 RCTs                                                                                       | 8.5 | N = 465<br>Knee OA                                  | Naproxen<br>sodium<br>220mg TID<br>(BID if over 65<br>years) ys                                                | Nearly all measures<br>improved for naproxen<br>(rest pain, pain on<br>passive motion, pain on<br>weight bearing stiffness                                                                                                                                                                                                                                                                                                                  | "Nonprescription doses<br>of naproxen sodium<br>(440/660 mg) effectively<br>relieve pain and other<br>symptoms of                                                                                                                                                                                   | Two very short term<br>studies of 7 days<br>each reported in<br>pooled analyses.<br>Submaximal                                                                                                                |
|                                                                                                                |     |                                                     | acetaminophe<br>n 1gm QID vs.<br>placebo QID                                                                   | day pain, night pain), but<br>only day pain relief<br>improved for<br>acetaminophen<br>compared with placebo.<br>Adverse effects in 17.4%<br>of placebo vs. 20.9%<br>acetaminophen vs.<br>24.2% naproxen.                                                                                                                                                                                                                                   | osteoarthritis. Naproxen<br>sodium is an alternative<br>initial treatment of<br>osteoarthritis and may<br>be preferred to<br>acetaminophen as first-<br>line therapy in patients<br>with moderate or severe<br>pain."                                                                               | naproxen dose vs.<br>full acetaminophen<br>dose.<br>Acetaminophen<br>appears inferior to<br>naproxen, and not<br>clearly superior to<br>placebo.                                                              |
| RCT                                                                                                            | 8.0 | N = 581<br>Mild to<br>moderate<br>hip or<br>knee OA | Acetaminophe<br>n 1g Q4-6<br>hours vs.<br>naproxen<br>375mg BID<br>for up to 12<br>months.<br>Single<br>dummy. | Few data on efficacy.<br>WOMAC scores at 6<br>months improved in<br>both groups; not<br>significantly different.<br>Adverse effects in<br>38.3% acetaminophen<br>vs. 43.4% naproxen<br>(NS). More constipation<br>with naproxen (9.9% vs.<br>3.1%, p <0.002) and<br>more peripheral edema<br>(3.9% vs. 1.0%, p<br><0.033).                                                                                                                  | With physician<br>supervision,<br>acetaminophen was<br>found to be generally<br>well tolerated in these<br>patients for the<br>treatment of<br>osteoarthritis pain of<br>the hip or knee for<br>periods up to 12<br>months."                                                                        | Maximal dose<br>acetaminophen vs.<br>submaximal dose<br>naproxen likely<br>biases in favor of<br>acetaminophen. No<br>significant<br>differences in<br>primary outcomes.<br>Both groups had<br>high dropouts. |
| Pincus<br>Curr<br>Rheumatol<br>Rep<br>2001<br>Pincus Arth<br>Rheum<br>2001<br>Randomized<br>Crossover<br>Trial | 7.5 | N = 227<br>Hip or<br>knee OA                        | Diclotenac<br>150mg plus<br>misoprostol<br>400µg vs.<br>4,000 mg<br>acetaminophe<br>n for 6 weeks              | WOMAC scores for<br>most-involved joint<br>(baseline/6 weeks):<br>diclofenac + misoprostol<br>( $42.5\pm2.1/30.3\pm2.0$ ) vs.<br>acetaminophen ( $37.4\pm$<br>$2.5/35.3\pm1.9$ ) (p =<br>0.011). Acetaminophen<br>first, results (baseline/6<br>weeks): $44.8\pm2.1/38.2$<br>$\pm1.7$ ) vs. diclofenac+<br>misoprostol ( $40.5\pm2.6/$<br>$27.6\pm2.1$ ) (p <0.01).                                                                         | "Patients with<br>osteoarthritis of the hip<br>or knee had<br>significantly greater<br>improvements in pain<br>scores over 6 weeks<br>with diclofenac +<br>misoprostol than with<br>acetaminophen,<br>although patients with<br>mild osteoarthritis had<br>similar improvements<br>with both drugs. | No placebo arm.<br>Data demonstrate<br>diclofenac superior<br>for pain relief and<br>measures of function<br>to acetaminophen,<br>particularly for<br>moderate to severe<br>disease.                          |
|                        |     |                              |                                                                                                                 | Multidimensional Health<br>Assessment<br>Questionnaire VAS and<br>SF-36 also favored<br>diclofenac. Results<br>comparing treatments<br>by OA severity index<br>[WOMAC total score<br>estimate (p-values) for<br>quartiles lowest to<br>highest): 0.78 (0.86), -<br>1.45 (0.70), -6.72<br>(0.63), -14.70 (p<br><0.001). Non-serious<br>adverse GI events more<br>common for diclofenac<br>+ misoprostol (p =<br>0.006). Diclofenac +<br>misoprostol reported<br>"better" or "much better"<br>by 57%.                                                                                               | Acetaminophen was<br>associated with fewer<br>adverse effects."                                                                                                                                         |                                                                                                                                                                                                                 |
|------------------------|-----|------------------------------|-----------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Boureau<br>2004<br>RCT | 7.5 | N = 222<br>Knee or<br>hip OA | Ibuprofen<br>400mg TID<br>vs.<br>paracetamol<br>1,000mg TID<br>for 14 days.<br>Double<br>dummy.                 | Pain intensity over hours<br>or days reduced to<br>greater extent with<br>ibuprofen ( $p < 0.05$ ).<br>Stiffness scores<br>(baseline/final):<br>ibuprofen 56.2±17.5/<br>32.5±18.7 vs.<br>paracetamol 56.2±17.5/<br>43.7±20.0 ( $p = 0.002$ ).<br>Pain scores: ibuprofen<br>50.0±13.5/27.0±17.0 vs.<br>50.0±13.5/27.0±17.0 vs.<br>50.0±12.5/35.5±18.0 ( $p$<br><0.001). Physical<br>function scores: -19.8<br>vs12.8 ( $p = 0.002$ ).<br>Global efficacy higher for<br>ibuprofen (67.5%) than<br>paracetamol (37.8%), $p$<br>= 0.001. Adverse effects<br>did not differ (23.4% vs.<br>22.5%) (NS). | "[S]hows that a<br>significant and a more<br>marked reduction in<br>pain was experienced<br>by patients with OA of<br>the hip or knee with<br>ibuprofen 400 mg than<br>with the paracetamol<br>1000mg." | Study used sub-<br>maximal doses and<br>demonstrated<br>Ibuprofen 400 mg<br>TID was more<br>effective than<br>paracetamol for OA<br>of hip and knee at<br>every time interval<br>from hours to days 1<br>to 14. |
| Case<br>2003<br>RCT    | 6.5 | N = 82<br>Medial<br>knee OA  | Diclofenac<br>75mg BID vs<br>acetaminophe<br>n 1000mg<br>QID vs.<br>placebo for 12<br>weeks.<br>Double<br>dummy | WOMAC pain scores<br>(baseline/Week 2/Week<br>12): diclofenac (199.8 $\pm$<br>101.5/139.6 $\pm$ 105.2/146.<br>0 $\pm$ 101.2) vs.<br>acetaminophen<br>(310.8 $\pm$ 86.3/206.1 $\pm$<br>101.2/186.9 $\pm$ 121.5) vs.<br>placebo (198.6 $\pm$ 110.9/<br>197.1 $\pm$ 118.8/183.4 $\pm$ 122.<br>9). Only diclofenac<br>significant (p <0.002),<br>while acetaminophen p<br>= 0.13 for Week 0-12<br>differences and other<br>pain changes negative.<br>Acetaminophen never<br>superior to placebo.                                                                                                      | "Diclofenac is effective<br>in the symptomatic<br>treatment of OA of the<br>knee, but<br>acetaminophen is not."                                                                                         | Moderate sample<br>size, lack of study<br>details somewhat<br>weaken results.<br>Placebo arm<br>strengthens<br>conclusions that<br>acetaminophen may<br>be weakly effective<br>or ineffective.                  |
| Blandino<br>2001       | 4.5 | N = 227                      | Diclofenac                                                                                                      | WOMAC improved 12.2 points for diclofenac vs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | "The NSAID diclofenac                                                                                                                                                                                   | Few study details.                                                                                                                                                                                              |
| Crossover              |     | Hip or<br>knee OA            | misoprostol                                                                                                     | 6.6 for acetaminophen.<br>Second 6-week period                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | effective than acetaminophen in                                                                                                                                                                         | diclofenac more<br>effective than                                                                                                                                                                               |
| 2.000000               | 1   |                              |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                         |                                                                                                                                                                                                                 |

Copyright© 2016 Reed Group, Ltd.

| Trial                                 |     |                                                                                  | acetaminophe<br>n                                                                                                         | improvement 12.9 vs.<br>2.1 points. MDHAQ<br>scale improved more<br>with diclofenac plus<br>misoprostol 20.8 points<br>vs. 13.1 acetaminophen<br>period 1, and 24.6 points<br>vs. 0.4 acetaminophen<br>in period 2.                                                                                                                                                                                                                                                                                                                   | patients with moderate<br>to severe arthritis."                                                                                                                                                                                                                                                                                                                                                                                                                        | acetaminophen for<br>pain and functional<br>improvement.                                                                                                                                                                                                                                           |
|---------------------------------------|-----|----------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Desuliau                              | 7.5 | NI 400                                                                           | Trans a dal OD                                                                                                            | NSAIDs vs. Opioids                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | "OD transadal a anaa                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Deseline                                                                                                                                                                                                                                                                                           |
| RCT                                   | 7.5 | N = 129<br>Hip<br>and/or<br>knee OA                                              | 200mg vs.<br>diclofenac SR<br>75mg. Doses<br>titrated (up to<br>400mg a day<br>vs. up to<br>150mg).                       | Significant improvement<br>both groups for physical<br>functioning: CR tramadol<br>mean change of<br>$257.0\pm354.4$ , p = 0.0005,<br>SR diclofenac mean<br>change 247.4 $\pm$ 379.5, p =<br>0.0001, and stiffness: CR<br>tramadol mean change<br>of $34.3\pm61.4$ p = 0.0005,<br>SR diclofenac mean<br>change $36.8\pm57.4$ , p =<br>0.0001. Adverse events<br>or withdrawals related to<br>study drug similar for<br>both treatments<br>(tramadol 16.1%/27.4%<br>vs. diclofenac<br>15.2%/21.2%) (NS).                               | "CR tramadol, a once-<br>daily formulation<br>marketed as Zytram<br>XL, is as effective as<br>SR diclofenac in the<br>treatment of pain due<br>to knee or hip OA."                                                                                                                                                                                                                                                                                                     | Baseline<br>comparability not<br>presented. Study<br>results suggest<br>equal efficacy.                                                                                                                                                                                                            |
| Pavelka<br>1998<br>Crossover<br>trial | 7.0 | N = 60<br>Hip or<br>knee OA<br>without<br>clinical<br>joint<br>inflamma<br>-tion | Tramadol 50-<br>100mg up to<br>TID vs.<br>diclofenac 25-<br>50mg up to<br>TID for 4<br>weeks. Doses<br>titrated.          | Mean tramadol dose<br>164.8 $\pm$ 54.1mg, mean<br>diclofenac dose<br>86.9 $\pm$ 21.4mg. Three in<br>each group terminated<br>(reasons not noted).<br>Adverse events greater<br>during tramadol<br>treatment (20.0% vs.<br>3.3%, p = 0.0056). No<br>patient preference<br>(46.7% tramadol vs.<br>45.0% diclofenac, p =<br>0.85). Functionality<br>scores improved in<br>tramadol group:<br>39.6 $\pm$ 16.0 to 32.0 $\pm$ 17.4<br>vs. diclofenac 40.0 $\pm$<br>17.2 to 30.1 $\pm$ 17.0; no<br>significant difference<br>between groups. | "OA patients' response<br>to analgesic treatment<br>was highly individual<br>and the response to<br>one drug was not<br>predictive of that to<br>another drug. As<br>functional scored<br>improved (lower<br>WOMAC scores) on<br>analgesic vs. NSAID,<br>pain rather than<br>inflammation may be<br>the most important<br>aspect of treatment. A<br>significant proportion<br>of patients were not<br>treated satisfactorily<br>with diclofenac or<br>tramadol alone." | The results suggest<br>and support other<br>studies (Bradley<br>1991) that OA pain<br>is not necessarily<br>caused by<br>inflammation, as<br>both paracetamol<br>and in this study<br>tramadol had similar<br>analgesic efficacy<br>with improvement in<br>functional scores to<br>that of NSAIDs. |
| Parr<br>1989<br>RCT                   | 6.5 | N = 846<br>Mostly<br>hip or<br>knee OA                                           | Diclofenac<br>sodium slow<br>release<br>100mg QD vs.<br>dextro-<br>propoxyphene<br>180mg plus<br>paracetamol<br>1.95gm QD | Dizziness,<br>lightheadedness less<br>common from<br>diclofenac (14 vs. 30, p<br><0.05), as was CNS<br>symptoms (48 vs. 93, p<br><0.01). Abdominal pain<br>higher with diclofenac<br>(40 vs. 18, p <0.01) and<br>diarrhea (14 vs. 2, p<br><0.01). Overall<br>gastrointestinal effects<br>not different (63 vs. 60).<br>Pain ratings were                                                                                                                                                                                              | "Pain as measured by<br>a visual analogue<br>scale (VAS) showed<br>8% greater pain<br>reduction with DSR as<br>compared with D&P<br>(P<0.05). Physical<br>mobility as measured<br>by the (Nottingham<br>Health Profile)<br>improved by 13% more<br>with DSR as compared<br>with D&P (P<0.05)."                                                                                                                                                                         | Study suggests<br>greater efficacy of<br>diclofenac vs.<br>dextropropoxyphene<br>plus acetaminophen.<br>Benefits suggested<br>for working<br>populations from<br>diclofenac including<br>lower incidence of<br>problems at work<br>and lost work time.                                             |

| Quiding<br>1992<br>Crossover<br>Trial | 6.0  | N = 26<br>Hip OA  | Ibuprofen<br>200mg plus<br>codeine 30mg<br>vs. ibuprofen<br>200mg plus<br>placebo. Used | (change in VAS):<br>diclofenac -27.0 vs.<br>dextropropoxyphene<br>plus paracetamol -22.7,<br>p < 0.05. Physical<br>mobility scores were -<br>10.8 vs7.4 ( $p < 0.01$ ).<br>Interference of work<br>less common with<br>diclofenac (3 vs. 11, $p$<br><0.05), and lost work<br>time (3 vs. 16, $p < 0.05$ ).<br>Pain intensity ratings<br>after 1 <sup>st</sup> dose<br>(baseline/1-8 hours<br>later): IBU plus codeine<br>(34/25) vs. IBU (37/27)<br>vs. placebo (31/26). | "[A]nalgesic efficacy<br>was better<br>differentiated after<br>repeated-doses than<br>after single-dose<br>administrationstudy                                                                                                                                                                                                                                                                                                                                                                                             | Study purpose is for<br>analgesic effects<br>prior to surgery.<br>Very short-term<br>treatment intervals<br>of 3 days preclude |
|---------------------------------------|------|-------------------|-----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|
|                                       |      |                   | single and<br>repeated<br>dosings; 6<br>doses in 24-<br>hour period<br>each regimen.    | Pain intensity ratings<br>after 6th dose: IBU plus<br>codeine (11/10) vs. IBU<br>(19/17) vs. placebo<br>(33/29) (p <0.05<br>comparisons with<br>placebo or ibuprofen).                                                                                                                                                                                                                                                                                                   | design was able to<br>differentiate between<br>200mg ibuprofen plus<br>30 mg codeine and<br>200 mg ibuprofen<br>alone in a relatively<br>small number of<br>patients."                                                                                                                                                                                                                                                                                                                                                     | assessments of<br>long-term safety and<br>efficacy.                                                                            |
| Kjaersgaard-<br>Andersen              | 6.0  | N = 158           | Codeine plus<br>paracetamol                                                             | First week, more use of rescue medication in                                                                                                                                                                                                                                                                                                                                                                                                                             | "When evaluated after<br>7 days of treatment, the                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Study prematurely<br>terminated due to                                                                                         |
| Andersen<br>1990<br>RCT               |      | Hip OA            | paracetamol<br>(60mg/1g<br>TID) vs.<br>paracetamol<br>(1g TID)                          | rescue medication in<br>paracetamol (21% vs.<br>5%). Difference<br>disappeared 2nd week<br>(20% vs. 21%).<br>Significantly more<br>adverse reactions with<br>codeine (1st week:<br>nausea 34 vs. 6;<br>dizziness 26 vs. 1;<br>somnolence 14 vs. 5;<br>fatigue 10 vs. 1). Most<br>codeine patients had an<br>adverse reaction in first<br>week (86.7% vs. 37.8%<br>placebo). Six (13.9%)<br>vs. 4 (6.7%) patients<br>reported very good or<br>excellent results.          | 7 days of treatment, the<br>daily addition of<br>codeine 180 mg to<br>paracetamol 3 g<br>significantly reduced<br>the intensity of chronic<br>pain due to<br>osteoarthritis of the hip<br>joint. However, several<br>adverse drug reactions,<br>mainly of the<br>gastrointestinal tract,<br>and the larger number<br>of patients withdrawing<br>from treatment means<br>that the addition of<br>such doses of codeine<br>cannot be<br>recommended for<br>longer-term treatment<br>of chronic pain in<br>elderly patients." | terminated due to<br>high rates of<br>adverse reactions<br>and dropouts.<br>Overall drop-out rate<br>was 51.8% vs.<br>23.0%.   |
| Zacher                                | 11.0 | N = 516           | Etoricoxib                                                                              | WOMAC pain subscale                                                                                                                                                                                                                                                                                                                                                                                                                                                      | "Etoricoxib is clinically                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Equivalency                                                                                                                    |
| RCT                                   |      | Knee or<br>hip OA | 60mg QD vs.<br>diclofenac<br>50mg TID for<br>6 weeks.                                   | cnanges over 6 weeks:<br>etoricoxib -31.3 (95% CI<br>-33.6, -29.0) vs.<br>diclofenac -30.9 (-33.2,<br>-28.6) (NS). Other<br>WOMAC scales NS.<br>Percent patients good<br>or excellent 65.6% vs.<br>66.5% (NS). Etoricoxib<br>demonstrated greater<br>benefit (good/excellent<br>responses) first 4 hours<br>after 1st dose (p =                                                                                                                                          | errective in the therapy<br>of osteoarthritis<br>providing an effect<br>similar to the maximum<br>dose of diclofenac."                                                                                                                                                                                                                                                                                                                                                                                                     | demonstrated with<br>no significant<br>difference in adverse<br>effects.                                                       |

|                                   |      |                              |                                                                                                                                                                                                       | 0.007). GI adverse<br>effects in E 12.9% vs. D<br>14.2%.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                    |                                                                                                                                        |
|-----------------------------------|------|------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|
| Puopolo<br>2007<br>RCT            | 10.0 | N = 548<br>Hip or<br>knee OA | Etoricoxib<br>30mg QD vs.<br>Ibuprofen<br>800mg TID<br>vs. placebo<br>for 12 weeks.<br>Double<br>dummy.                                                                                               | WOMAC pain scores<br>(baseline/12 weeks):<br>etoricoxib 66.46/-28.14<br>vs. ibuprofen 64.74/-<br>24.10 vs. placebo<br>64.66/-16.47. Both<br>active treatments<br>superior to placebo for<br>multiple endpoints.<br>Etoricoxib superior to<br>ibuprofen at some time<br>intervals after<br>randomization. Post-hoc<br>analysis for minimally<br>clinically important<br>improvement among<br>80.0% etoricoxib vs.<br>70.1% ibuprofen vs.<br>55.1% placebo.                                                                                                                                                                                                                                                                                | "Treatment with<br>etoricoxib 30 mg q.d.<br>for the treatment of OA<br>is well tolerated and<br>provides therapeutic<br>effectiveness that is<br>superior to placebo<br>and comparable to<br>ibuprofen 2400 mg<br>(800 mg t.i.d)." | High dropout rate in<br>this 2-week study for<br>adverse effects.<br>Results suggest<br>comparable efficacy.                           |
| Saag<br>2000<br>RCT (2<br>trials) | 9.5  | N = 736<br>Knee or<br>hip OA | Two trials: 1)<br>Rofecoxib<br>12.5 QD vs.<br>25mg QD vs.<br>ibuprofen 800<br>TID vs.<br>placebo 6<br>weeks; 2)<br>rofecoxib<br>12.5mg QD<br>vs. 25mg QD<br>vs. diclofenac<br>50mg TID for<br>1 year. | Study 1: rofecoxib<br>superior to placebo (p<br><0.001) and<br>comparable with<br>ibuprofen for WOMAC<br>pain, physical function,<br>and stiffness subscales.<br>Adverse effects placebo<br>5.8% vs. rofecoxib<br>12.5mg (5.5%), 25mg<br>(6.6%), ibuprofen<br>(4.1%). Discontinuation<br>higher in placebo<br>(27.5%, p <0.05).<br>Rofecoxib 25mg<br>produced marked<br>improvement and<br>comparable efficacy<br>with diclofenac on<br>WOMAC physical<br>function, stiffness, pain<br>subscales over 1-year<br>treatment period.<br>Rofecoxib 12.5mg was<br>significantly different<br>from diclofenac. Greater<br>adverse effects with<br>diclofenac (17.8%) vs.<br>rofecoxib (8.7%,<br>10.3%). Discontinuance<br>rates not different. | "Rofecoxib is effective<br>in treating OA with<br>once-daily dosing for 6<br>weeks and 1 year.<br>Rofecoxib was<br>generally safe and<br>well-tolerated in OA<br>patients for 6 weeks<br>and 1 year."                              | Rofecoxib<br>comparable with<br>ibuprofen 800mg.<br>Diclofenac similar to<br>rofecoxib at 1 year                                       |
| Bellamy<br>1992<br>RCT            | 9.5  | N = 85<br>Hip or<br>knee OA  | Flurbiprofen-<br>SR 200mg vs.<br>diclofenac<br>sodium-SR<br>100mg QHS<br>for 6 weeks                                                                                                                  | Joint pain on active<br>movement at final<br>assessment:<br>flurbiprofen SR -0.83<br>(SE 0.13) vs.<br>diclofenac-SR -0.91 (SE<br>0.13), p = 0.64. Other<br>outcomes (e.g., pain on                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | "Flurbiprofen-SR 200<br>mg is similar in<br>efficacy, tolerability<br>and safety to<br>Diclofenac Sodium-<br>SR."                                                                                                                  | Dosages were low,<br>considered to be<br>frequent starting<br>doses for general<br>population. Data<br>suggest comparable<br>efficacy. |

|                            |     |                                             |                                                                                                                                             | passive motion, joint<br>swelling) NS. More<br>drug-related adverse<br>reactions in diclofenac<br>sodium-SR (n = 15)<br>than flurbiprofen-SR (n<br>= 9), NS.                                                                                                                                                                                                                                                                |                                                                                                                                                                                         |                                                                                                                                                                               |
|----------------------------|-----|---------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Hawel<br>2003<br>RCT       | 9.0 | N = 148<br>Hip OA                           | Dexibuprofen<br>400mg BID<br>vs. celecoxib<br>100mg BID<br>for 15 days.<br>Double<br>dummy.                                                 | Improvements in<br>WOMAC OA indices:<br>dexibuprofen -<br>5.97±3.72 vs. celecoxib<br>-5.82±2.84 (NS). Patient<br>global judgment of<br>efficacy (excellent/very<br>good): dexibuprofen<br>61.3% vs. celecoxib<br>50.0%. Gastrointestinal<br>complaints: 8.1% vs.<br>9.5% (NS).                                                                                                                                              | "[D]exibuprofen has at<br>least equal efficacy<br>and a comparable<br>safety/tolerability<br>profile as celecoxib in<br>adult patients suffering<br>from osteoarthritis of<br>the hip." | Data suggest<br>equivalent efficacy.                                                                                                                                          |
| Fleischmann<br>2008<br>RCT | 9.0 | N =<br>3,036<br>Hip,<br>knee or<br>spine OA | Lumiracoxib<br>100mg QD vs.<br>lumiracoxib<br>100mg BID<br>vs. celecoxib<br>200mg QD.<br>Double<br>dummy.                                   | Improvements in target<br>joint pain did not differ<br>(improvement in 50.6%<br>vs. 52.3% vs. 53.6%).<br>Global assessment of<br>disease activity and<br>physician assessments<br>did not differ. Adverse<br>events nearly identical<br>(12.7% vs. 12.3% vs.<br>11.7%, NS). One-year<br>retention rates not<br>different (46.9% vs.<br>47.5% vs. 45.3%, NS).                                                                | "Long-term treatment<br>with lumiracoxib 100<br>mg o.d., the<br>recommended dose for<br>OA, was as effective<br>and well tolerated as<br>celecoxib 200 mg o.d.<br>in patients with OA." | No significant<br>differences in<br>efficacy. Only 50%<br>retention rate at 1-<br>year for all treatment<br>arms, with 70% of<br>participants<br>reporting adverse<br>events. |
| Geba<br>2002<br>RCT        | 9.0 | N = 382<br>Knee OA                          | Rofecoxib<br>12.5mg a day<br>vs. rofecoxib<br>25mg a day<br>vs. celecoxib<br>200mg a day<br>vs.<br>acetaminophe<br>n 1gm QID for<br>6 weeks | Changes in night pain<br>first 6 days:<br>acetaminophen<br>(-18.8) vs. celecoxib<br>(-18.7) vs. rofecoxib<br>12.5mg (-22.0) vs.<br>rofecoxib 25mg (-25.2),<br>p <0.05 comparing<br>rofecoxib 25mg to<br>acetaminophen or<br>celecoxib. Rest pain<br>results: -12.5, -15.5, -<br>18.6, -21.8. Walking<br>pain after 6 weeks: -<br>30.3, -36.2,<br>-35.1, -42.0 (p <0.01<br>comparing rofecoxib<br>25mg to<br>acetaminophen). | "Rofecoxib, 25 mg/d,<br>provided efficacy<br>advantages over<br>acetaminophen, 4000<br>mg/d, celecoxib, 200<br>mg/d, and rofecoxib,<br>12.5 mg, for<br>symptomatic knee<br>OA."         | More discontinued<br>acetaminophen than<br>other treatments.<br>Rofecoxib appeared<br>superior to other<br>treatment arms.                                                    |
| Day<br>2000<br>RCT         | 8.5 | N = 809<br>Knee or<br>hip OA                | Rofecoxib<br>12.5mg QD<br>vs. 25mg QD<br>vs. ibuprofen<br>800mg TID for<br>6 weeks                                                          | Rofecoxib 25mg<br>superior to ibuprofen for<br>2 of 3 primary end<br>points (graphic<br>presentations, p <0.05).<br>All active treatments<br>superior to placebo (p<br><0.001). Significant<br>discontinuation rate due<br>to adverse effects from<br>ibuprofen (p <0.05), but<br>not rofecoxib.                                                                                                                            | "Rofecoxib was well<br>tolerated and provided<br>clinical efficacy<br>comparable with a high<br>dose of the NSAID<br>ibuprofen."                                                        | Data suggest<br>superiority of<br>rofecoxib vs.<br>ibuprofen. Suggests<br>rofecoxib better<br>tolerated than<br>ibuprofen.                                                    |

| Bellamy<br>1986; 1988<br>RCT | 8.0 | N = 57<br>Hip<br>and/or<br>knee OA                               | Isoxicam<br>200mg QD vs.<br>piroxicam<br>20mg QD for<br>6 weeks                                                                                                  | Night pain (baseline/6<br>weeks): isoxicam (1.68 $\pm$<br>0.72/0.63) vs. piroxicam<br>(1.83 $\pm$ 1.0/0.77). No<br>differences in outcome<br>measures between<br>groups (p >0.05). Total<br>adverse reactions:<br>isoxicam 12/28 (42.9%)<br>vs. piroxicam 24/29<br>(82.8%). Totals with<br>severe adverse drug<br>reaction higher in<br>piroxicam (0 vs. 5, p =<br>0.03); 93% isoxicam vs.<br>69% piroxicam<br>improved. | "[I]soxicam is an<br>efficacious and well-<br>tolerated once-daily<br>NSAID for elderly<br>patients with<br>osteoarthritis."                                                                                                                             | Comparable efficacy<br>in elderly population,<br>although trends<br>favored isoxicam<br>over piroxicam.                                                                                              |
|------------------------------|-----|------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Fioravanti<br>2002<br>RCT    | 8.0 | N = 287<br>Moderat<br>e or<br>severe<br>hip<br>and/or<br>knee OA | Nimesulide-<br>beta-<br>cyclodextrin<br>400mg BID<br>vs. naproxen<br>500mg BID<br>for 2 weeks<br>scheduled<br>treatment and<br>5.5 months<br>on-demand<br>dosing | VAS scores (baseline/2<br>weeks): NBC 67.9/39.7<br>vs. naproxen 66.9/39.8<br>(NS). Other outcomes<br>(e.g., pain on<br>movement, morning<br>stiffness) not different<br>between treatments; 37<br>discontinued<br>nimesulide-beta-<br>cyclodextrin vs. 38<br>naproxen; 19 nimesulide-<br>beta-cyclodextrin group,<br>8 naproxen took other<br>NSAIDs as additional<br>treatment for OA.                                  | "[N]imesulide-beta-<br>cyclodextrin is<br>comparable to<br>naproxen in terms of<br>therapeutic efficacy in<br>the short-term<br>treatment of OA.<br>Medium-term<br>treatment on demand<br>was also similar with<br>the 2 drugs."                         | Lack of compliance<br>data, high dropout<br>rate weaken<br>conclusions. Data<br>suggest comparable<br>efficacy.                                                                                      |
| Le Loët<br>1997<br>RCT       | 8.0 | N = 290<br>Knee or<br>hip OA                                     | Diclofenac SR<br>75mg BID vs.<br>diclofenac<br>50mg TID for<br>7 days.<br>Double<br>dummy.                                                                       | Mean spontaneous pain<br>intensity decreased in<br>both groups within first<br>36 hours and from Day<br>1 to Day 7 ( $p = 0.0001$ ).<br>24.5% and 31.3%<br>adverse effects (NS).<br>Good compliance<br>greater with diclofenac<br>75mg (81.6%) vs. 50mg<br>(53.1%), ( $p < 0.001$ ).                                                                                                                                     | "The resultsshow the<br>equivalence of efficacy<br>of diclofenac SR 75<br>mg one tablet 2x daily<br>and diclofenac enteric<br>coated 50 mg one<br>tablet 3x daily given for<br>7 days for the<br>symptomatic treatment<br>of painful<br>osteoarthritis." | Despite difference in<br>"good compliance<br>(>90%)," treatment<br>groups had similar<br>efficacy. Very short<br>term trial of 7 days.                                                               |
| Bradley<br>1991<br>RCT       | 7.5 | N = 184<br>Knee OA                                               | Ibuprofen<br>600mg QID<br>vs. ibuprofen<br>300mg QID<br>vs.<br>acetaminophe<br>n 1gm QID for<br>4 weeks                                                          | Walking pain score<br>changes:<br>acetaminophen (0.13)<br>vs. ibuprofen 1200mg<br>(0.31) vs. ibuprofen<br>2,400mg (0.45), $p =$<br>0.10. Rest pain scores<br>were: 0.06 vs. 0.33 vs.<br>0.40, $p = 0.05$ .                                                                                                                                                                                                               | "[S]ymptomatic<br>treatment of<br>osteoarthritis of the<br>knee, the efficacy of<br>acetaminophen was<br>similar to that of<br>ibuprofen, whether the<br>latter was administered<br>in an analgesic or an<br>anti-inflammatory<br>dose."                 | At baseline, trend<br>towards more<br>advanced disease in<br>high-dose ibuprofen<br>group. Walking pain<br>score, rest pain both<br>favored ibuprofen<br>(some measures<br>showed no<br>difference). |
| Leung<br>2002<br>RCT         | 7.5 | N = 501<br>Knee or<br>hip OA                                     | Etoricoxib<br>60mg QD vs.<br>naproxen<br>500mg BID<br>vs. placebo<br>for 12 weeks.<br>Double<br>dummy.                                                           | WOMAC pain scale<br>responses over 12<br>weeks: placebo -15.33<br>(95% CI<br>-20.7, -9.96) vs.<br>etoricoxib -25.76 (-<br>28.58, -22.94) vs.<br>naproxen -25.32 (-<br>28.13,                                                                                                                                                                                                                                             | "Etoricoxib showed<br>rapid and durable<br>treatment effects in<br>patients with OA of the<br>knee or hip."                                                                                                                                              | No significant<br>differences between<br>naproxen and<br>etoricoxib. Power<br>may have been<br>limited to detect<br>adverse effect<br>differences, but<br>trends in favor or                         |

|                          |     |                                                     |                                                                                                                                                                                    | -22.50). Etoricoxib<br>equivalent to naproxen,<br>and both superior to<br>placebo. Adverse<br>effects higher for<br>naproxen (n = 69,<br>31.2%) vs. etoricoxib (n<br>= 57, 25.4%) vs.<br>placebo (n = 14,<br>25.0%). More etoricoxib<br>patients completed trial<br>(91.1%) than naproxen<br>(83.3%) and placebo<br>(78.6%)                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                  | etoricoxib present.                                                                                                                                                                                                              |
|--------------------------|-----|-----------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Reginster<br>2007<br>RCT | 7.5 | N = 997<br>Hip or<br>knee OA                        | Etoricoxib<br>60mg QD vs.<br>naproxen<br>500mg BID<br>vs. placebo<br>12 weeks.<br>Then placebo<br>randomized to<br>active<br>treatment for<br>40 weeks, 86-<br>week follow-<br>up. | Active treatments with<br>comparable efficacy<br>over 12-week trial; 52<br>week results for<br>WOMAC pain scale:<br>etoricoxib -31.03 vs.<br>naproxen -30.60 (NS).<br>Over 12 weeks,<br>discontinuation due to<br>adverse effects:<br>placebo 17.0% vs.<br>etoricoxib 21.5% vs.<br>naproxen 29.2%.                                                                                                                                                                                                                                                       | "Both etoricoxib and<br>naproxen<br>demonstrated long-<br>term clinical efficacy<br>for the treatment of<br>OA. Etoricoxib and<br>naproxen were<br>generally well<br>tolerated."                                                                                                 | Low power to detect<br>differences in<br>adverse effects<br>between active<br>treatment groups.<br>Both drugs had<br>comparable efficacy<br>over placebo. Data<br>suggest higher<br>adverse effects for<br>naproxen.             |
| Kidd<br>1996<br>RCT      | 7.5 | N = 135<br>Hip or<br>knee OA                        | Lornoxicam<br>4mg TID vs<br>8mg BID vs<br>diclofenac<br>50mg TID for<br>12 weeks with<br>40 week<br>continuation<br>phase.<br>Double<br>dummy.                                     | 37% failed to complete<br>RCT phase; 28/85<br>(32.9%) failed to<br>complete continuation<br>phase due to inefficacy.<br>Functional indices of<br>severity<br>(baseline/difference):<br>lornoxicam 4mg TID<br>(11.1 $\pm$ 4.4/-2.4 $\pm$ 4.2) vs.<br>lornoxicam 8mg BID<br>(10.6 $\pm$ 2.2/-1.7 $\pm$ 5.9) vs.<br>diclofenac (10.1 $\pm$ 1.8/-<br>2.7 $\pm$ 2.2) (p = 0.013<br>comparing lornoxicam<br>doses, p <0.01<br>comparing either<br>lornoxicam doses with<br>diclofenac. Other<br>measures of disease<br>activity, pain relief not<br>different. | "[L]ornoxicam is an<br>effective treatment for<br>OA when administered<br>in a 3 times daily (4<br>mg) or twice daily (8<br>mg) regimen.<br>Furthermore, it has an<br>efficacy and tolerability<br>profile comparable to<br>that of the well<br>established drug<br>diclofenac." | No placebo control.<br>High dropout rate in<br>both phases of<br>study. No clear<br>superiority of any<br>arm.                                                                                                                   |
| Lisse<br>2003<br>RCT     | 7.0 | N =<br>5,557<br>Knee,<br>hip hand<br>or spine<br>OA | Rofecoxib<br>25mg a day<br>vs. Naproxen<br>500mg twice<br>daily for 3<br>months.<br>Double<br>dummy.                                                                               | Discontinuation due to<br>adverse GI events lower<br>in rofecoxib group<br>(5.9% vs. 8.1%), RR =<br>0.74 (95% CI 0.60-0.92,<br>p = 0.005). Similar<br>findings in low-dose<br>ASA takers. Less GI<br>medications in rofecoxib<br>group (9.1% vs. 11.2%,<br>p = 0.014). Two<br>perforations, ulcers or<br>bleeding episodes<br>rofecoxib vs. 9<br>naproxen (RR = 0.22, p<br>= 0.038).                                                                                                                                                                     | "[R]ofecoxib, 25 mg<br>once daily, was as<br>efficacious as<br>naproxen, 500 mg<br>twice daily, in<br>controlling symptoms<br>over a 3-month period<br>and was associated<br>with significantly better<br>GI tolerability."                                                      | Very large sample<br>size. No placebo.<br>Participants allowed<br>to take H-2 blockers.<br>Results suggest<br>equivalent efficacy<br>for pain, but higher<br>adverse GI<br>symptoms and<br>bleeds for naproxen<br>vs. rofecoxib. |

| Lindén<br>1996<br>RCT           | 7.0 | N = 255<br>Hip OA                   | Meloxicam<br>15mg vs.<br>30mg vs<br>piroxicam<br>20mg QD for<br>6 weeks                                                                                                                                                     | Pain on movement<br>(VAS) (baseline/Day<br>42): meloxicam<br>(59.7±15.2/31.7±24.3)<br>vs. piroxicam<br>(60.2±14.7/34.9±24.4).<br>No differences in worst<br>rest pain or reductions<br>in total index severity.<br>Global tolerance<br>borderline better for<br>meloxicam.                                                                                                                                                                                                                                                                 | "The frequency of<br>adverse events (GI or<br>otherwise) and global<br>tolerance were similar<br>in the meloxicam-<br>treated and piroxicam-<br>treated groups. The<br>global tolerance of the<br>drugs assessed by the<br>patient at the end of<br>the study suggested a<br>slightly better tolerance<br>of meloxicam over<br>piroxicam although this<br>difference was not<br>statistically significant." | Blinding,<br>randomization<br>details sparse. No<br>placebo control.<br>Comparable efficacy<br>shown.                                                                                                                                                                                                                |
|---------------------------------|-----|-------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Wegman<br>2003<br>N of 1 trials | 7.0 | N = 13<br>Hip or<br>knee OA         | Each patient<br>received 5<br>treatment<br>pairs with 2<br>weeks NSAID<br>(ibuprofen<br>400mg TID,<br>diclofenac<br>50mg BID,<br>diclofenac<br>25mg TID,<br>naproxen<br>375mg BID)<br>and 2 weeks<br>paracetamol<br>1gm TID | Largely no difference in<br>preference of either<br>paracetamol or NSAIDs<br>found.                                                                                                                                                                                                                                                                                                                                                                                                                                                        | "The results of n 1<br>trials varied across<br>patients. n of 1 trials<br>can be used to<br>investigate which<br>treatment is best for<br>any specific person,<br>thus avoiding<br>unnecessary<br>prolonged treatment<br>with NSAIDs.<br>However, practical<br>reasons may cause<br>patients to switch from<br>NSAIDs to<br>paracetamol or not."                                                            | Small sample size.<br>Many did not<br>complete the trial<br>(6/13). Submaximal<br>NSAID doses<br>preclude<br>conclusions on<br>relative merit of<br>paracetamol vs.<br>NSAID.                                                                                                                                        |
| Smugar<br>2006<br>2 RCTs        | 7.0 | N =<br>2,603<br>Knee or<br>hip OA   | 1) rofecoxib<br>12.5mg vs.<br>rofecoxib<br>25mg vs.<br>celecoxib<br>200mg vs.<br>placebo QD<br>for 6 weeks;<br>2) same<br>medications<br>except no<br>rofecoxib<br>12.5mg arm                                               | Rofecoxib 25mg<br>provided faster relief<br>than celecoxib 200mg in<br>both studies (Study 1<br>median 3 vs. 5 days, p<br>= 0.004; Study 2<br>median 4 vs. 5 days, p<br><0.001). Study 1, pain<br>at night not significantly<br>different between active<br>treatments. Study 2,<br>rofecoxib 25mg<br>significantly reduced<br>pain at night over 6<br>weeks compared to<br>celecoxib (p <0.05,<br>graphic data). Higher<br>dropouts in placebo vs.<br>other treatment arms in<br>both studies (approx.<br>62% vs. 82-88%<br>completions). | "Rofecoxib 25 mg was<br>significantly better than<br>celecoxib 200 mg in<br>relieving night pain at 6<br>weeks in one study;<br>this was not confirmed<br>in the accompanying<br>study."                                                                                                                                                                                                                    | Results between two<br>studies conflict<br>somewhat with no<br>clear superiority of<br>one NSAID over<br>another for pain<br>relief during 6 week<br>trial, although<br>rofecoxib 25mg<br>provided faster pain<br>relief in both studies<br>and trends in night<br>pain also favored<br>rofecoxib over<br>celecoxib. |
| Perpignano<br>1994<br>RCT       | 7.0 | N = 120<br>Knee<br>and/or<br>hip OA | Etodolac SR<br>600mg QD vs.<br>tenoxicam<br>20mg QD for<br>8 weeks.<br>Double<br>dummy.                                                                                                                                     | Significant<br>improvements from<br>baseline in all efficacy<br>assessments at Weeks<br>2, 4, and last visit in<br>each group. No<br>differences between<br>groups. VAS scores<br>(ITT): etodolac<br>69.2±11.8 vs.<br>tenoxicam 72.0±13.0                                                                                                                                                                                                                                                                                                  | "[E]todolac SR 600 mg<br>once daily is as<br>effective as tenoxicam<br>20 mg once daily in<br>relieving symptoms of<br>OA of the knee and of<br>the hip. Both the<br>overall and the G-I<br>specific safety profiles<br>were found to be more<br>favorable in patients                                                                                                                                      | Randomization,<br>allocation details<br>missing. Although<br>author reports safety<br>.3 for total adverse<br>events, the study<br>data do not reflect all<br>conclusions. Data<br>suggest equal<br>efficacy.                                                                                                        |

|                                                    |     |                                   |                                                                                                                                                               | (NS). No difference in<br>erosive GI lesions after<br>8 weeks. Adverse<br>reactions in 14/60<br>(23.3%) patients treated<br>with tenoxicam vs. 5/60<br>(8.3%) etodolac (p<br><0.05).                                                                                                                                              | treated with etodolac SR."                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                              |
|----------------------------------------------------|-----|-----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Pincus<br>2004<br>Randomized<br>crossover<br>trial | 6.5 | N =<br>1,080<br>Knee or<br>hip OA | Placebo vs.<br>acetaminophe<br>n 1000mg QID<br>vs. celecoxib<br>200mg QAM.<br>6 weeks each.<br>Double<br>dummy.<br>Patients<br>received 2 of 3<br>treatments. | Percent improvement in<br>WOMAC scores<br>averaged over<br>treatment: celecoxib<br>21.6% vs.<br>acetaminophen 13.0%<br>vs. placebo 7.9%.<br>Similar VAS score<br>results. Patient<br>preference strongest for<br>celecoxib, then<br>acetaminophen, then<br>placebo.                                                               | "[D]ata indicate a<br>gradient of efficacy<br>from celecoxib to<br>acetaminophen to<br>placebo"                                                                                                                                                                                                                               | Some variation in<br>results in the two<br>trial periods for<br>acetaminophen vs.<br>placebos. Patients<br>generally reported<br>preference for<br>celecoxib over<br>others. |
| Lussier<br>1980<br>Crossover<br>trial              | 6.5 | N = 27<br>Knee or<br>hip OA       | Floctafenine<br>300mg QID<br>vs. enteric-<br>coated aspirin<br>(ACSA)<br>625mg QID<br>vs. placebo<br>for 6 weeks.                                             | Pain score: placebo<br>1.93 vs. floctafenine<br>1.80 vs. ASA 2.00 (NS).<br>Walking times did not<br>differ at 6 weeks.<br>Patient assessment of<br>efficacy: placebo 2.78,<br>floctafenine 2.00 and<br>ASA 2.33 (p = 0.05<br>comparing placebo vs.<br>floctafenine).                                                              | "[F]loctafenine was<br>more effective than<br>placebo; (2)<br>floctafenine was found<br>to be approximately<br>equivalent or superior<br>to ACSA; and (3)<br>although the results<br>showing a statistical<br>decrease in<br>(hemoglobin) with<br>floctafenine are not<br>clinically significant."                            | No washout periods<br>before or during trial<br>crossovers. Adjuvant<br>(rescue medication)<br>was the same as<br>control arm (aspirin),<br>weakening<br>conclusions.        |
| Myllykangas-<br>Luosujärvi<br>2002<br>RCT          | 6.5 | N = 944<br>Knee or<br>hip OA      | Rofecoxib<br>12.5 QD vs.<br>naproxen<br>500mg BID<br>for 6 weeks.                                                                                             | Treatment outcomes for<br>efficacy did not differ.<br>Fewer rofecoxib<br>patients reported AEs<br>considered to be drug-<br>related than naproxen<br>[19.5% vs. 31.3%; p<br><0.001]. More GI-<br>related AEs among<br>naproxen treated<br>patients.                                                                               | "[I]n two separate six-<br>week OA treatment<br>trials, the lowest<br>indicated dose of<br>rofecoxib (12.5 mg)<br>demonstrated<br>comparable onset of<br>action and clinical<br>efficacy to naproxen<br>1000mg with superior<br>GI tolerability profile."                                                                     | More than 50% of<br>both groups took<br>escape medication.<br>Results suggest<br>comparable efficacy,<br>but higher adverse<br>effects for naproxen.                         |
| Hosie<br>1996<br>RCT                               | 6.5 | N = 336<br>Hip or<br>knee OA      | Meloxicam<br>7.5mg QD vs.<br>diclofenac<br>sodium SR<br>100mg QD for<br>6 months.                                                                             | VAS pain ratings<br>(baseline/last visit):<br>meloxicam (65.9±16.9/-<br>28.1±29.4) vs.<br>diclofenac (67.2±14.2/-<br>30.9±29.1), NS. Other<br>measures of pain on<br>movement, global<br>efficacy stiffness and<br>quality of life all were<br>not different. Adverse<br>events in 59.8% of<br>meloxicam vs. 60.5%<br>diclofenac. | "Meloxicam 7.5 mg<br>once daily and<br>diclofenac 100 mg slow<br>release once daily<br>showed comparable<br>efficacy in the<br>treatment of OA,<br>although diclofenac<br>was associated with<br>somewhat higher<br>incidence of severe<br>adverse events,<br>treatment withdrawals<br>and laboratory test<br>abnormalities." | Allocation unclear<br>with at least one<br>baseline variable<br>difference (duration<br>of osteoarthrosis,<br>p<0.05) that may<br>favor meloxicam.                           |
| Bellamy<br>1995<br>RCT                             | 6.0 | N = 382<br>Hip,<br>knee or        | Nabumetone<br>1,000mg vs.<br>diclofenac SR<br>200mg QPM                                                                                                       | More on nabumetone<br>titrated to higher dose<br>(69% vs. 53%, $p =$<br>0.002). Physician                                                                                                                                                                                                                                         | "Nabumetone is<br>efficacious and well<br>tolerated in patients<br>with OA of the hip,                                                                                                                                                                                                                                        | Variable doses<br>used. High dropout<br>rate (43%) at 6<br>months precludes                                                                                                  |

|                                        |     | shoulder<br>OA                                        | for 3 months.<br>Dose could be<br>titrated once<br>after 2 weeks<br>of initial dose.<br>Double<br>dummy.                     | assessments of disease<br>activity were 63%<br>improved on<br>nabumetone vs. 70% on<br>diclofenac. Pain ratings<br>reduced approximately<br>40% by either<br>treatment. Adverse<br>effects in 43 diclofenac<br>vs. 27 nabumetone<br>patients (p <0.04).                                                                                                                                                  | knee or shoulder. In<br>this group of patients it<br>is similar in efficacy<br>and superior in<br>tolerability to<br>diclofenac SR."                                                                                                                                                                                        | strong conclusions.                                                                                                                                                                           |
|----------------------------------------|-----|-------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Herrman<br>2000<br>RCT                 | 6.0 | N = 263<br>Knee<br>and/or<br>hip OA                   | Oxaceprol<br>400mg TID<br>vs. diclofenac<br>50mg TID for<br>21 days                                                          | Mean total scores<br>(baseline/Day 21):<br>oxaceprol 14.0±3.5/11.5<br>±3.8 vs. 14.0±4.1/11.2±<br>3.9 (NS). Lequesne<br>indices decreased, but<br>not different between<br>treatments (-2.5 points<br>oxaceprol vs2.8 points<br>diclofenac, NS); 47%<br>treated with oxaceprol<br>and 56% treated with<br>diclofenac judging<br>efficacy. Adverse effects<br>for 18.9% oxaceprol vs.<br>25.2% diclofenac. | The results of this<br>phase IV study<br>demonstrate that<br>oxaceprol is as<br>effective as diclofenac<br>in the therapy of<br>osteoarthritis of the<br>knee and/or hip, but is<br>significantly better<br>tolerated.                                                                                                      | Blinding unclear.<br>Patients allowed<br>physical therapy.<br>Was phase II trial.<br>Data suggest equal<br>efficacy for total<br>scores, but with<br>lower adverse<br>effects.                |
| Ginsberg<br>1984<br>RCT                | 6.0 | N = 26<br>Knee or<br>hip OA                           | Oxaprozin<br>1,200mg QD<br>vs. naproxen<br>250mg TID for<br>8 weeks.<br>Double<br>dummy.                                     | Patient opinion of<br>efficacy (baseline/8<br>weeks): oxaprozin (4.3/-<br>1.9) vs. naproxen (4.4/-<br>2.5). Observer opinion,<br>pain intensity, activity<br>impairments all<br>improved, although all<br>favored naproxen, not<br>statistically significant.                                                                                                                                            | "1200 mg oxaprozin<br>once daily is an<br>effective and relatively<br>well-tolerated form of<br>treatment in<br>osteoarthritis and is at<br>least comparable to<br>250mg naproxen 3-<br>times daily."                                                                                                                       | Small sample size<br>and comparison is<br>sub-maximal<br>naproxen, limiting<br>conclusions.                                                                                                   |
| Schnitzer<br>Arth Rheum<br>2004<br>RCT | 6.0 | N = 583<br>Knee or<br>hip OA                          | Lumiracoxib<br>50mg vs<br>100mg vs.<br>200mg BID<br>vs. 400mg QD<br>vs. diclofenac<br>75mg BID vs.<br>placebo for 4<br>weeks | Patient assessments<br>(baseline/4 weeks):<br>lumiracoxib 50 BID<br>( $63.1\pm17.5/38.8\pm21.5$ )<br>vs. L 100BID<br>( $62.0\pm18.5/37.8\pm22.2$ )<br>vs. L200BID ( $64.0\pm17.3/37.5\pm24.0$ ) vs.<br>diclofenac ( $62.2\pm16.2/34.4\pm23.0$ ) vs. placebo<br>( $62.5\pm18.1/50.0\pm23.0$ ).<br>Lumiracoxib and<br>diclofenac superior to<br>placebo.                                                   | "Throughout the study,<br>all dosages of<br>lumiracoxib were<br>equally effective in<br>lowering pain intensity,<br>although at week 1<br>there was a modestly<br>greater improvement in<br>pain relief with the 400<br>mg once daily<br>lumiracoxib dose when<br>compared with the 50<br>and 100 mg twice daily<br>doses." | Sparse details on<br>randomization,<br>allocation, and<br>blinding. Efficacy<br>comparable between<br>lumiracoxib and<br>diclofenac, however<br>adverse effects<br>higher with<br>diclofenac. |
| Morgan<br>2001<br>RCT                  | 6.0 | N = 335<br>Moderate<br>to severe<br>knee or<br>hip OA | Nabumetone<br>1,000-<br>2,000mg QD<br>vs. diclofenac<br>50mg BID-TID<br>for 12 weeks;<br>doses titrated                      | Patient global<br>assessments not<br>different (nabumetone<br>75% vs. diclofenac<br>79%). Pain score<br>changes: nabumetone -<br>3.1±0.2 vs. diclofenac -<br>3.7±0.2. No difference in<br>Arthritis Impact<br>Measurement Scales.<br>More diclofenac patients<br>on maximum dose (46%<br>vs. 66%). Nabumetone                                                                                            | "Nabumetone was as<br>effective as diclofenac<br>in the treatment of<br>elderly patients with<br>moderate-to-severe<br>osteoarthritis.<br>However, the<br>gastrointestinal safety<br>profile of nabumetone<br>was superior to that of<br>diclofenac with respect<br>to elevation of liver<br>enzymes."                      | Blinding,<br>randomization,<br>compliance and co-<br>intervention details<br>missing.                                                                                                         |

|                       |     |                              |                                                                                                                                                                | group more<br>acetaminophen 2nd<br>week (p <0.05). More<br>diclofenac than<br>nabumetone patients (p<br><0.05) had ALT level 2<br>times or more than<br>upper limit of normal (6<br>or 161 [3.7%] vs. 0 of<br>155 [0%]).                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                             |
|-----------------------|-----|------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Cannon<br>2000<br>RCT | 6.0 | N = 784<br>Hip or<br>knee OA | Rofecoxib<br>12.5 QD vs<br>25mg QD vs.<br>diclofenac<br>50mg TID for<br>1 year                                                                                 | 448/784 (57.1%)<br>completed 1 year. No<br>differences in<br>discontinuation due to<br>lack of efficacy or<br>adverse effects. Mean<br>response for primary<br>end point of patient<br>assessment of<br>response to therapy<br>similar among all<br>treatment groups.<br>Patient assessment<br>comparing rofecoxib<br>25mg vs. diclofenac<br>favored diclofenac<br>(0.19, 95% CI 0.05-<br>0.33). Rofecoxib<br>12.5mg also significant.<br>Physician assessment<br>of disease activity also<br>favored diclofenac for<br>both rofecoxib doses (p<br><0.05). Only pain when<br>walking WOMAC<br>outcome did not<br>demonstrate statistical<br>superiority of diclofenac. | "In this 1-year study<br>that included patients<br>with cardiovascular<br>risk factors<br>(hypertension in 45%,<br>angina in 3%,<br>hypercholesterolemia<br>in 16%, and diabetes<br>in 7%), the incidence<br>of thromboembolic<br>cardiovascular events,<br>such as myocardial<br>infarction, stroke,<br>transient ischemic<br>attack, and peripheral<br>arterial occlusions,<br>was numerically lower<br>in the rofecoxib groups<br>(1.5%, 2.3%, and 3.4%<br>in the 12.5 mg<br>rofecoxib, 25-mg<br>rofecoxib, and<br>diclofenac groups).<br>The specific inhibition<br>of COX-2 with<br>rofecoxib at a dosage<br>of 12.5 mg and 25 mg<br>once daily provided<br>comparable clinical<br>efficacy to that of the<br>knee and hip.<br>Rofecoxib was<br>generally well<br>tolerated." | Lack of details for<br>compliance, blinding<br>co-interventions.<br>High dropout rate<br>42% at one year<br>may reduce<br>differences. Most<br>data suggest<br>comparable efficacy,<br>however some data<br>suggest diclofenac<br>superior. |
| Alho<br>1988<br>RCT   | 6.0 | N = 252<br>Severe<br>hip OA  | Piroxicam<br>20mg QAM<br>vs. naproxen<br>500mg QAM<br>and 250mg.<br>QPM.<br>Trial length<br>unclear<br>(possibly 1<br>month), but<br>observed for 5<br>months. | Pain at rest at 4-5 weeks<br>compared with baseline:<br>piroxicam $-1.5\pm1.7$ vs.<br>naproxen $-0.9\pm0.6$ (p =<br>0.056). Pain on<br>movement/ impairment of<br>daily activities improved,<br>but not different between<br>groups. Night pain<br>piroxicam<br>$-2.0\pm2.1$ vs. naproxen<br>$-1.3\pm2.1$ (p = 0.01).<br>Modified Harris hip score<br>improved from baseline<br>more for piroxicam than<br>naproxen (p <0.01). No<br>differences between<br>groups at later follow-up<br>visits.                                                                                                                                                                       | "[I]t is profitable to<br>continue a previous<br>NSAID medication or<br>re-establish such<br>therapy while the<br>patient waits for a<br>planned operation for<br>OA. The NSAIDs seem<br>to be effective even in<br>advanced OA where<br>the mechanical joint<br>incongruency<br>component may be<br>dominating. However,<br>only 7% of the patients<br>wanted to postpone<br>the planned operation<br>after regular<br>medication."                                                                                                                                                                                                                                                                                                                                               | Lack of study<br>details-allocation,<br>blinding. Data<br>support equal<br>efficacy, with a few<br>data suggesting<br>piroxicam superior to<br>naproxen at 4 to 5<br>weeks.                                                                 |

| Baumgartner<br>1996<br>RCT | 6.0 | N = 61<br>Knee or<br>hip OA | Two SR<br>tablets of<br>ibuprofen<br>1,600mg vs,<br>diclofenac<br>100mg SR<br>QPM for 21<br>days. | Investigator's opinion of<br>much improved patients<br>at Day 21: ibuprofen<br>37% vs. diclofenac<br>10%, p = 0.04. Patient<br>severity of day pain was<br>ibuprofen 1.2 vs.<br>diclofenac 1.8, p =<br>0.006. Night pain (p =<br>0.048), quality of sleep<br>(p = 0.03), ability to<br>carry out normal<br>activities (p = 0.01) all<br>favored ibuprofen. No<br>difference in adverse<br>event reporting rates. | "[S]ignificant<br>differences in favour of<br>once-daily s-r ibuprofen<br>(1600 mg) were<br>demonstrated in terms<br>of efficacy, indicating a<br>potential therapeutic<br>advantage for this<br>formulation. Ibuprofen<br>was also better<br>tolerated than<br>diclofenac sodium (100<br>mg/daily), the latter<br>being associated with<br>gastrointestinal side<br>effects in a significant<br>proportion of patients.<br>Sustained-release<br>ibuprofen thus<br>represents an<br>important addition to<br>the available<br>therapeutic<br>armamentarium of<br>once-daily NSAID<br>formulation." | Lack of patient<br>blinding. Data may<br>suggest sustained<br>relief ibuprofen<br>superior to<br>diclofenac, however<br>the lack of blinding<br>weakens<br>conclusions<br>although differences<br>also included<br>blinded<br>investigator's<br>assessments of<br>change. |
|----------------------------|-----|-----------------------------|---------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Shipley<br>1983            | 6.0 | N = 36                      | Rhus Tox vs.<br>placebo vs.                                                                       | VAS scores (baseline/<br>placebo/Rhus/fenoprofe                                                                                                                                                                                                                                                                                                                                                                  | "There was no<br>significant difference                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Rhus tox, 6X is<br>poison ivy extract                                                                                                                                                                                                                                     |
| Crossover<br>trial         |     | hip OA                      | 600mg TID                                                                                         | n):<br>53.4±25.1/61.0±27.6/58<br>.2 ±25.5/41.5±29.0.<br>Patients preferred                                                                                                                                                                                                                                                                                                                                       | Rhus tox. and placebo.<br>Fenoprofen produced<br>highly significant pain                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | and appears not<br>efficacious. NSAID<br>efficacious vs.<br>placebo or Rhus.                                                                                                                                                                                              |
|                            |     |                             |                                                                                                   | fenoprofen. More<br>adverse effects for<br>fenoprofen.                                                                                                                                                                                                                                                                                                                                                           | relief compared with<br>Rhus tox and placebo."                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                           |
| Brown<br>1986              | 6.0 | N =143                      | Flurbiprofen<br>50mg BID vs.                                                                      | At 6 weeks, (knee/hip)<br>70.2%/82.6%                                                                                                                                                                                                                                                                                                                                                                            | "Despite its half-life of<br>5.5 hours, flurbiprofen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Comparable efficacy although flurbiprofen                                                                                                                                                                                                                                 |
| RCT                        |     | Hip and/<br>or knee         | sulindac<br>150mg BID                                                                             | flurbiprofen vs.<br>76.7%/66.7% sulindac                                                                                                                                                                                                                                                                                                                                                                         | twice daily is as effective as twice-daily                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | superior for<br>hip pain with active                                                                                                                                                                                                                                      |
|                            |     | OA                          | for 42 days.                                                                                      | improved. Weight-<br>bearing pain not                                                                                                                                                                                                                                                                                                                                                                            | sulindac, which has a much longer half -life                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | movement.                                                                                                                                                                                                                                                                 |
|                            |     |                             |                                                                                                   | different. Pain with active movement:                                                                                                                                                                                                                                                                                                                                                                            | of 7.8 hours, for patients with                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                           |
|                            |     |                             |                                                                                                   | 72.3%/91.3%<br>flurbiprofen vs.                                                                                                                                                                                                                                                                                                                                                                                  | osteoarthritis."                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                           |
|                            |     |                             |                                                                                                   | Flurbiprofen superior to                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                           |
|                            |     |                             |                                                                                                   | regarding pain with $p = 0.002$                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                           |
| Cardoe                     | 6.0 | N = 230                     | Isoxicam                                                                                          | No apparent differences                                                                                                                                                                                                                                                                                                                                                                                          | "[I]soxicam produced                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Study details are                                                                                                                                                                                                                                                         |
|                            |     | Hip                         | Zuung QD vs.<br>Naproxen                                                                          | outcomes including pain                                                                                                                                                                                                                                                                                                                                                                                          | naproxen and for some                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | reported on                                                                                                                                                                                                                                                               |
| RCI                        |     | and/or<br>knee OA           | for 4 weeks.                                                                                      | superior for night pain at                                                                                                                                                                                                                                                                                                                                                                                       | parameters was superior."                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (n = 249) with                                                                                                                                                                                                                                                            |
|                            |     |                             | dummy.                                                                                            | 4 weeks (52% better vs.<br>36%, p <0.05).                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | isoxicam more<br>effective as rated by                                                                                                                                                                                                                                    |
|                            |     |                             |                                                                                                   | Comparable adverse<br>effect profile (details                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | patients ( $p = 0.04$ ).                                                                                                                                                                                                                                                  |
|                            |     |                             |                                                                                                   | sparse).                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                           |

| Gordin<br>1984<br>Crossover<br>trial   | 6.0 | N = 44<br>Hip or<br>knee OA  | Slow-release<br>formulation of<br>indomethacin<br>(50mg) vs.<br>diflunisal<br>(250mg); 2<br>tablets daily<br>for 6 weeks | Both treatments<br>reduced pain, 22<br>preferred slow-release<br>indomethacin; 7<br>diflunisal; 13 no<br>preference. Patient<br>overall evaluation of<br>efficacy was<br>indomethacin slightly<br>more effective than<br>diflunisal (p <0.01).<br>Total use of rescue<br>analgesics: 540 tablets<br>in indomethacin vs.711<br>with diflunisal.                                                                     | "The indomethacin<br>formulation alleviated<br>pain slightly better than<br>diflunisal in patients<br>with arthrosis, and the<br>patients preferred<br>indomethacin to<br>diflunisal in this<br>respect. The<br>tolerability of the drug<br>was about the same."                            | Suggests<br>indomethacin slightly<br>superior to diflunisal.                                                                                                                                                                                            |
|----------------------------------------|-----|------------------------------|--------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Bauer<br>1999<br>RCT                   | 5.5 | N = 150<br>Knee or<br>hip OA | Oxaceprol<br>200mg TID<br>vs. diclofenac<br>25mg TID for<br>20 days                                                      | Pain at rest reduced:<br>oxaceprol from 4.1 to<br>2.1 pts vs. diclofenac<br>4.3 to 2.5 pts (NS).<br>Therapeutic<br>equivalence also for<br>changes in Lequesne<br>index, weight-bearing<br>pain, and pain-free<br>walking time                                                                                                                                                                                     | "[W]ith comparable<br>therapeutic efficacy<br>and a favorable<br>spectrum of ADR,<br>oxaceprol is a good<br>alternative to standard<br>NSAIDs, such as<br>diclofenac, in the<br>treatment of<br>osteoarthritis "                                                                            | Although author<br>reports better<br>tolerance, no<br>significant<br>differences were<br>reported.<br>Treatments appear<br>comparable.                                                                                                                  |
| Ginsberg<br>1982<br>Crossover<br>trial | 5.5 | N = 25<br>Hip or<br>knee OA  | Nabumetone<br>1gm QHS vs.<br>naproxen<br>250mg BID<br>for 7 days<br>each                                                 | Both treatments<br>efficacious.<br>Nabumetone better<br>tolerated Among<br>nabumetone first group,<br>7/13 considerably better<br>vs. 10/13 naproxen. For<br>naproxen first group,<br>rates 5/12 vs. 5/12.                                                                                                                                                                                                         | "Nabumetone (1g at<br>night) appeared, thus,<br>to be a good and very<br>well tolerated anti-<br>inflammatory drug in<br>the treatment of<br>osteoarthritis."                                                                                                                               | Submaximal<br>naproxen dose<br>used. Small sample<br>size, groups tended<br>to select their last<br>treatment as best (p<br>= 0.02), possibly a<br>recall bias.                                                                                         |
| Adelowo<br>1998<br>RCT                 | 5.5 | N = 48<br>Knee or<br>hip OA  | Tenoxicam<br>20mg QD vs.<br>piroxicam<br>20mg QD vs.<br>placebo for 6<br>weeks                                           | Slight superiority of<br>tenoxicam vs. piroxicam<br>for pain. No difference<br>in GI adverse effects.<br>Excellent or good<br>tolerability tenoxicam<br>88.2% vs. 60.0%, p =<br>0.06. All other<br>measures of<br>success/tolerability did<br>not differ. Piroxicam and<br>tenoxicam did not alter<br>laboratory measures.                                                                                         | "Tenoxicam is an<br>efficacious and well<br>tolerated NSAID which<br>proved useful among<br>Nigerian osteoarthritis<br>patients."                                                                                                                                                           | Study in Nigeria.<br>Generally<br>comparable efficacy,<br>although trends<br>tenoxicam may be<br>superior but<br>underpowered for<br>those outcomes.                                                                                                    |
| Makarowski<br>2002<br>RCT              | 5.5 | N = 467<br>Hip OA            | Valdecoxib<br>5mg QD vs.<br>10mg QD vs.<br>naproxen<br>500mg BID<br>vs. placebo<br>for 12 weeks                          | Patient global<br>assessment changes<br>baseline to 12 weeks:<br>valdecoxib 10mg (-1.29)<br>vs. 5mg (-1.20) vs.<br>naproxen (-1.18) vs.<br>placebo (-0.87) (p <0.05<br>all arms vs. placebo).<br>Physician global<br>assessments similar.<br>WOMAC score<br>changes: valdecoxib<br>10mg (-2.83) vs. 5mg (-<br>2.54) vs. naproxen (-<br>2.94) vs. placebo (-<br>1.25) (p <0.05 all arms<br>vs. placebo). GI-related | "Single daily doses of<br>valdecoxib 5 mg and<br>10 mg were similar to<br>naproxen and superior<br>to placebo, in treating<br>symptomatic OA of the<br>hip. Both doses of<br>valdecoxib were well<br>tolerated and<br>demonstrated<br>improved GI tolerability<br>compared to<br>naproxen." | High dropout rates<br>although placebo<br>was superior to<br>naproxen for GI<br>effects including<br>constipation and<br>dyspepsia. Suggests<br>comparable efficacy<br>for active<br>treatments, but<br>lower adverse GI<br>symptoms for<br>valdecoxib. |

|                           |     |                             |                                                                                                             | adverse effects lower<br>compared with<br>naproxen (11.0% vs.<br>4.5% vs. 4.2% vs.<br>1.7%).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                               |
|---------------------------|-----|-----------------------------|-------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Marcolongo<br>1997<br>RCT | 5.5 | N = 113<br>Hip OA           | Ketoprofen<br>controlled-<br>release<br>200mg QD vs.<br>indomethacin<br>50mg BID for<br>4 weeks             | Daytime VAS scores<br>with movement<br>(baseline/final):<br>indomethacin<br>$6.15\pm2.08/3.85\pm2.07$<br>vs. ketoprofen<br>$6.25\pm2.34/3.84\pm2.38$ , p<br>= 0.74. Other measures<br>of rest pain, night pain,<br>global scores not<br>different. Willingness to<br>or performance at work<br>was (53.7%) in<br>indomethacin and<br>(58.7%) in ketoprofen (p<br>= 0.67). No differences<br>in GI adverse effects.<br>Headache and<br>dizziness in 10% of<br>indomethacin vs. none<br>in ketoprofen (p =<br>0.028). Indomethacin<br>discontinued more<br>frequently, 20% vs.<br>11%. | "Controlled-release<br>ketoprofen may be<br>preferred in<br>indomethacin in the<br>symptomatic treatment<br>of osteoarthritis<br>because of its better<br>safety profile."                                                                                                                                  | Open label trial.<br>Sub-maximal doses.<br>Some higher CNS<br>adverse effects in<br>indomethacin<br>treated patients.                                                                                                                         |
| Kivitz<br>2001<br>RCT     | 5.5 | N =<br>1,061<br>Hip OA      | Celecoxib<br>100mg vs.<br>200mg vs.<br>400mg QD vs.<br>naproxen<br>500mg BID<br>vs. placebo<br>for 12 weeks | Patient global<br>assessments 12 weeks:<br>placebo (-0.5) vs.<br>celecoxib 100mg (-0.9)<br>vs. 200mg (-1.1) vs.<br>400mg (-0.9) vs.<br>naproxen (-1.1)<br>(naproxen superior to<br>100 and 400mg doses,<br>p < 0.05). All<br>medications favored<br>over placebo. Patient<br>withdrawl significantly<br>higher in celecoxib<br>100mg a day vs. 400mg<br>a day (p = 0.04) or<br>naproxen (p = 0.02).                                                                                                                                                                                  | "Celecoxib doses of<br>200 and 400 mg/day<br>were similarly<br>efficacious and<br>comparable to<br>naproxen. The overall<br>incidence of adverse<br>events in patients<br>receiving celecoxib<br>100-400 mg/day or<br>naproxen 1000mg/day<br>was comparable, and<br>similar to those<br>receiving placebo." | Dropout rate due to<br>failure was high in<br>placebo and<br>treatment groups<br>(52% vs treatment<br>[25-35%]). Total<br>number of adverse<br>events was similar in<br>all groups.<br>Comparable efficacy<br>shown for active<br>treatments. |
| Telhag<br>1981<br>RCT     | 5.5 | N = 70<br>Knee or<br>hip OA | Tolmetin<br>sodium<br>400mg BID<br>vs. Naproxen<br>250mg BID<br>for 12 weeks                                | Patient overall<br>assessment to<br>responses (very good or<br>good): tolmetin (15/34 =<br>44.1%) vs. naproxen<br>(18/35/51.4%), NS. No<br>differences in physician<br>assessment, pain on<br>active motion, pain at<br>rest, localized<br>tenderness. For patients<br>evaluated at 12 weeks<br>who had "pain<br>symptomatology"<br>initially, more tolmetin<br>had reductions in<br>severity of pain at rest<br>and pain on active                                                                                                                                                  | "Tolmetin sodium<br>given twice a day<br>seems to be at least as<br>effective as naproxen<br>in relieving pain in<br>osteoarthritis;<br>tolerability for the two<br>drugs was<br>comparable."                                                                                                               | Submaximal<br>naproxen dose<br>used. Overall<br>responses were<br>comparable over 12<br>weeks.                                                                                                                                                |

|                            |     |                                       |                                                                                                                                  | motion (p <0.05).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                    |
|----------------------------|-----|---------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                            |     |                                       |                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                    |
| Yocum<br>2000<br>RCT       | 5.5 | N = 774<br>Hip or<br>knee OA<br>flare | Meloxicam<br>3.75 vs. 7.5<br>vs. 15mg a<br>day vs.<br>diclofenac<br>50mg BID vs.<br>placebo for 12<br>weeks.<br>Double<br>dummy. | Discontinuation rates<br>due to lack of efficacy at<br>day 84 were 41%<br>placebo vs. meloxicam<br>31/18/17% vs.<br>diclofenac 12%. Rates<br>of discontinuation at<br>Day 84 due to adverse<br>events were<br>respectively<br>7/10/8/10/9%.<br>Composite adverse<br>events were<br>comparable among 3<br>meloxicam groups and<br>higher than placebo<br>group (66.0%). No<br>differences in GI<br>adverse events<br>between placebo and<br>meloxicam groups. GI<br>adverse events higher<br>in diclofenac than<br>placebo. Other adverse<br>effects, e.g., headache,<br>rash, edema, not<br>different between any<br>groups.                                                                                                                                                             | "For both patient's and<br>investigator's final<br>global assessment of<br>efficacy, the 15-mg/d<br>dosages of meloxicam<br>and diclofenac were<br>statistically significantly<br>superior to placebo for<br>all comparisons." | 12 week trial with<br>similar efficacy<br>results for<br>meloxicam 15mg/d<br>vs. diclofenac 50mg<br>BID. GI effects on<br>diclofenac were<br>higher for diarrhea<br>and N/V, but overall<br>pain improvement<br>trended in favor of<br>diclofenac. |
| Corts Giner<br>1991<br>RCT | 5.0 | N = 85<br>Knee or<br>hip OA           | Droxicam<br>20mg QHS<br>vs. diclofenac<br>50mg TID for<br>6 weeks                                                                | Weeks 1, 3, 6, 49 knee<br>OA patients taking<br>droxicam improved for<br>severity of knee disease<br>( $p < 0.0001$ ), pain<br>intensity ( $p < 0.0001$ ),<br>duration of morning<br>stiffness ( $p < 0.0001$ ),<br>and range of maximal<br>forced flexion ( $p$<br>< $0.0001$ ), and extension<br>( $p < 0.05$ ). Diclofenac<br>had statistically<br>significant results. More<br>rescue paracetamol in<br>diclofenac than<br>droxicam at 3 ( $p =$<br>0.0119) and 6 weeks ( $p =$<br>0.0142). After 1, 3, 6<br>weeks, 31 hip OA<br>patients treated by<br>droxicam or diclofenac<br>improved for hip<br>disease ( $p < 0.01$ ) and<br>pain intensity ( $p <$<br>< $0.0001$ ). No<br>differences between<br>treatments. Fewer GI<br>symptoms in droxicam<br>at 6 weeks ( $p = 0.0258$ ) | "Both oral droxicam<br>and diclofenac are of<br>benefit in reducing<br>pain and improving<br>joint motion and<br>function in patients<br>with osteoarthritis of<br>the hip and knee.                                           | Methodology details<br>and some results<br>sparse, especially<br>for hip OA. Very high<br>dropout (55.3%)<br>precludes strong<br>conclusions.                                                                                                      |
| Bingham<br>2007            | 5.0 | N =<br>1,207                          | Etoricoxib<br>30mg QD vs.                                                                                                        | WOMAC pain scores<br>(baseline/12 weeks):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | "Etoricoxib 30mg qd<br>was at least as                                                                                                                                                                                         | No significant<br>differences in                                                                                                                                                                                                                   |
|                            |     | (Study 1:                             | CEIECOXID                                                                                                                        | etoricoxid 67.4±16.2/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | effective as celecoxib                                                                                                                                                                                                         | efficacy or side                                                                                                                                                                                                                                   |

| 2 identical<br>RCTs                  |     | N = 599;<br>Study 2:<br>N = 608)<br>patients<br>who<br>were<br>prior<br>NSAID<br>or aceta-<br>minophe<br>n users | 200mg QD vs<br>placebo for 12<br>weeks.                                                                                                                         | $39.6\pm22.9$ vs. celecoxib<br>$67.5\pm16.3/42.8\pm22.9$ vs.<br>placebo $66.6\pm16.2/54.2$<br>$\pm24.6$ (p > 0.05<br>comparing active<br>treatments; p < 0.001<br>compared with<br>placebo). Safety and<br>tolerability of etoricoxib<br>and celecoxib appeared<br>similar.                                                                                                                                                                                                                                                            | 200mg qd and had<br>similar safety in the<br>treatment of knee and<br>hip OA; both were<br>superior to placebo."                                                                                                                                                                                                                                                                    | effects prolife of<br>etoricoxib compared<br>to celecoxib. 20%<br>dropout at 12 weeks<br>in both groups.                                                                                                        |
|--------------------------------------|-----|------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Kiff<br>1994<br>RCT                  | 5.0 | N =<br>1,023<br>RA or<br>OA                                                                                      | Diclofenac<br>50mg<br>misoprostol<br>200µg vs.<br>diclofenac<br>50mg vs.<br>ibuprofen<br>600mg. All<br>BID or TID at<br>physician<br>discretion for<br>4 months | Total good/very good<br>patient ratings: 51, 50,<br>45% (graphic<br>interpretations).<br>Physician ratings of<br>good/very good: 51, 49,<br>46% (graphic<br>interpretations).<br>Adverse effects in 336<br>(66.3%), 159 (60.5%)<br>and 152 (60.1%).<br>Dyspepsia in 11.0%,<br>6.5%, 6.3%<br>respectively.                                                                                                                                                                                                                              | "Arthrotecwas as<br>effective as diclofenac<br>sodium 50 mg alone<br>and more effective<br>than ibuprofen 600 mg<br>for the treatment of<br>arthritis."                                                                                                                                                                                                                             | Some details<br>sparse. High dropout<br>rates. Submaximal<br>ibuprofen dose and<br>variable dosing<br>frequency in all 3<br>arms precludes<br>conclusion regarding<br>more efficacious<br>treatment.            |
| Clarke<br>1975<br>Crossover<br>Trial | 5.0 | N = 50<br>Knee<br>and/or<br>hip OA                                                                               | Naproxen<br>250mg BID vs<br>indometacin<br>[sic] 25mg<br>QID for 4<br>weeks for<br>each drug.<br>Double<br>dummy.                                               | Night pain changes:<br>naproxen -0.53±1.01 vs.<br>indometacin -0.48±0.85<br>(NS). Other measures<br>of rest pain, pain on<br>moving after rest,<br>prolonged standing and<br>walking not different<br>between treatments.<br>Sub-analyses suggest<br>knee pain more difficult<br>to treat. Objective<br>assessments of stair<br>climbing and walking<br>times improved for knee<br>and hip patients on both<br>treatments, but not<br>different between<br>treatments. Indometacin<br>adverse effects 128 vs.<br>naproxen 85, p <0.01. | "In almost all<br>parameters there was<br>significant<br>improvement from<br>baseline on both<br>drugs, the magnitude<br>of improvement being<br>statistically equivalent.<br>Side-effects recorded<br>during the naproxen<br>treatment period were<br>significantly fewer than<br>during indometacin<br>treatment."                                                                | No washout period<br>prior to trial start.<br>Comparable efficacy<br>suggested. Quality<br>evidence<br>indomethacin has<br>higher adverse<br>effect profile.                                                    |
| Singer<br>2000<br>RCT                | 5.0 | N = 178<br>Hip OA                                                                                                | Dexibuprofen<br>(400mg TID)<br>vs.<br>dexibuprofen<br>(200mg TID)<br>vs. ibuprofen<br>(800mg TID)<br>for 15 days                                                | Improvements in<br>WOMAC pain:<br>ibuprofen 800mg<br>( $5.50\pm3.28$ ) vs.<br>dexibuprofen 400mg<br>( $6.30\pm3.95$ ).<br>Dexibuprofen 400mg<br>failed to show<br>superiority to racemic<br>ibuprofen, but was<br>borderline (p = 0.055).<br>Dexibuprofen 200mg<br>less effective than<br>dexibuprofen 400mg (p<br>= 0.023). Patient global<br>efficacy (excellent and<br>very good): Dex 200mg<br>56.7% vs. Dex 400mg<br>47.1% vs. IBU 40.6%.                                                                                         | "The active enantiomer<br>dexibuprofen (S (+)-<br>ibuprofen) proved to<br>be an effective non-<br>steroidal anti-<br>inflammatory drug with<br>a significant dose-<br>response relationship<br>in patients with painful<br>osteoarthritis of the<br>hip. Compared with<br>racemic ibuprofen half<br>of the daily dose of<br>dexibuprofen shows at<br>least equivalent<br>efficacy." | Blinding, allocation,<br>and compliance<br>details are sparse.<br>Suggests<br>dexibuprofen at ½<br>dose is equivalent to<br>racemic ibuprofen.<br>However, there is no<br>clear clinical<br>advantage reported. |

| Davies<br>1980<br>Crossover<br>trial | 5.0 | N = 21<br>Hip OA             | Tolmetin<br>sodium<br>400mg TID<br>vs.<br>indomethacin<br>25mg TID for<br>2 weeks.<br>Double<br>dummy. | Patients with severe<br>limitations: 12 before<br>tolmetin, 11 before<br>indomethacin;<br>decreased to 4 after<br>each treatment.<br>Tolmetin and<br>indomethacin favored<br>over placebo in all<br>measures, but no<br>difference between<br>treatments.                                                                                                                                                                                                                                                                                  | "The degree of pain<br>relief produced by both<br>tolmetin sodium and<br>indomethacin in the<br>context of this clinical<br>study was good."                                                                                                       | Small sample size,<br>low power led to<br>general trends but<br>few statistics<br>significant.                                                                                              |
|--------------------------------------|-----|------------------------------|--------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Meurice<br>1983<br>RCT               | 5.0 | N = 60<br>Knee or<br>hip OA  | Tiaprofenic<br>acid 200mg<br>TID vs<br>indomethacin<br>33.3mg TID<br>for 3 months                      | Data mostly provided<br>for knee patients. Both<br>treatments efficacious<br>at reducing pain scores,<br>pain with movement,<br>overall severity ratings<br>(p <0.05). Tiaprofenic<br>acid scores for pain at<br>rest lower at multiple<br>time points (graphic<br>data, p <0.05). Mean<br>time to achieve initial<br>benefit was 18.9 days<br>for tiaprofenic acid vs.<br>26.4 days for<br>indomethacin (p <0.05).<br>Time to achieve<br>maximum benefit similar<br>(61.3 days for<br>tiaprofenic acid vs.<br>indomethacin 63.0<br>days). | "[T]his study has<br>shown that tiaprofenic<br>acid was better<br>tolerated and at least<br>as effective as<br>indomethacin in the<br>treatment over a 3-<br>month period of elderly<br>patients with<br>osteoarthritis of the<br>hips and knees." | Outcome differences<br>favoring tiaprofenic<br>acid over<br>indomethacin of<br>clinical uncertainty<br>as no differences in<br>overall severity and<br>efficacy ratings.                    |
| Kriegel<br>2001<br>RCT               | 5.0 | N = 370<br>Hip or<br>knee OA | Nimesulide<br>100mg BID<br>vs. naproxen<br>250mg QAM<br>and 500mg<br>QPM                               | Equivalence for knee<br>and/or hip OA (data not<br>given). WOMAC pain<br>scores (baseline/12<br>months): nimesulide<br>$(234.1\pm86.9/172.7\pm$<br>116.0) vs. naproxen<br>$(240.4\pm94.4/177.7\pm$<br>125.3); 152 (83.1%) on<br>nimesulide and 160<br>(85.6%) on naproxen<br>reported adverse<br>events. Gastrointestinal<br>adverse events reported<br>with nimesulide (n = 77,<br>47.5%) vs. naproxen (n<br>= 6, 54.5%), NS.                                                                                                             | "This study<br>demonstrates<br>nimesulide to be as<br>effective as naproxen<br>in the long-term<br>treatment of patients<br>with OA of the knee<br>and hip."                                                                                       | Study details<br>lacking. Differences<br>in GI side effects did<br>not reach statistical<br>significance. Results<br>suggest comparable<br>efficacy.                                        |
| Car<br>1978<br>RCT                   | 5.0 | N = 79<br>Hip OA             | Diclofenac<br>50mg BID vs.<br>naproxen<br>250mg BID<br>for 2 weeks.<br>Double<br>dummy.                | Percent of patients with<br>improvement in joint<br>pain severity: diclofenac<br>31/37 (83.8%) vs.<br>naproxen 32/39<br>(82.0%). Patient opinion<br>that they improved:<br>diclofenac (81.6%) vs.<br>naproxen (70.3%).                                                                                                                                                                                                                                                                                                                     | "[B]oth drugs provide<br>effective symptomatic<br>treatment for these<br>patients."                                                                                                                                                                | Submaximal doses<br>used with short trial.<br>Baseline<br>characteristics non-<br>homogeneous. Data<br>suggest comparable<br>efficacy, but<br>weaknesses<br>preclude strong<br>conclusions. |
| Keet<br>1979                         | 5.0 | N = 35<br>Hip and/           | Diflunisal<br>250mg BID<br>vs. ibuprofen                                                               | No symptoms or<br>improvement at Week 8<br>in 16/17 (94.1%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | "No significant<br>differences between<br>diflunisal and ibuprofen                                                                                                                                                                                 | Allocation and<br>baseline variables<br>unclear. No                                                                                                                                         |

| RCT                                                             |     | or knee<br>OA                          | 400mg TID for<br>8 weeks.<br>Double<br>dummy.                                                                                                                 | diflunisal vs. 14/17<br>(82.4%) ibuprofen. All<br>improved from baseline<br>(p <0.01) in multiple<br>pain measures at<br>Weeks 2, 4, and 8.<br>Except for significant<br>decrease (p <0.01) in<br>hemoglobin in ibuprofen<br>group, no lab<br>abnormalities.                                                                                                                              | in the treatment of<br>osteoarthritis of the hip<br>and/or knee."                                                                                                                                                                                                                                                                                    | differences in<br>efficacy or safety<br>profile. OTC<br>ibuprofen dosage<br>used.                                                                                                                            |
|-----------------------------------------------------------------|-----|----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Frank<br>1977<br>Crossover<br>Trial                             | 5.0 | N = 30<br>Hip OA                       | Flurbiprofen<br>50mg TID vs.<br>indomethacin<br>25mg TID<br>daily for 2<br>weeks<br>intervals                                                                 | Not well-balanced<br>distribution between<br>those on flurbiprofen and<br>those on indomethacin<br>first. Pain severity<br>scores: baseline 3.5,<br>after flurbiprofen 1.4,<br>after indomethacin 1.3<br>(NS). No differences<br>between drugs in night<br>pain or duration of<br>morning stiffness.                                                                                      | "The results of this<br>double-blind crossover<br>study show that<br>flurbiprofen in a dosage<br>of 150 mg daily is<br>effective in alleviating<br>symptoms in patients<br>with osteoarthrosis of<br>the hip, the<br>improvement from<br>baseline values<br>reaching statistical<br>significance."                                                   | Sparse study details.<br>Suggests<br>comparable efficacy.                                                                                                                                                    |
| Valtonen<br>1979<br>Crossover<br>Trial                          | 5.0 | N = 53<br>Hip or<br>knee OA            | Fenbufen<br>200mg TID<br>vs. aspirin<br>1.2g TID for 8<br>weeks                                                                                               | Pain at rest difference<br>from baseline at Week 4<br>fenbufen 0.46 vs. aspirin<br>0.48. Week 8,<br>differences aspiring 0.50<br>vs. fenbufen 0.39.<br>Fenbufen preferred;<br>42.5% vs. 57.5% aspirin.<br>Improvement better for<br>knee than hip OA. No<br>statistically significant<br>differences between<br>drugs. Adverse effects:<br>57% vs. 40%<br>(significance not<br>reported). | "It seems evident that<br>the efficacy of 600 mg<br>Fenbufen daily in the<br>relief of symptoms and<br>improvement in<br>treating of<br>osteoarthrosis of the<br>knee or hip joints is<br>equivalent to that of<br>3.6 g Aspirin daily. In<br>addition to that<br>Fenbufen was<br>associated with fewer<br>side effects during the<br>trial period." | Allocation unclear.<br>Blinding unclear. No<br>significant<br>differences exist<br>based on<br>information<br>provided.                                                                                      |
| Kogstad<br>1981<br>Crossover<br>Trial                           | 4.5 | N = 164<br>Hip or<br>knee OA           | Piroxicam<br>20mg QAM<br>vs. naproxen<br>vs. placebo<br>250mg BID<br>for 4 weeks<br>each                                                                      | Pain on movement:<br>placebo 4.9, piroxicam<br>3.3, placebo 4.4,<br>naproxen 3.5. Night<br>pain, ability to walk<br>similar findings. Reverse<br>sequence with<br>comparable findings. No<br>differences in adverse<br>effects.                                                                                                                                                           | "[P]atients' and<br>investigators'<br>preference for any of<br>the three treatments,<br>based on efficacy and<br>toleration, significantly<br>favoured piroxicam."                                                                                                                                                                                   | Sparse details.<br>Washout at pre-<br>study and crossover<br>unclear. Overall<br>assessment<br>suggests<br>comparable efficacy,<br>although<br>submaximal<br>naproxen dose<br>used.                          |
| Liyanage<br>1977-1978<br>2<br>randomized<br>crossover<br>trials | 4.5 | N = 24<br>N = 40<br>Hip and<br>knee OA | Tolmetin<br>400mg TID<br>vs. 200mg<br>TID for 2<br>weeks.<br>Tolmetin<br>400mg TID<br>vs. ketoprofen<br>50mg TID<br>daily for 2<br>weeks.<br>Double<br>dummy. | Comparing doses of<br>tolmetin, physician<br>assessments: 13 better<br>after 600mg vs. 12<br>better after 1,200mg.<br>Other data comparable.<br>Differences between<br>active medication and<br>placebo (1 week<br>washout phase with a<br>placebo) favored active<br>treatment with either<br>tolmetin or ketoprofen.                                                                    | "[N]o significant<br>differences in any of<br>the clinical parameters<br>could be found<br>between the 600 mg<br>and 1200 mg tolmetin<br>daily dose. This may<br>have been due to the<br>small numbers involved<br>in this study. However,<br>it was also considered<br>that the methods used<br>for monitoring the                                  | Short trial periods,<br>small sample size,<br>sparse study details.<br>Suggests no<br>difference between<br>1200mg and 600mg<br>a day tolmetin.<br>Suggests tolmetin<br>and ketoprofen<br>equally effective. |

|                                                     |     |                                                          |                                                                                              | Blood urea nitrogen<br>levels increased on<br>tolmetin and ketoprofen<br>(p <0.05).                                                                                                                                                                                                                                                                                   | efficacy of treatment of<br>osteoarthrosis were<br>probably not sufficiently<br>sensitive to validate<br>subjective changes.<br>The results of the<br>comparative study<br>revealed that both<br>tolmetin and ketoprofen<br>are effective<br>analoesics."                                                                                                                                                        |                                                                                                                                                                   |
|-----------------------------------------------------|-----|----------------------------------------------------------|----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Lund<br>1987<br>RCT<br>Same trial as<br>Jensen 1986 | 4.5 | N = 108<br>Hip or<br>knee OA                             | Tenoxicam<br>20mg QD vs.<br>piroxicam<br>20mg QD for<br>up to 24<br>months in this<br>report | Pain scores did not<br>differ (graphic data).<br>Excellent and good<br>ratings were tenoxicam<br>81% vs. piroxicam 75%<br>(NS). No differences in<br>adverse effects.                                                                                                                                                                                                 | "Both tenoxicam and<br>piroxicam are effective<br>in long-term treatment<br>of osteoarthritis. No<br>statistically significant<br>differences between<br>the efficacy and the<br>tolerance of the drugs<br>were seen. The fact<br>that practically no<br>withdrawals due to<br>side-effects were seen<br>after 12 months shows<br>that the drugs once<br>tolerated remain so<br>despite long-term<br>treatment." | Interim report (2<br>years) in an ongoing<br>study. Suggests<br>equivalent efficacy.                                                                              |
| Chikanza<br>1994<br>Crossover<br>trial              | 4.5 | N = 56<br>Knee<br>and/ or<br>hip OA                      | Etodolac<br>300mg BID<br>vs. naproxen<br>500mg BID<br>for 4 weeks<br>each                    | Patients favored<br>naproxen (n = 18) more<br>often than etodolac (7) (p<br>= 0.044); most favored<br>neither (47) for pain<br>intensity. No differences<br>in preferences for night<br>pain or overall. Morning<br>stiffness borderline<br>favored naproxen (25 vs.<br>23, p = 0.09). More<br>withdrawals for adverse<br>events in etodolac (7) vs.<br>naproxen (2). | "[N]aproxen and<br>etodolac were equally<br>effective in the<br>management of pain<br>and stiffness in<br>osteoarthritis. However,<br>a significantly higher<br>proportion of patients<br>preferred naproxen to<br>etodolac for the relief of<br>pain intensity. The<br>incidence of adverse<br>events caused by<br>either drug was the<br>same."                                                                | Lack of study details<br>and lack of control<br>for co-treatments.<br>Data suggest<br>etodolac may be<br>slightly inferior to<br>naproxen.                        |
| Gyory<br>1972<br>Crossover<br>trials                | 4.5 | Study 1:<br>N = 46<br>RA<br>Study 2:<br>N = 42<br>hip OA | Orudis 25mg<br>QID vs.<br>Indomethacin<br>25mg QID                                           | OA patients: 8 preferred<br>orudis vs. 15<br>indomethacin vs. 19, no<br>difference ( $p = 0.21$ ).<br>Overall preference:<br>orudis 17 vs.<br>indomethacin 19 vs. 6<br>no difference (NS).<br>Higher adverse effects<br>for indomethacin ( $n =$<br>55) vs. orudis ( $n = 34$ ).                                                                                      | "The present studies<br>suggest that in equal<br>dosage clinical efficacy<br>of Orudis is<br>comparable with that<br>of indomethacin."                                                                                                                                                                                                                                                                           | Sparse details.<br>Suggests<br>comparable efficacy.                                                                                                               |
| Levenstein<br>1985<br>RCT                           | 4.5 | N = 309<br>Mostly<br>hip or<br>knee OA                   | Isoxicam<br>200mg QD vs.<br>indomethacin<br>25mg TID for<br>2 weeks.<br>Double<br>dummy.     | Patient assessments<br>(good/very good):<br>isoxicam 113/155<br>(72.9%) vs.<br>indomethacin 111/154<br>(72.1%). Patient<br>tolerance (good/very<br>good): isoxicam 134/155<br>(86.5%) vs.<br>indomethacin 128/154                                                                                                                                                     | "[I]ndomethacin<br>treatment for up to 14<br>days reduced the pain<br>and severity of the<br>clinical symptoms of<br>acute flare-up<br>episodes of osteo-<br>arthritis."                                                                                                                                                                                                                                         | Lack of allocation<br>and baseline details.<br>Short trial period. No<br>statistical analysis<br>presented for<br>adverse effects.<br>Suggests equal<br>efficacy. |

|                                                                              |     |                                           |                                                                                                                               | (83.1%) (NS). Significant<br>improvements both<br>groups after 7 days drug<br>therapy (p <0.001).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                    |
|------------------------------------------------------------------------------|-----|-------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Knüsel<br>1982<br>RCT                                                        | 4.5 | N = 50<br>Moderate<br>to severe<br>hip OA | Carprofen<br>100mg TID<br>vs. diclofenac-<br>sodium 50mg<br>TID for 21<br>days                                                | Pain in key joint and<br>tenderness disappeared<br>or relieved in nearly all<br>patients in both<br>treatment arms. Pain in<br>general disappeared in<br>11/24 (45.8%) carprofen<br>vs. 13/23 (56.5%)<br>diclofenac (NS). Time to<br>walk 20 meters and<br>clinical efficacy did not<br>differ (NS).                                                                                                                                                                                                                                                                                                                     | "The results indicate<br>that in the treatment of<br>moderate to severe<br>coxarthrosis carprofen<br>(300mg daily) and<br>diclofenac-Na (150mg<br>daily) display<br>practically the same<br>efficacy as anti-<br>inflammatory agents."                                                                                                      | Small sample size.<br>Sparse details.<br>Blinding unclear.                                                                                                                                                         |
| McIlwain<br>1988<br>RCT                                                      | 4.5 | N = 38<br>Acute<br>MSDs in<br>athletes    | Piroxicam<br>40mg QD for<br>2 days then<br>20mg QD vs.<br>naproxen<br>500mg BID<br>for 2 days<br>then 375mg<br>BID for 7 days | Measures of physical<br>discomfort improved (p<br><0.001) after 3 and 7<br>days both treatments.<br>Mean reduction in<br>spontaneous pain,<br>swelling, tenderness<br>statistically superior (p<br><0.05) in piroxicam.<br>Overall patient<br>impressions of efficacy<br>(excellent): piroxicam<br>11/16 (68.8%) vs.<br>naproxen 7/18 (38.9%).<br>No difference between<br>treatments for days lost<br>due to injury. Piroxicam<br>larger mean reductions<br>from baseline for<br>spontaneous pain (p =<br>0.047), swelling (p =<br>0.035), and tenderness<br>(p = 0.017) at 1st return<br>visit compared to<br>naproxen | "Piroxicam and<br>naproxen are effective<br>and well-tolerated<br>short-term treatments<br>for acute<br>musculoskeletal<br>injuries in athletes."                                                                                                                                                                                           | Heterogeneity in<br>disorders treated<br>(e.g., sprains of<br>ankle, AC, hand IP,<br>soft tissue injuries of<br>shoulder, knee or<br>hip). No placebo<br>group. Data suggest<br>piroxicam superior to<br>naproxen. |
| Molony<br>1971<br>RCT                                                        | 4.5 | N = 33<br>Hip OA                          | Niflumic acid<br>200mg vs.<br>niflumic acid<br>250mg vs.<br>indomethacin<br>25mg vs.<br>phenylbutazon<br>e 100mg              | All 4 treatments had<br>similar responses<br>regarding pain on<br>passive abduction of the<br>hip and walking pain.<br>No statistically<br>significant differences<br>between the treatments.                                                                                                                                                                                                                                                                                                                                                                                                                            | "Niflumic acid<br>compared favourably<br>with the two control<br>drugs in the<br>management of<br>osteoarthritis of the<br>hip. In the objective<br>measurement of<br>clinical response,<br>niflumic acid 200mg<br>tended to produce the<br>greatest response. The<br>incidence of side<br>effects was similar in<br>all treatment groups." | Suggests no<br>significant<br>advantages of one<br>NSAID over another.<br>Baseline<br>comparability of<br>study measures<br>appears<br>heterogeneous.                                                              |
| Manchester<br>General<br>Practitioner<br>Group<br>1984<br>Crossover<br>Trial | 4.5 | N = 226<br>Hip,<br>knee or<br>spine OA    | Naproxen<br>500mg BID<br>vs. ibuprofen<br>400mg TID for<br>6 weeks total                                                      | Both drugs reduced<br>inactivity stiffness, pain,<br>interference with daily<br>activities, overall<br>disease severity (p <<br>0.01). At 3 weeks,<br>naproxen superior to<br>ibuprofen in relieving<br>movement pain (p =                                                                                                                                                                                                                                                                                                                                                                                               | "Naproxen and<br>ibuprofen were both<br>effective treatments for<br>this group of<br>osteoarthritics seen in<br>general practice.<br>Naproxen was more<br>effective than<br>ibuprofen and was                                                                                                                                               | Use of submaximal<br>dose ibuprofen<br>compared with full<br>dose naproxen<br>precludes an ability<br>to assess which is<br>more efficacious.                                                                      |

|                                           |     |                                       |                                                                                                                                                                   | 0.009), night pain (p =<br>0.056); 10 patients on<br>naproxen, 5 on<br>ibuprofen withdrew from<br>trial because of side-<br>effects.                                                                                                                                                                                                                                      | preferred by more<br>patients, but was<br>associated with a<br>larger number of side-<br>effects."                                                                                                                          |                                                                                                                                                                                                                          |
|-------------------------------------------|-----|---------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Gordin<br>1985<br>Crossover<br>Trial      | 4.0 | N = 21<br>Hip or<br>knee OA           | Slow-release<br>indomethacin<br>(50mg) vs.<br>naproxen<br>(250mg), 2<br>tablets daily<br>for 3 weeks                                                              | Most patients pain-free<br>at end of both treatment<br>periods, 2 almost no<br>change; 9 preferred<br>slow-release<br>indomethacin tablets; 6<br>naproxen; 4 no<br>preference (NS).                                                                                                                                                                                       | "Analysis of results from<br>19 patients showed that<br>both drugs effectively<br>alleviated pain, and<br>there was no difference<br>between indomethacin<br>and naproxen in this<br>respect."                              | Small sample size.<br>Sparse data.<br>Suggests<br>comparable efficacy.                                                                                                                                                   |
| Björkenheim<br>1985<br>Crossover<br>Trial | 4.0 | N = 75<br>Hip or<br>knee OA           | Naproxen<br>1000mg QD<br>vs. Piroxicam<br>20mg QD for<br>4 weeks each                                                                                             | Global assessment<br>disease activities<br>(asymptomatic plus<br>mild): naproxen (51/ 66<br>= 77.3%) vs. piroxicam<br>(63.6%), p = 0.04.<br>Treatment differences<br>favored naproxen (p<br><0.05) for weight-<br>bearing pain,<br>physician/patient global<br>assessments of patient<br>response to therapy.<br>Both groups chose<br>naproxen.                           | "[N]aproxen 100 mg<br>once daily was more<br>effective than<br>piroxicam 20 mg once<br>daily for the treatment<br>of osteoarthritis."                                                                                       | Sparse study details.<br>Data suggest<br>naproxen superior to<br>piroxicam.                                                                                                                                              |
| Verbruggen<br>1982<br>Crossover<br>Trial  | 4.0 | N = 21<br>Hip,<br>knee or<br>spine OA | Nabumetone<br>1gm QHS vs.<br>naproxen<br>250mg BID<br>for 2 weeks<br>each                                                                                         | Patients improved both<br>treatments. No patient<br>preferences. Tolerance:<br>15 no preference, 6<br>preferred nabumetone,<br>0 preferred naproxen.                                                                                                                                                                                                                      | "Both drugs were<br>considered to be<br>equally effective and<br>were both well<br>tolerated No evidence<br>was found of changes in<br>renal, hepatic or<br>haematopoietic function<br>with the two drugs<br>tested."       | Small sample size,<br>scant statistical<br>analysis provided.                                                                                                                                                            |
|                                           |     |                                       | Gast                                                                                                                                                              | rointestinal Complication                                                                                                                                                                                                                                                                                                                                                 | S                                                                                                                                                                                                                           |                                                                                                                                                                                                                          |
| Agrawal<br>1999<br>RCT                    | 9.5 | N =<br>1,398<br>Hip or<br>knee OA     | Upper GI<br>safety of<br>arthrotec 75<br>(diclofenac<br>sodium 75mg<br>misoprostol<br>200µg) BID<br>vs.<br>nabumetone<br>1,500mg QD<br>vs. placebo<br>for 6 weeks | Overall adverse events<br>in 67% arthrotec vs.<br>61% nabumetone vs.<br>57% placebo. Final<br>endoscopy showed<br>lower combined<br>incidence of gastric and<br>duodenal ulcers<br>Arthrotec 4% vs.<br>nabumetone 11% (p<br><0.001). No significant<br>differences in combined<br>gastric and duodenal<br>ulcers based on H pylori<br>status among groups (p<br>= 0.560). | "There appeared to be<br>no consistent<br>correlation between<br>the presence or<br>absence of H pylori<br>infection and an<br>increase or decrease<br>in the overall incidence<br>of ulcers associated<br>with NSAID use." | Naproxen arm<br>discontinued due to<br>high incidence of<br>ulceration rate<br>(37%). Data suggest<br>diclofenac/misoprost<br>ol effective at<br>reducing gastric<br>ulcers compared<br>with nabumetone<br>and naproxen. |
| Bocanegra<br>1998<br>RCT                  | 7.5 | N = 572<br>Knee or<br>hip OA          | Diclofenac<br>(D50/M200)<br>50mg plus<br>misoprostol<br>200µg TID vs.<br>diclofenac<br>75mg plus<br>misoprostol                                                   | Patient global<br>assessments Week 6: D<br>(-1.46±1.21) vs.<br>D50/M200 (-1.38±1.03)<br>vs. D75/M200 (-<br>1.50±1.12) vs. placebo (-<br>0.85±1.27).<br>Improvements on all                                                                                                                                                                                                | "Diclofenac 50<br>mg/misoprostol 200 µg<br>tid and diclofenac 75<br>mg misoprostol 200 µg<br>bid are as efficacious<br>as diclofenac 75 mg<br>bid in the treatment of<br>OA, but are associated                             | Lack of details on<br>blinding,<br>randomization. 6<br>week study with pre<br>and post endoscopy<br>demonstrated GI<br>protective effect of<br>misoprostol.                                                              |

|                           |     |                                                     | 200µg BID<br>(D75/M200)<br>vs. diclofenac<br>75mg bid (D)<br>vs. placebo<br>for 6 weeks.                                               | active treatments (p<br><0.002); no differences<br>among active<br>treatments. Dyspepsia<br>most common adverse<br>event in all treatment<br>groups. Endoscopic<br>stomach and/or<br>duodenal ulcers:<br>diclofenac 17% vs. 8%<br>D50/M200 vs. 7%<br>D75/M200 vs. 4%<br>placebo (p <0.04<br>between diclofenac and<br>other active treatments).<br>Overall withdrawals from<br>adverse events not<br>different. | with significantly lower<br>incidence of gastric<br>and/or duodenal<br>ulcers."                                                                                                                                             |                                                                                                                                                                                                                              |
|---------------------------|-----|-----------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Lisse<br>2003<br>RCT      | 7.0 | N =<br>5,557<br>Knee,<br>hip hand<br>or spine<br>OA | Rofecoxib<br>25mg day vs.<br>naproxen<br>500mg twice<br>daily for 3<br>months.<br>Double<br>dummy.                                     | Discontinuation due to<br>adverse GI events lower<br>in rofecoxib (5.9% vs.<br>8.1%), RR = 0.74 (95%<br>CI 0.60-0.92, p = 0.005).<br>Similar findings in low-<br>dose ASA takers. Less<br>GI medication use in<br>rofecoxib group (9.1%<br>vs. 11.2%, p = 0.014).<br>Two perforations, ulcers,<br>or bleeding episodes in<br>rofecoxib vs. 9 naproxen<br>(RR = 0.22, p = 0.038).                                | "[R]ofecoxib, 25 mg<br>once daily, was as<br>efficacious as<br>naproxen, 500 mg<br>twice daily, in<br>controlling symptoms<br>over a 3-month period<br>and was associated<br>with significantly better<br>GI tolerability." | Very large sample<br>size. No placebo.<br>Participants allowed<br>H-2 blockers.<br>Results suggest<br>equivalent efficacy<br>for pain, but higher<br>adverse GI<br>symptoms and<br>bleeds for naproxen<br>vs. rofecoxib.     |
| Melo Gomes<br>1993<br>RCT | 6.5 | N = 643<br>Hip and/<br>or knee<br>OA                | Diclofenac<br>sodium 50mg<br>plus<br>misoprostol<br>200µg BID vs.<br>piroxicam<br>10mg BID vs.<br>naproxen<br>375mg BID<br>for 4 weeks | Changes in OA severity<br>indices: diclofenac/<br>misoprostol -4.27 vs.<br>piroxicam -3.19 vs.<br>naproxen -3.79, p =<br>0.015. Global<br>assessment scores did<br>not differ. On<br>endoscopy, proportion<br>with gastroduodenal<br>ulcers: diclofenac/<br>misoprostol 3 (1.5%) vs.<br>piroxicam 21 (10.3%) vs.<br>naproxen 17 (8.6%) (p =<br>0.001).                                                          | "[T]he fixed<br>combination of<br>diclofenac and<br>misoprostol is<br>associated with fewer<br>gastroduodenal ulcers<br>than either piroxicam<br>or naproxen."                                                              | Regular adult<br>dosages not used.<br>Assessor blinding<br>not clear.<br>Endoscopic results<br>suggest<br>diclofenac/misoprost<br>ol reduces risk of<br>adverse GI events<br>compared with 2<br>other NSAIDs.                |
| Lohmander<br>2005<br>RCT  | 6.5 | N = 970<br>Hip or<br>knee OA                        | AZD3582<br>750mg BID<br>vs. naproxen<br>500mg BID<br>vs. placebo<br>for 6 weeks                                                        | Endoscopic evidence of<br>significant GI damage<br>(Lanza scores 3 and 4):<br>AZD3583 (32.2%) vs.<br>naproxen (43.7%) vs.<br>placebo (7.0%).<br>WOMAC: AZD3582 (-<br>15.9) vs. naproxen (-<br>14.7) vs. placebo (-5.8).<br>WOMAC scores tended<br>to decrease more in<br>knee than hip.                                                                                                                         | "AZD3582 had similar<br>analgesic effects to<br>naproxenthe 30%<br>difference in the<br>incidence of<br>gastroduodenal ulcers<br>after six weeks of<br>treatmentwas not<br>(significant)."                                  | Lacks methodology<br>details. Shows no<br>advantage of<br>AZD3582 after 6-<br>week trial for<br>endoscopic GI<br>outcomes or pain<br>outcomes. Trends in<br>data suggest hip OA<br>less treatable with<br>either medication. |

| Hayllar<br>1996<br>Crossover<br>Trial | 5.0 | N = 19<br>Hip or<br>knee OA   | Flosulide<br>20mg BID vs.<br>naproxen<br>500mg BID<br>each for 2<br>weeks                                                                                             | Flosulide tolerated<br>better than naproxen<br>(90% vs. 47% good to<br>excellent, p <0.005).<br>Gastric Lanza damage<br>scores (combined<br>grades 2, 3, 4): flosulide<br>(n = 5, 26%) vs.<br>naproxen (12, 63%), p =<br>0.0006.                                                                                                                                                                                                                                                          | "The selective COX-2<br>inhibitor, flosulide, is<br>significantly better<br>tolerated and causes<br>less gastric mucosal<br>damage than naproxen<br>when given for two<br>weeks."                                                                                    | Small sample size.<br>Endoscopic study<br>suggests fewer<br>mucosal (gastric)<br>erosions with<br>flosulide after 2<br>week treatment<br>period compared<br>with naproxen.                                                                                                                                                                                                                                                                |
|---------------------------------------|-----|-------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Becvár<br>1999<br>RCT                 | 5.0 | N = 394<br>Hip or<br>knee OA  | Nabumetone<br>1,500mg QHS<br>vs. diclofenac<br>retard 100mg<br>QHS for 12<br>weeks                                                                                    | Complete and moderate<br>pain relief nabumetone<br>103/177 (58.2%) vs.<br>diclofenac retard 74/156<br>(47.4%). Fewer mucosal<br>changes in esophagus (p<br>= 0.007), stomach (p<br><0.001), but not<br>duodenum among<br>nabumetone compared<br>with diclofenac. Data<br>graphically interpreted,<br>appear to be<br>nabumetone 20%<br>erosions at baseline and<br>16% after treatment and<br>no ulcers vs. diclofenac<br>19% erosions at<br>baseline, 17% at<br>followup, but 9% ulcers. | "[N]abumetone and<br>diclofenac retard have<br>similar efficacy in the<br>treatment of OA, but<br>nabumetone has<br>significantly fewer GIT<br>side effects."                                                                                                        | Diclofenac retard<br>worse than<br>nabumetone for<br>mucosal erosions in<br>the stomach and<br>esophagus, but not<br>in the duodenum.<br>Drugs have<br>comparable efficacy.                                                                                                                                                                                                                                                               |
| Høyeraal<br>1993<br>RCT               | 4.0 | N = 208<br>Hip and<br>knee OA | Tiaprofenic<br>acid 300mg<br>BID vs.<br>naproxen<br>500mg QAM<br>and 250mg<br>QPM vs.<br>placebo BID<br>for 3 weeks.<br>Double<br>dummy.                              | Twenty-eight drops, 17<br>discontinued for<br>reasons related to<br>treatment. Excellent or<br>good responses:<br>tiaprofenic acid 19/62<br>(30.6%) vs. naproxen<br>23/58 (39.7%) vs.<br>placebo 12/60 (20.0%).<br>Percentages of<br>responders in 3 patient<br>groups were 52, 59, and<br>30 respectively.                                                                                                                                                                               | "[I]t appears that what<br>characterizes a<br>responder/nonrespond<br>er to one NSAID does<br>not necessarily apply<br>to another. These sets<br>are related to dosage<br>of the drug,<br>assessment by<br>patient/physician and<br>objective<br>measurements."      | Suggests treatments<br>better guided by<br>predictive variables.<br>Better responders to<br>naproxen young<br>females with high<br>disease activity, low<br>leisure physical<br>activity, few affected<br>joints. Responder to<br>tiaprofenic acid<br>tended to high<br>disease activity, high<br>leisure physical<br>activity, high platelet<br>count, little morning<br>stiffness, few<br>affected joints,<br>gradual disease<br>onset. |
| <b>—</b>                              |     |                               | Edu                                                                                                                                                                   | cation Regarding NSAIDs                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| RCT                                   | 7.0 | N = 252<br>Hip or<br>knee OA  | Diciorenac<br>with<br>misoprostol<br>treatment with<br>in depth<br>computer<br>program<br>about<br>disease,<br>treatment,<br>patient<br>involvement<br>vs. medication | Significant effect of<br>education on appropriate<br>utilization ( $p = 0.029$ ).<br>Changes in medication<br>knowledge ( $p = 0.02$ ),<br>self-efficacy ( $p = 0.005$ ),<br>ease of adherence ( $p = 0.002$ ), realistic<br>expectations ( $p = 0.01$ )<br>greater intervention<br>group. No difference<br>between groups for<br>illness intrusiveness,                                                                                                                                  | Patient education<br>emphasizing the<br>distinction between<br>appropriate and<br>inappropriate utilization<br>of medication is a<br>promising new adjunct<br>to the management of<br>OA. Patient<br>involvement is<br>essential in proper<br>treatment of disease." | binding methods<br>are not clear. The<br>study demonstrated<br>positive benefits of<br>educational material<br>in improving<br>compliance and<br>setting realistic<br>expectations.                                                                                                                                                                                                                                                       |

|                                         |          |                                   | with generic<br>information<br>about OA                                                                                          | pain, or disability;<br>greater improvement in<br>stiffness in experimental<br>group ( $n = 0.04$ )                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                            |
|-----------------------------------------|----------|-----------------------------------|----------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                         | <u> </u> |                                   | Het                                                                                                                              | erotopic Bone Prevention                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | l.                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                            |
| Fransen<br>2006<br>RCT                  | 9.0      | N = 902<br>THA                    | Ibuprofen<br>400mg TID<br>vs. placebo<br>for 14 days<br>after total hip<br>arthroplasty                                          | No differences in hip<br>pain after 6 to 12<br>months (mean<br>difference -0.1, p =<br>0.59) or physical<br>function (-0.1, p = 0.48).<br>Secondary outcomes<br>(global assessments<br>and physical activity)<br>also negative. Risk of<br>severe ectopic bone<br>formation Booker grade<br>3 or 4 with ibuprofen<br>(0.69, 95% CI 0.57-<br>0.83). Bleeding risk,<br>ibuprofen RR = 2.09, p<br>= 0.46.                                                                                                               | "These data do not<br>support the use of<br>routine prophylaxis<br>with NSAIDs in<br>patients undergoing<br>total hip replacement<br>surgery."                                                                                                                                                                                             | Author suggests<br>guidelines should be<br>based on clinically<br>important outcomes<br>and not on<br>radiographic<br>findings. Data show<br>ibuprofen<br>significantly reduces<br>risks of ectopic bone<br>formation, but with<br>double risk of major<br>bleeding.                                                                                       |
| Sell<br>2004<br>RCT                     | 7.5      | N = 245<br>THA                    | Cholestyramin<br>e-bound<br>diclofenac<br>75mg QD vs.<br>BID for 14<br>days post op                                              | In diclofenac 150mg,<br>19% slight heterotopic<br>ossification (Booker 1,<br>none more severe) vs.<br>75mg which had 17%<br>grade 1 and 4% grade 2<br>Booker. No clinical<br>difference after 6<br>months.                                                                                                                                                                                                                                                                                                           | "Although the two<br>doses displayed<br>similar efficacy the<br>author recommends<br>the lower dose<br>because of the lower<br>instance of adverse<br>gastrointestinal event<br>(23% vs. 38%,<br>p=0.02)."                                                                                                                                 | Co-administration of<br>proton pump<br>inhibitors likely<br>resulted in lower<br>side effect profile.<br>No placebo control.                                                                                                                                                                                                                               |
| Kjaersgaard-<br>Andersen<br>1989<br>RCT | 5.0      | N = 176<br>All<br>Iubinus<br>THA  | Indomethacin<br>25mg TID vs.<br>placebo for 6<br>weeks post-<br>operative                                                        | One year after THA,<br>development of Grace II<br>or III heterotopic bone<br>formation differed:<br>indomethacin 0/90 (0%)<br>vs. placebo 44/86<br>(51.2%). Six weeks<br>after arthroplasty, mean<br>ESR: indomethacin<br>15mm an hour vs.<br>placebo 21mm an hour.                                                                                                                                                                                                                                                  | "The present study has<br>shown the<br>development of severe<br>ecotopic ossification<br>after THA to result in a<br>significant elevation in<br>the six-weeks ESR.<br>Moreover, at 12 weeks<br>after arthroplasty,<br>reasons other than<br>deep infection may<br>cause ESR to rise<br>above 35 mm/hour."                                 | Data suggest<br>indomethacin<br>reduces heterotopic<br>bone formation.<br>Trend towards<br>higher ESR in those<br>forming heterotopic<br>bone.                                                                                                                                                                                                             |
| Persson<br>1998<br>RCT                  | 4.5      | N = 144<br>All<br>Charnley<br>THA | Ibuprofen<br>400mg TID for<br>3 weeks vs.<br>ibuprofen for<br>1 week and<br>placebo for 2<br>weeks vs.<br>placebo for 3<br>weeks | Both ibuprofen-treated<br>groups showed less HO<br>than placebo-treated<br>group (p = 0.001 for 21<br>days of treatment, and p<br>= 0.008 for 8 treatment<br>days). After 12 months,<br>21-day treatment group<br>had no patient with<br>grade III or IV HO vs. 2<br>grade III or IV HO vs. 2<br>grade III in 8-day group<br>vs. 5 grade III and 2<br>grade IV in placebo (p =<br>0.002), 21-day<br>treatment group and p =<br>0.005 for 8-day group).<br>No difference between<br>2 active treatments (p =<br>0.8). | "[P]ostoperative<br>prophylaxis with<br>NSAIDs is highly<br>effective in preventing<br>clinically relevant<br>degrees of HO after<br>THA. The treatment<br>should start early<br>postoperatively and<br>continue for at least 8<br>days. It appears to be<br>cost-effective and the<br>treatment of choice in<br>patients at risk for HO." | Lack of study<br>details. Data<br>suggest at least one<br>week of treatment<br>after hip arthroplasty<br>is effective to<br>prevent heterotopic<br>bone formation.<br>Data suggest larger<br>trial may indicate 3<br>weeks is superior for<br>prevention of more<br>advanced bone<br>formation, however<br>this study<br>underpowered for<br>that outcome. |

| Dorn<br>1998<br>RCT     | 5.0  | N = 249<br>Cement-<br>less THA                     | Indomethacin<br>50mg TID for<br>4 days vs. 8<br>days                                                                                                             | At 1 year, Booker<br>grades II, III and IV<br>heterotopic bone: 4<br>days 13/104 (12.5%) vs.<br>8 days 3/105 (2.9%) (p<br><0.05).                                                                                                                                                                                                                                                                          | "[T]he incidence of<br>heterotopic bone<br>formation after total hip<br>arthroplasty was not<br>statistically different<br>after 4-day and 8-day<br>treatment. The<br>incidence of<br>substantial heterotopic<br>bone formation was<br>statistically significantly<br>less (p=0.03) after the<br>8-day treatment."                                          | No placebo group.<br>Randomized by<br>government ID<br>number. Data<br>suggest longer<br>treatment superior.                                                                       |
|-------------------------|------|----------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                         |      |                                                    | Osteoa                                                                                                                                                           | rthrosis Measurement To                                                                                                                                                                                                                                                                                                                                                                                    | ols                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                    |
| Averbuch<br>2004<br>RCT | 5.5  | N = 206<br>Hip OA<br>flare-up                      | Naproxen<br>sodium<br>500mg BID<br>vs. placebo<br>for 12 weeks.<br>Pain<br>measured in<br>Visual analog<br>vs categorical<br>scales.                             | Results taken at<br>screening, baseline, 2,<br>6, and 12 weeks. Visual<br>analog and categorical<br>scales appear similarly<br>effective in determining<br>average osteoarthritis<br>pain.                                                                                                                                                                                                                 | "Looking at the OA pain<br>model as an exemplar<br>for chronic pain<br>generally, we found a<br>good correspondence<br>between unconstrained<br>VAS and 5-point CAT<br>scale pain<br>measurements."<br>However, some<br>variance likely "due to<br>individual judgment<br>differences as to how<br>to relate to the VAS<br>line."                           | Study of subjective<br>pain assessment<br>tools (outcome<br>measurement) as<br>comparison was not<br>the variable<br>randomized.                                                   |
|                         |      |                                                    |                                                                                                                                                                  | Miscellaneous                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                    |
| Wagentiz<br>2007<br>RCT | 10.0 | N = 210<br>Hip and/<br>or knee<br>OA               | Diclofenac<br>100mg in a<br>SR-cap vs.<br>SR-tab QAM<br>for 14 days                                                                                              | VAS pain scores (ITT)<br>(baseline/Day 14): Cap<br>64.8±11.2/21.2±19.7 vs.<br>Tab 63.8±11.0/27.7±<br>23.0. Total adverse<br>events higher Tab<br>group (39.0%) than Cap<br>group (30.8%).                                                                                                                                                                                                                  | "Diclofenac was found<br>to be clinically non-<br>inferior to the<br>reference formulation<br>for reducing pain in<br>patients with painful<br>OA of the knee and/or<br>hip."                                                                                                                                                                               | Diclofenac in both<br>formulations are<br>effective for pain<br>relief, but SR-<br>capsule had<br>modestly lower<br>reported adverse<br>effects.                                   |
| Rashad<br>1989<br>RCT   | 5.0  | N = 105<br>Hip OA<br>awaiting<br>arthro-<br>plasty | Indomethacin<br>50mg QD vs.<br>75mg QD vs.<br>azapropazone<br>600mg QD vs.<br>900mg QD for<br>variable<br>lengths of<br>treatment<br>followed to<br>arthroplasty | Initial day pain scores<br>higher for<br>azapropazone but not<br>significant. Final day<br>scores azapropazone<br>higher (p < 0.05). Time<br>to arthroplasty 50%<br>longer in azapropazone<br>(15.65, SE 1.63<br>months) vs.<br>indomethacin (10.39,<br>SE 0.84 months), p<br><0.01. Overall reduction<br>in joint space on x-ray<br>trended slower in hips<br>with azapropazone vs.<br>indomethacin (NS). | "The patients receiving<br>azapropazone, who<br>had higher<br>concentrations of<br>synovial vasodilator<br>prostaglandins, took<br>longer than the<br>indomethacin group to<br>reach the arthroplasty<br>end-point. Potent<br>inhibitors of<br>prostaglandin<br>synthesis may be<br>inappropriate in the<br>management of<br>osteoarthritis of the<br>hip." | Some details<br>sparse. Authors<br>believe patients at<br>similar<br>pathophysiological<br>end-point when they<br>came to arthroplasty<br>(determined by pain,<br>x-ray findings). |

| Vinje<br>1993<br>Crossover<br>trial   | 7.0 | N = 163<br>Hip or<br>knee OA         | Ketoprofen<br>200mg QAM<br>vs. QPM for 4<br>weeks each                                                                      | Both schedules<br>effective ( $p < 0.01$ ); most<br>results NS between<br>treatment. Mean<br>unused ketoprofen<br>tablets: 1.2am vs.<br>0.6pm dosings ( $p =$<br>0.05). Rescue use<br>higher with evening<br>dosing ( $p = 0.10$ ); 64<br>preferred morning<br>dosing vs. 52 evening.<br>Total frequency of GI<br>symptoms not different. | "No significant<br>differences were<br>detected in degree of<br>GI-symptoms between<br>the two treatment<br>periods."                                                                                                                                                                                                                                                                                                            | Although statistical<br>significance needed<br>for differences on<br>VAS pain scale,<br>patient preference<br>was only 53% for<br>morning dose over<br>evening dose. Data<br>suggest no<br>meaningful<br>differences.       |
|---------------------------------------|-----|--------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Levi<br>1985<br>Crossover<br>trial    | 7.0 | N = 66<br>Hip or<br>knee OA          | Indomethacin<br>SR 75mg.<br>Medication<br>taken at 8am<br>vs. noon vs.<br>8pm vs.<br>placebo for 1<br>week intervals        | Circadian pain rhythms<br>confirmed 23/57 (40%)<br>of subjects and<br>suspected in 9 (15.8%).<br>More adverse effects for<br>morning dosing (p<br><0.001); 96% of 25<br>subjects with<br>undesirable adverse<br>effects found changed<br>dosing time changed<br>tolerance.                                                                | "Evening dosing was<br>most effective in<br>subjects with<br>predominantly<br>nocturnal or morning<br>pain; conversely,<br>morning or noon<br>dosing was most<br>effective in subjects<br>with greater afternoon<br>or evening pain."                                                                                                                                                                                            | Study suggests<br>relationship of<br>optimal dosing to<br>circadian pain<br>rhythms, suggesting<br>optimal dosing of SR<br>indomethacin should<br>be individualized<br>(taken anticipating<br>when maximal pain<br>occurs). |
| Stengaard-<br>Pedersen<br>2004<br>RCT | 5.5 | N = 697<br>Knee or<br>hip OA         | Celecoxib<br>200mg QAM<br>vs. celecoxib<br>200mg QPM<br>vs. celecoxib<br>100mg BID<br>for 12 weeks                          | WOMAC composite<br>scores were -11.19 vs.<br>-12.23 and -11.69 for<br>each group (NS). No<br>differences in patient<br>satisfaction with pain<br>relief, ability to walk or<br>bend, and willingness to<br>continue medication.                                                                                                           | "[R]egardless of the<br>time of day at which<br>celecoxib 200 mg q.d.<br>is administered,<br>patients are equally<br>satisfied with the pain<br>relief, ability to walk<br>and bend, and<br>willingness to continue<br>medication."                                                                                                                                                                                              | Sparse methodology<br>details. Data<br>suggest timing of<br>NSAID is not<br>important.                                                                                                                                      |
|                                       | 1   | <b>J</b>                             | 1                                                                                                                           | Enteric-coating                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1                                                                                                                                                                                                                           |
| Bakshi<br>1993<br>RCT                 | 7.0 | N = 129<br>Knee<br>and/ or<br>hip OA | Diclofenac<br>dispersible vs.<br>enteric-coated<br>50mg TID for<br>12 weeks                                                 | No differences in<br>treatment efficacy<br>(graphic data,<br>approximately 60%<br>reductions in VAS joint<br>pain with activity). No<br>differences in adverse<br>events (40.3% vs.<br>37.3%, p <0.73). Total<br>GI adverse events (++<br>and +++): dispersible<br>21/62 (33.9%) vs. EC<br>16/67 (23.9%).                                 | "Overall assessments<br>of efficacy by the<br>patients and the<br>investigator indicated a<br>positive response rate<br>for both diclofenac<br>formulations ranging<br>between 71% and<br>82%. The proportion of<br>patients reporting<br>adverse effects,<br>predominantly gastro-<br>intestinal, was slightly<br>higher in the dispersible<br>group, 40.3%,<br>compared to 37.3%<br>with enteric-coated<br>diclofenac sodium." | Data suggest<br>comparability with<br>no benefits of enteric<br>coating of<br>diclofenac.                                                                                                                                   |
| Bakshi<br>1996<br>RCT                 | 5.5 | N = 216<br>Hip or<br>knee OA         | Diclofenac<br>resinate<br>capsules<br>75mg BID vs.<br>enteric-coated<br>diclofenac<br>sodium<br>tablets 50mg<br>TID. Double | VAS rest pain (baseline/<br>12 weeks): diclofenac<br>resinate (55.6/22.5) vs.<br>diclofenac sodium<br>(56.9/25.4), p = 0.34.<br>Similar results for<br>activity pain and<br>stiffness. Patients much<br>better/better: diclofenac                                                                                                         | "[T]he results of this<br>trial confirm the well-<br>established favourable<br>tolerability profile of<br>diclofenac sodium and<br>also show that this<br>NSAID administered<br>once or twice daily at<br>75 mg as a resinate                                                                                                                                                                                                    | No placebo<br>comparisons. No<br>baseline provided on<br>comparability.<br>Generally<br>comparable<br>medication<br>preparations,<br>however trends in                                                                      |

|                                                   |     |                                                                                          | dummy.                                                                                                                                                         | resinate (75/85 =<br>88.2%) vs. diclofenac<br>sodium (72/94 =<br>76.6%). Functional<br>limitation improvements<br>compared with baseline<br>in 59% diclofenac<br>resinate vs. 37%<br>diclofenac sodium (p =<br>0.055).                                                                                                                                                                                                                                                                                                                  | formulation is effective<br>for controlling the<br>symptoms of<br>osteoarthritis."                                                                                                                                                                                                                | favor of diclofenac<br>residinate.                                                                                                                                                             |
|---------------------------------------------------|-----|------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                   |     | _                                                                                        | Sustained                                                                                                                                                      | Release vs. Immediate R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | elease                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                |
| Toft<br>1985<br>Crossover<br>Trial                | 5.0 | N = 84<br>Hip and/<br>or knee<br>OA                                                      | Ketoprofen<br>sustained-<br>release<br>formulation<br>200mg QD vs.<br>normal<br>formulation<br>100mg BID 3<br>weeks each                                       | Both treatments<br>effective. No differences<br>in preferences between<br>preparations (SR<br>preferred by 23 vs. 19,<br>NS).                                                                                                                                                                                                                                                                                                                                                                                                           | "No significant<br>differences between<br>the treatments were<br>found."                                                                                                                                                                                                                          | No mention of<br>compliance. Sparse<br>data presented.<br>Data suggest<br>comparable efficacy.                                                                                                 |
| Bacon<br>1990<br>Randomized<br>Crossover<br>Trial | 4.5 | N = 77<br>Hip and/<br>or knee<br>OA                                                      | Indomethacin<br>controlled-<br>release tablet<br>75mg QD vs<br>indomethacin<br>immediate<br>release<br>capsule 25mg<br>TID for 4<br>weeks                      | No difference in rescue<br>paracetamol use<br>between treatments.<br>Pain on passive<br>movement after<br>treatments combining<br>mild and none:<br>controlled-release 43/66<br>(65.2%) vs. immediate-<br>release indomethacin<br>37/66 (56.1%), both<br>improved compared<br>with baseline (p <0.01).<br>Patient assessment of<br>global efficacy showed<br>no statistically<br>significant treatment<br>differences; light-<br>headedness<br>significantly greater with<br>immediate-release than<br>controlled-release (p<br><0.05). | "Both immediate-<br>release and controlled-<br>release indomethacin<br>significantly reduced<br>pain on passive<br>movement of the worst<br>affected joint<br>compared to baseline.<br>No treatment<br>differences were<br>found, however, for<br>this or any of the other<br>efficacy measures." | Lack of details. No<br>baseline data of<br>population although<br>was a cross-over<br>study, yet had<br>significant dropouts.<br>No clear differences<br>or advantages of<br>either treatment. |
|                                                   | l   |                                                                                          | GI Issu                                                                                                                                                        | Jes: Proton Pump Inhibito                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ors                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                |
| Chan<br>2002<br>RCT                               | 9.5 | N = 210<br>RA, OA,<br>and<br>other<br>forms of<br>arthritis<br>with<br>ulcer<br>bleeding | Omeprazole<br>20mg plus<br>amoxicillin 1g<br>plus<br>clarithromycin<br>500mg vs.<br>omeprazole<br>20mg and<br>placebo<br>antibiotics<br>each BID for 1<br>week | H pylori eradicated in<br>90% vs. 6% controls.6-<br>month probability of<br>ulcers 12.1% (95% Cl<br>3.1-21.1) in eradication<br>group vs. 34.4% (21.1-<br>47.7) in controls ( $p =$<br>0.0085); 6-month<br>probabilities of<br>complicated ulcers<br>4.2% (1.3-9.7) vs.<br>27.1% (14.7-39.5), $p =$<br>0.0026.                                                                                                                                                                                                                          | "Screening and<br>treatment for H pylori<br>infection significantly<br>reduces the risk of<br>ulcers for patients<br>starting long-term<br>NSAID treatment."                                                                                                                                      | One week treatment<br>6 months diclofenac<br>SR. Data suggests<br>antibiotics plus<br>omeprazole<br>effective.                                                                                 |
| Labenz<br>2002<br>RCT                             | 9.0 | N = 832<br>H pylori<br>positive                                                          | Omeprazole<br>20mg BID vs.<br>amoxicillin 1g<br>BID vs.<br>clarithromycin<br>500mg BID<br>for 1 week                                                           | Relative risk reduction<br>(%) (95% CI) and<br>absolute risk reduction<br>(%) (95% CI) for the<br>treatment groups was<br>as follows: OAC-P: 79<br>(4.5-95), 4.6 (0.7-8.5);                                                                                                                                                                                                                                                                                                                                                             | "In H pylori infected<br>patients, all three<br>active therapies<br>reduced the<br>occurrence of NSAID<br>associated peptic ulcer<br>and dyspeptic                                                                                                                                                | All diclofenac 50mg<br>twice a day for 5<br>weeks. Other arms<br>treatment for 1<br>week. Three<br>treatment arms all<br>reduced risk                                                          |

|                         |     |                                                                                                                                                                        | (OAC), plus 4<br>weeks of<br>placebo QD<br>(OAC-P);<br>OAC for 1<br>week plus 4<br>weeks<br>omeprazole<br>20mg QD<br>(OAC-O);<br>omeprazole<br>20mg QD for<br>1 plus 4<br>weeks (O-O);<br>or placebo for<br>5 weeks (P-P) | OAC-O: 80 (11.1-96),<br>4.7 (0.8-8.6); O-O: 100,<br>5.8 (2.1-9.5).                                                                                                                                                                                                                                                                                                  | symptoms requiring therapy."                                                                                                                                                                                                                                                  | comparably. Results<br>may not be<br>generalized beyond<br>H pylori infected<br>patients.                                                                        |
|-------------------------|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Scheiman<br>2006<br>RCT | 9.0 | VENUS<br>study: N<br>= 844;<br>PLUTO<br>study: N<br>= 585<br>At-risk<br>patients<br>(≥60<br>years<br>and/or<br>ulcer<br>history)                                       | Esomeprazole<br>20mg vs.<br>esomeprazole<br>40mg vs.<br>placebo QD<br>for 6 months.                                                                                                                                       | 16.5% (95% CI: 9.7–<br>23.4) on COX-2s or<br>placebo developed<br>ulcers over 6 months<br>vs. 0.9% (95% CI: 0–<br>2.6) esomeprazole<br>20mg and 4.1% (95%<br>CI: 0.6–7.6)<br>esomeprazole 40mg (p<br>< 0.001, p = 0.002) vs.<br>placebo, respectively.                                                                                                              | "For at-risk patients,<br>esomeprazole was<br>effective in preventing<br>ulcers in long-term<br>users of NSAIDs,<br>including COX-2<br>inhibitors."                                                                                                                           | Two RCTs with large<br>sample size. Study<br>suggests efficacy.                                                                                                  |
| Regula<br>2006<br>RCT   | 9.0 | N = 595<br>Rheumati<br>c patients<br>on<br>continual<br>NSAIDs<br>with at<br>least 1<br>more re-<br>cognized<br>risk factor<br>that<br>contribute<br>s to GI<br>injury | Pantoprazole<br>20mg vs.<br>pantoprazole<br>40mg vs.<br>omeprazole<br>20mg QD for<br>6 months                                                                                                                             | At 6 months, probability<br>of therapeutic remission<br>90% pantoprazole 20mg<br>QD, 93% pantoprazole<br>40 mg QD, and 89%<br>omeprazole 20mg QD.<br>Probabilities of<br>endoscopic failure 9%<br>vs. 5% vs. 7%<br>respectively (NS).                                                                                                                               | "For patients taking<br>NSAIDs continually,<br>pantoprazole 20 mg<br>o.d., pantoprazole 40<br>mg o.d., or omeprazole<br>20 mg o.d. provide<br>equivalent, effective,<br>and well-tolerated<br>prophylaxis against GI<br>lesions, including<br>peptic ulcers."                 | Large population of<br>rheumatoid arthritis,<br>osteoarthritis,<br>multiple conditions<br>and spine for 6<br>months of treatment.<br>Suggests equal<br>efficacy. |
| Yeomans<br>2008<br>RCT  | 9.0 | N = 991<br>Patients<br>≥60<br>years<br>without<br>baseline<br>gastro-<br>duodenal<br>ulcer<br>receiving<br>aspirin<br>75-<br>325mg<br>daily                            | Esomeprazole<br>20mg QD vs.<br>placebo for 26<br>weeks.                                                                                                                                                                   | Twenty-seven (5.4%) in<br>placebo group with<br>gastric or duodenal<br>ulcer during 26-week<br>treatment vs. 8 (1.6%)<br>inesomeprazole group<br>(life-table estimates:<br>6.2%vs 1.8%; p =<br>0.0007). At 26 weeks,<br>cumulative proportion<br>with erosive esophagitis<br>lower for esomeprazole<br>vs. placebo (4.4% vs.<br>18.3%, respectively; p<br><0.0001). | "Esomeprazole 20 mg<br>once daily reduces the<br>risk of developing<br>gastric and/or<br>duodenal ulcers and<br>symptoms associated<br>with the continuous<br>use of low-dose aspirin<br>in patients aged > or<br>=60 yr without<br>preexisting<br>gastroduodenal<br>ulcers." | Large population.<br>Suggests efficacy.                                                                                                                          |
| Dorta<br>2000           | 8.5 | N = 12                                                                                                                                                                 | Two-week<br>course of                                                                                                                                                                                                     | No differences in healing scores after                                                                                                                                                                                                                                                                                                                              | "In healthy subjects, omeprazole does not                                                                                                                                                                                                                                     | Crossover study with small sample size.                                                                                                                          |
| RCT                     |     | Healthy volunteer                                                                                                                                                      | omeprazole<br>(40mg) plus                                                                                                                                                                                                 | administration of<br>placebo/diclofenac                                                                                                                                                                                                                                                                                                                             | accelerate the healing<br>of pre-existing mucosal                                                                                                                                                                                                                             | Short-term<br>treatments of                                                                                                                                      |

Copyright© 2016 Reed Group, Ltd.

|                                    | S                                                                                                                                                                                                    | "separate 2-<br>week course<br>of an identical<br>looking<br>placebo."<br>Water-soluble<br>diclofenac<br>(50mg) taken<br>2nd week. | (median = 6; range 0-6)<br>and omeprazole/<br>diclofenac (median = 9;<br>range 0-6; p = 0.17)<br>were found.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | lesions or prevent the<br>development of small<br>diclofenac-induced<br>mucosal lesions."                                                                                                                                                           | unclear clinical<br>significance.                                                  |
|------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|
| Bianchi 8.<br>Porro<br>2000<br>RCT | 3.5 N = 104<br>RA or<br>OA                                                                                                                                                                           | 40mg<br>pantoprazole<br>vs. placebo<br>QD for 12<br>weeks                                                                          | Difference in probability<br>of remaining free of<br>peptic ulcer 5% (95%<br>CL-13%, = 23%) at 4<br>weeks and 13% (-9%, =<br>33%) at 12 weeks.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | "Pantoprazole 40mg<br>once daily was well<br>tolerated and is more<br>effective than placebo<br>in the prevention of<br>peptic ulcers in<br>patients with rheumatic<br>diseases who require<br>continuous, long-term,<br>treatment with<br>NSAIDs." | RA or OA 12 week<br>treatment. Suggests<br>efficacy.                               |
| Hawkey 7.<br>2005<br>RCT           | 7.5 2 RCTs:<br>N = 608<br>and N =<br>556<br>(NASAI,<br>SPACE<br>1)<br>Con-<br>tinuous<br>NSAID<br>users<br>free of<br>gastro-<br>duodenal<br>ulcers,<br>erosive<br>esophag-<br>itis, and<br>H pylori | Esomeprazole<br>20mg, vs.<br>esomeprazole<br>40mg vs.<br>placebo QD<br>for 4 weeks                                                 | Time to relief superior<br>with active treatments<br>with esomeprazole<br>20mg and 40mg vs.<br>placebo (NASA1: $p =$<br>0.0137, $p =$ 0.0053;<br>SPACE1: $p < 0.0001$ , $p =$<br>0.0002). Symptom<br>relief shorter for<br>esomeprazole 20mg<br>and 40mg vs. placebo<br>in each study (11 and<br>10 days vs. 17 days<br>NASA1 and 10 and 11<br>days vs. 21 days in<br>SPACE 1). Symptom-<br>free days over 4 weeks<br>higher for esomeprazole<br>in both studies (31%<br>esomeprazole 20mg,<br>29% esomeprazole 20mg,<br>29% esomeprazole<br>40mg vs. 21% on<br>placebo in NASA1, $p =$<br>0.0025 and $p =$ 0.0103,<br>respectively, 29%, 27%<br>and 14% respectively,<br>in SPACE1, $p <$ 0.0001<br>vs. placebo both<br>esomeprazole doses). | "Esomeprazole 20 mg<br>and 40 mg improve<br>upper GI symptoms<br>associated with<br>continuous, daily<br>NSAID therapy,<br>including selective<br>COX-2 inhibitors."                                                                                | 2 large studies.<br>NASA I-E40 group<br>had higher<br>percentage >75<br>years old. |
| RCT                                | 5.5 N = 169<br>Patients<br>taking<br>NSAIDs<br>regularly,<br>chronic-<br>ally, and<br>above<br>defined<br>minimum<br>doses                                                                           | Omeprazole<br>20mg vs.<br>placebo,<br>given for up to<br>6 months                                                                  | Fourteen (14) patients<br>treated with placebo<br>(16.5%) developed 15<br>ulcers compared to 3<br>patients (3.6%) on<br>omeprazole (p <0.01).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | "Omeprazole is an<br>effective agent for<br>gastroduodenal<br>prophylaxis in patients<br>taking NSAIDs. Its<br>main effect is to reduce<br>the rate of development<br>of gastric and duodenal<br>ulcers."                                           | Up to 6 months of treatment.                                                       |
| Stupnicki 6.<br>2003<br>RCT        | 5.5 N = 515<br>Rheum-<br>atic                                                                                                                                                                        | Pantoprazole<br>20mg plus<br>placebo vs.<br>misoprostol                                                                            | Pantoprazole superior<br>to misoprostol (p =<br>0.005) for endoscopic<br>failure. Estimated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | "Pantoprazole 20 mg<br>o.d. is superior to<br>misoprostol 200<br>microg b.i.d. in the                                                                                                                                                               | Six-month treatment.<br>Study suggests<br>pantoprazole<br>superior to              |

Copyright© 2016 Reed Group, Ltd.

|                                 |     | patients<br>likely to<br>take<br>NSAIDs<br>contin-<br>uously<br>for at<br>least 6<br>months                    | 200µg                                                                                                                                                   | remission rates 3 and 6<br>months, 98 and 95%<br>(pantoprazole); 95 and<br>86% (misoprostol).<br>Discontinuations for<br>likely/definitely drug-<br>related adverse effects:<br>13/257 (5%)<br>pantoprazole vs. 33/258<br>(13%) misoprostol.                                                                                                  | prevention of NSAID-<br>induced<br>gastrointestinal lesions<br>and symptoms in<br>patients on continuous<br>long-term treatment<br>with NSAIDs due to<br>rheumatic diseases<br>and at risk to develop<br>such lesions or<br>symptoms."                                                                                                                                                                       | misoprostol.                                                                                                                                                   |
|---------------------------------|-----|----------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Desai<br>2008<br>RCT            | 6.5 | N = 70<br>Healthy<br>adults<br>aged 50-<br>75 not<br>taking<br>chronic<br>NSAIDs                               | Naproxen<br>500mg BID<br>plus<br>omeprazole<br>20mg QD vs.<br>naproxen<br>500mg BID<br>plus placebo<br>for a 6.5-day<br>treatment                       | Less gastroduodenal<br>ulcers in naproxen plus<br>omeprazole vs.<br>naproxen plus placebo<br>[11.8% (4 ulcers/34<br>subjects) vs. 46.9%<br>(15/32), RR = 0.25, p =<br>0.002]. NPX plus OMP<br>associated with<br>decreased risk of<br>ulceration and erosion<br>[5 erosions [38.2%<br>(13/34) vs. 81.3%<br>(26/32), RR = 0.47, P B<br>0.001]. | "[O]MP at the U.S.<br>OTC dosage of 20 mg<br>daily begun on Day 1<br>of NSAID treatment<br>reduces both GDUs<br>and dyspepsia with<br>OMP. Therefore, in<br>view of the relatively<br>low cost, availability,<br>and good safety profile<br>of OTC OMP, co-<br>prescription of a PPI in<br>relatively healthy older<br>patients requiring<br>short-term non-specific<br>NSAID therapy may be<br>reasonable." | "Pilot Study"; unclear<br>whether endoscopy<br>data translate to<br>clinical outcomes to<br>support conclusion.                                                |
| Bianchi<br>Porro<br>1998<br>RCT | 6.0 | N = 114<br>Arthritic<br>disorders<br>requiring<br>indometh<br>-acin,<br>diclo-<br>fenac, or<br>keto-<br>profen | Omeprazole<br>20mg QD vs.<br>placebo for 3<br>weeks. All<br>patients given<br>indomethacin<br>100mg,<br>ketoprofen<br>150mg, and<br>diclofenac<br>150mg | 26/57 (46%) of<br>omeprazole vs. 20/57<br>(35%) of placebo group<br>with normal<br>gastroduodenal mucosa<br>(score = 0). Clinically<br>significant gastric<br>lesions (score 3-4) in<br>6/57 (11%) omeprazole<br>vs. 11/57 (19%) on<br>placebo.                                                                                               | "Omeprazole 20mg<br>once daily is<br>significantly more<br>effective than placebo<br>in the prevention of<br>gastric and duodenal<br>ulcers due to chronic<br>NSAIDs treatment and<br>may provide clinical<br>advantages, in terms<br>of tolerability, over<br>currently available<br>prophylactic<br>therapies."                                                                                            | Three weeks of<br>treatment added to<br>NSAID. Data<br>support treatment.                                                                                      |
| Bergmann<br>1992<br>RCT         | 6.0 | N = 12<br>Healthy<br>volunteer<br>s                                                                            | Lansoprazole<br>30mg QD vs.<br>placebo plus<br>aspirin for 1<br>week                                                                                    | Mean Lanza scores<br>0.67±0.98 with<br>lansoprazole vs.<br>2.25±1.1 with placebo<br>(p <0.005).                                                                                                                                                                                                                                               | "[I]t is possible to<br>distinguish the<br>functional and<br>morphologic effects of<br>a gastrotoxic drug<br>such as aspirin during<br>experimental studies in<br>humans. Lansoprazole<br>prevents hemorrhagic<br>lesions without<br>reinforcing the<br>mucosal barrier."                                                                                                                                    | Crossover study with<br>small sample size (n<br>= 12). Short<br>experimental design<br>of 1 week.                                                              |
| Niwa<br>2008<br>RCT             | 5.5 | N = 10<br>Healthy<br>subjects                                                                                  | Rebamipide<br>300mg plus<br>diclofenac<br>75mg plus<br>omeprazole<br>20mg vs.<br>placebo plus<br>diclofenac<br>75mg plus<br>omeprazole                  | Number of subjects with<br>small-intestinal mucosal<br>injuries significantly<br>higher in placebo group<br>(8/10) than rebamipide<br>group (2.10) ( $p =$<br>0.023).                                                                                                                                                                         | "Rebamipide had<br>significantly higher<br>efficacy than placebo<br>in preventing NSAID-<br>induced small-<br>intestinal mucosal<br>injury."                                                                                                                                                                                                                                                                 | Crossover trial with<br>small sample size (n<br>= 10). Evaluation of<br>small intestine. 7<br>day treatment. Data<br>suggests efficacy for<br>small intestine. |

|                                    |     |                                                                                                                                                                                          | 20mg QD for                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                    |
|------------------------------------|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Miyake<br>2005<br>RCT              | 5.0 | N = 194<br>RA in<br>patients<br>treated<br>over a<br>long term<br>with<br>NSAIDs                                                                                                         | Famotidine<br>20mg BID vs.<br>lansoprazole<br>15mg QD for<br>24 weeks                                                                                     | 8% (1/13) peptic ulcer<br>onset rate infamotidine<br>vs. 2/13 (15%)<br>lansoprazole (NS).                                                                                                                                                                                                                                                                                                                                                                        | "In Japan, normal-dose<br>H2RA is expected to<br>be a new PU<br>preventive treatment<br>strategy in patients<br>requiring long-term<br>NSAID therapy."                                                                                                                                                                                                                                                                                                                                                          | RA patients on<br>NSAIDs with peptic<br>ulcers scars 24-<br>week treatment;<br>small sample (n =<br>26). Under-reported<br>study.                                                                  |
| Scheiman<br>1994<br>RCT<br>Bilotto | 4.5 | N = 20<br>Healthy<br>volunteer<br>s                                                                                                                                                      | Omeprazole<br>40mg QD vs.<br>placebo plus<br>aspirin 650mg<br>QID for 2<br>weeks                                                                          | Omeprazole reduced<br>PUD 55% vs. 10% (p<br><0.01). Endoscopic<br>evidence of intraluminal<br>bleeding or ulceration in<br>70% of placebo vs. 15%<br>of omeprazole (p<br><0.001).                                                                                                                                                                                                                                                                                | "Omeprazole<br>40mg/day significantly<br>prevented both gastric<br>and duodenal injury<br>due to 2600mg<br>aspirin/day over the<br>two-week period of our<br>studyOmeprazole<br>40mg/day prevented<br>95% of subjects from<br>developing ulceration,<br>85% from having >15<br>erosions (all ≤3mm in<br>size), and 55% from<br>having >5 erosions. In<br>the subjects given<br>placebo, 25%<br>developed gastric<br>ulcers, 70% had grade<br>3 injury or worse, and<br>all 95% had at least<br>grade 2 injury." | Crossover, short 2<br>week study.                                                                                                                                                                  |
| RCT                                | 4.0 | N = 127<br>H pylori<br>positive<br>patients<br>with no<br>severe<br>gastro-<br>duodenal<br>lesions                                                                                       | 40mg QD plus<br>amoxicillin 1g<br>BID and<br>clarithromycin<br>250mg BID<br>for 1 week vs.<br>pantoprazole<br>40mg QD for<br>1 month                      | Algner incidence of<br>severe gastroduodenal<br>damage in Group PAC<br>vs. Group P (29% vs.<br>9%, p <0.05). Percent<br>of patients worsened,<br>unchanged, improved<br>after 1 month Group<br>PAC: 46%, 46%, and<br>9% vs. Group P: 7%,<br>65%, 29% (p <0.0008).                                                                                                                                                                                                | Dhe month of<br>pantoprazole was<br>more effective than a<br>proton pump inhibitor-<br>based triple therapy in<br>the prevention of<br>gastroduodenal<br>damage in elderly H.<br>pylori-positive NSAID<br>users."                                                                                                                                                                                                                                                                                               | friple therapy for 1<br>week pantoprazole<br>for 1 month reduces<br>strength of<br>conclusion regarding<br>what is efficacious<br>vs. efficacy of 1<br>month when 1 arm<br>still actively treated. |
|                                    |     |                                                                                                                                                                                          | (                                                                                                                                                         | GI Issues: Misoprostol                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                    |
| Raskin<br>1995<br>RCT              | 9.0 | N =<br>1,623<br>Patients<br>with<br>upper<br>gastro-<br>intestinal<br>symptom<br>s during<br>NSAID<br>therapy<br>and no<br>endo-<br>scopic<br>evidence<br>of gastric<br>or duo-<br>denal | Placebo QID<br>vs.<br>misoprostol<br>200µg BID<br>and placebo<br>BID vs.<br>misoprostol<br>200µg TID<br>and placebo<br>QD vs.<br>misoprostol<br>200µg QID | Gastric ulcers in 51/325<br>(15.7%) on placebo vs.<br>29/358 (8.1%) on<br>misoprostol BID vs.<br>13/336 (3.9%) on<br>misoprostol TID vs.<br>6/152 (4.0%) on QID.<br>The incidence of gastric<br>ulcers lower compared<br>with placebo with<br>misoprostol BID<br>(difference, 7.6% [95%<br>CI, 2.7% to 12.5%]; p =<br>0.002), TID (difference,<br>11.8% [CI, 7.4% to<br>16.3%]; p < 0.001), and<br>QID (difference, 11.7%<br>[CI, 6.7% to 16.8%]; p <<br>0.001). | "In patients receiving<br>long-term NSAID<br>therapy who are being<br>considered for<br>misoprostol therapy,<br>dosages of 200 µg<br>twice or three times<br>daily are effective and<br>better tolerated<br>alternatives to the 200<br>µg four times daily<br>regimen. Protection<br>against NSAID-induced<br>gastric ulcers increases<br>with the dose of<br>misoprostol, but<br>maximum protection<br>appears to be achieved<br>with doses of 400 to                                                          | Twelve week trial.<br>Data support BID or<br>TID dosing as well<br>as QID.                                                                                                                         |

|                                     | ulcers                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                    | 600 µg daily. Maximum<br>protection against<br>NSAID-induced<br>duodenal ulcers can be<br>achieved with doses as<br>low as 400 µg daily.<br>Physicians prescribing<br>misoprostol should<br>choose a dosage that<br>best balances the<br>drug's mucosal<br>protective effects with<br>its side effects."                                                                                                                                                                                         |                                                                                                        |
|-------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|
| Bianchi 7.5<br>Porro<br>1997<br>RCT | N = 70<br>RA or<br>OA with<br>endos-<br>copically<br>normal<br>mucosa                                                                                    | Misoprostol<br>TID:<br>misoprostol<br>200µg and<br>ranitidine<br>placebo after<br>every meal 3<br>times daily vs.<br>misoprostol<br>BID:<br>Misoprostol<br>200µg after<br>breakfast and<br>dinner,<br>misoprostol<br>placebo after<br>lunch;<br>ranitidine<br>placebo after<br>every meal vs.<br>ranitidine<br>150mg after<br>breakfast and<br>dinner,<br>ranitidine<br>placebo after<br>lunch; ant<br>misoprostol<br>placebo after<br>breakfast and<br>dinner,<br>ranitidine | 70% of MISO TID group<br>vs. 48% in MISO BID<br>group vs. 21% in RAN<br>group with normal<br>gastroduodenal mucosa<br>(score = 0) (p <0.01<br>between MISO TID and<br>RAN). Incidence of<br>gastrointestinal<br>symptoms did not differ<br>between 3 treatment<br>groups. 56% with<br>gastroduodenal ulcer<br>had no gastrointestinal<br>symptoms. | The study confirms<br>that "[M]isoprostol is as<br>effective as ranitidine<br>in the short-term<br>prevention naproxen-<br>induced duodenal<br>lesions, but<br>significantly better as<br>far as the gastric<br>mucosa is concerned.<br>Because the dosages<br>used in this specific<br>study proved to be<br>effective and well<br>tolerated, misoprostol<br>b.i.d. might, in our<br>opinion, be proposed<br>as an alternative in<br>patients who need<br>prophylaxis against<br>NSAID damage." | RA or OA. Data<br>suggest misoprostol<br>is superior to<br>ranitidine.                                 |
| Raskin 7.0<br>1996<br>RCT           | N = 538<br>Patients<br>on<br>chronic<br>NSAID<br>therapy<br>with<br>NSAID-<br>related<br>upper GI<br>pain<br>without<br>gastric or<br>duodenal<br>ulcers | Misoprostol<br>200µg QID vs.<br>ranitidine<br>150mg BID<br>for 8 weeks                                                                                                                                                                                                                                                                                                                                                                                                        | More gastric ulcers (p = $0.009$ ) in ranitidine<br>group (11 ulcers with a<br>rate of 5.64%) vs.<br>misoprostol (1 ulcer with<br>a rate of 0.55%). Total<br>gastrointestinal AEs<br>more (p < $0.05$ ) more<br>often in misoprostol<br>group.                                                                                                     | "[M]isoprostol and<br>ranitidine are equally<br>effective for the<br>prevention of duodenal<br>ulcers. NSAID-induced<br>ulcers can occur in<br>either the stomach or<br>duodenum. Since only<br>misoprostol has been<br>shown effective in the<br>prevention of both<br>NSAID-induced gastric<br>and duodenal ulcers,<br>misoprostol should be<br>the therapy of choice<br>for the prevention of<br>such ulcers in patients<br>at risk."                                                         | Eight week trial.<br>Data suggest<br>misoprostol is<br>superior to ranitidine<br>for prevention of GU. |
| Graham 7.0<br>1993                  | N = 638<br>Patients                                                                                                                                      | Misoprostol<br>200µg vs.                                                                                                                                                                                                                                                                                                                                                                                                                                                      | At 12 weeks, duodenal ulcer in 2/320 (0.6%;                                                                                                                                                                                                                                                                                                        | "Misoprostol significantly lowers the                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Twelve week trial.<br>Data support                                                                     |

| RCT                                           |     | with<br>chronic<br>inflamm-<br>atory or<br>nonin-<br>flamatory<br>arthritis<br>taking an<br>NSAID<br>but no<br>gastric or<br>duodenal<br>ulcer | placebo for 12<br>weeks                                                                             | 95% Cl, 0.2% to 3.9%)<br>misoprostol, vs. 15/323<br>(4.6%; Cl, 2.8% to 8%)<br>placebo (p = 0.002).                                                                                                                                                                                                                                                                         | frequency of both<br>duodenal and gastric<br>ulcer development in<br>patients who require<br>long-term therapy with<br>NSAIDS."                                                                                                                                                                | misoprostol<br>efficacious.                                                                                          |
|-----------------------------------------------|-----|------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|
| Bardhan<br>1993<br>RCT                        | 7.0 | N = 358<br>Patients<br>requiring<br>chronic<br>NSAID<br>therapy<br>(Group 1<br>=<br>normal;<br>Group 2<br>= non-<br>ulcer<br>lesions)          | Misoprostol<br>400-800µg<br>daily vs.<br>placebo<br>tablets for 2<br>weeks                          | Incidence of severe<br>mucosal damage<br>reduced by misoprostol<br>(odds ratio; 95% CI).<br>Group I: 4.52; 1.94,<br>10.51 ( $p = 0.018$ ); Group<br>II: 10.93; 1.09, 109.60 ( $p = 0.014$ ); Groups I and II<br>combined: 5.95; 3.23,<br>10.94 ( $p = 0.0003$ ).<br>Misoprostol protected<br>from progression of<br>minor to severe damage<br>in Group II ( $p < 0.001$ ). | "Significant GD<br>damage occurs early<br>in the course of NSAID<br>treatment and<br>misoprostol<br>significantly reduces<br>the incidence of such<br>damage."                                                                                                                                 | Variable dose<br>NSAID and variable<br>misoprostol.<br>Supports<br>misoprostol and<br>reduces early<br>NSAID damage. |
| Lanza<br>Gastro-<br>enterology<br>1988<br>RCT | 6.5 | N = 90<br>Normal<br>volunteer<br>s                                                                                                             | Misoprostol<br>200µg QID vs.<br>cimetidine<br>300mg QID<br>vs. placebo<br>for 7 days                | Overall success rates<br>8/30 (26.7%) for<br>placebo, 19/30 (63.3%)<br>cimetidine, 27/29<br>(93.1%) misoprostol (p<br>< $0.001$ ). Pairwise<br>comparisons:<br>misoprostol vs. placebo<br>(p < $0.001$ ), misoprostol<br>vs. cimetidine (p =<br>0.006), cimetidine vs.<br>placebo (p = $0.004$ ).                                                                          | "[M]isoprostol is highly<br>effective and<br>significantly better than<br>cimetidine in protecting<br>the gastric mucosa<br>from tolmetin-induced<br>injury; however, both<br>agents were highly<br>protective in the<br>duodenum."                                                            | Short-term study.<br>Suggest cimetidine<br>inferior for gastric<br>mucosa but not<br>duodenal.                       |
| Agrawal<br>1991<br>RCT                        | 6.5 | N = 253<br>OA<br>patients<br>receiving<br>ibuprofen<br>,<br>piroxica<br>mor<br>napro-<br>xen with<br>abdom-<br>inal pain                       | Misoprostol<br>200µg vs.<br>sucralfate 1g<br>QID a day for<br>12 weeks                              | Gastric ulcer developed<br>in 2/122 (1.6%, 95% Cl,<br>0.3% to 6.4%) on<br>misoprostol vs. 21/131<br>on sucralfate (16%, Cl,<br>10.4% to 23.7%).<br>Difference in ulcer<br>rates: 14.4% (Cl, 10.4%<br>to 19.5%.                                                                                                                                                             | "In patients receiving<br>chronic NSAID therapy<br>for osteoarthritis,<br>treatment with<br>misoprostol for 3<br>months was associated<br>with a significantly<br>lower frequency of<br>gastric ulcer formation,<br>compared with<br>treatment with<br>sucralfate (P less than<br>0.001)."     | OA patients. Study<br>suggests<br>misoprostol is<br>effective compared<br>with sucralfate.                           |
| Graham<br>2002<br>RCT                         | 6.0 | N = 537<br>Patients<br>without H<br>pylori<br>and long-<br>term<br>users of<br>NSAIDs<br>with<br>history of<br>gastric                         | Placebo plus<br>Misoprostol<br>200µg QID vs.<br>15 or 30mg of<br>lansoprazole<br>QD for 12<br>weeks | Patients on NSAIDs.<br>Either dose<br>lansoprazole remained<br>free from gastric ulcer<br>longer vs. placebo (p<br><0.001).Misoprostol<br>group remained free of<br>gastric ulcers longer<br>than placebo (p<br><0.001), 15mg<br>lansoprazole (p = 0.01),<br>or 30mg lansoprazole (p                                                                                       | "Proton pump inhibitors<br>such as lansoprazole<br>are superior to placebo<br>for the prevention of<br>NSAID-induced gastric<br>ulcers but not superior<br>to misoprostol, 800<br>microg/d. When the<br>poor compliance and<br>potential adverse<br>effects associated with<br>misoprostol are | Not blinded to<br>misoprostol. H pylori<br>negative.                                                                 |

|              |     | ulcer     |                   | = 0.04).                                  | considered, proton        |                                     |
|--------------|-----|-----------|-------------------|-------------------------------------------|---------------------------|-------------------------------------|
|              |     |           |                   |                                           | pump inhibitors and       |                                     |
|              |     |           |                   |                                           | full-dose misoprostol     |                                     |
|              |     |           |                   |                                           | are clinically            |                                     |
| Elliot       | 6.0 | N - 92    | Misoprostol       | 4/32(12.5%) on                            | "IMlicoprostol            | Study suggests that                 |
| 1994         | 0.0 | N = 03    |                   | 4/32 (12.5%) 011<br>misoprostol developed | decreases the             | misoprostol is                      |
| 1004         |     | Arthritis | placebo           | gastric ulcer vs 11/38                    | cumulative                | effective                           |
| RCT          |     | patients  | tablets for 12    | (28.9%) on placebo (p                     | development of            |                                     |
|              |     | on        | months            | <0.05); 6/11 with initial                 | NSAID-induced gastric     |                                     |
|              |     | chronic   |                   | gastric ulcer developed                   | ulcers. Patients with a   |                                     |
|              |     | NSAID     |                   | further gastric ulcer vs.                 | previous NSAID-ulcer      |                                     |
|              |     | therapy   |                   | 9/58 without an initial                   | have a higher risk of     |                                     |
| Chandra      | 5 5 | N - 00    | Dielefenee        | Detiente en placebo                       | "Arthritic potionto       | Awaaka BA OA                        |
| sekaran      | 5.5 | N = 90    | sodium            | with more post-therapy                    | requiring long term       | 4 weeks KA, OA,<br>and seronegative |
| 1991         |     | Arthritic | 150mg a dav       | abnormal endoscopy                        | NSAID therapy appear      | spondarthropathy.                   |
|              |     | patients  | OA subjects       | findings; 24.4% of                        | to benefit from           | NSAIDs differed by                  |
| RCT          |     |           | VS.               | misoprostol group vs.                     | misoprostol because of    | diagnosis but results               |
|              |     |           | indomethacin      | 28.8% in placebo group                    | its cytoprotective effect | in aggregate.                       |
|              |     |           | 75mg a day        | had UGI symptoms                          | on the gastrointestinal   |                                     |
|              |     |           | tor               | during the trial (NS).                    | mucosa."                  |                                     |
|              |     |           | spondarthro       |                                           |                           |                                     |
|              |     |           | pathy subjects    |                                           |                           |                                     |
|              |     |           | vs. ibuprofen     |                                           |                           |                                     |
|              |     |           | 1.2g a day        |                                           |                           |                                     |
|              |     |           | and aspirin       |                                           |                           |                                     |
|              |     |           | 2.7g a day for    |                                           |                           |                                     |
|              |     |           | rheumatoid        |                                           |                           |                                     |
|              |     |           | arthritis         |                                           |                           |                                     |
|              |     |           | Subjects for 4    |                                           |                           |                                     |
| Lanza        | 5.5 | N = 30    | Misoprostol       | Misoprostol superior to                   | "[M]isoprostol at a       | Suggests                            |
| Am J         | 0.0 | 11 - 00   | 200µg vs.         | sucralfate ( $p = 0.0001$ )               | dose of 200µg, 4 times    | misoprostol is                      |
| Gastroentero |     | Healthy   | sucralfate 1g     | and placebo (p =                          | a day, when dosed         | superior to placebo                 |
| 1            |     | volunteer | vs. placebo,      | 0.00001). Differences in                  | concurrently with         | and sucralfate.                     |
| 1988         |     | S         | co-               | success rates between                     | aspirin, was highly       | Sucralfate not                      |
| DOT          |     |           | administered      | misoprostol and                           | effective in protecting   | blinded.                            |
| RCI          |     |           | with 650mg of     | sucralitate and                           | the gastroduodenal        |                                     |
|              |     |           | times a day 7     | (14%: 100%) and (61%)                     | induced injury "          |                                     |
|              |     |           | davs              | 100%), respectively.                      | maacea mjary.             |                                     |
| Jiranek      | 5.5 | N = 130   | Misoprostol       | Fewer endoscopic                          | "[M]isoprostol can        |                                     |
| 1989         |     |           | 50µg vs.          | gastric ulcers in                         | protect the normal        |                                     |
|              |     | Healthy   | 100µg vs.         | misoprostol vs. placebo                   | gastroduodenum from       |                                     |
| RCT          |     | subjects  | 200µg vs.         | (1% vs. 43%). No DU                       | acute ulceration and      |                                     |
|              |     |           | placebo plus      | on 100 or 200µg                           | reduce the chance of      |                                     |
|              |     |           | aspiriri 97 orrig | nisoprosior vs. 13% $p_{acebo}$ (n <0.05) | aspirin indestion "       |                                     |
|              |     |           | three 325mg       | Fewer gastric and                         |                           |                                     |
|              |     |           | tablets) for 7    | duodenal erosions in 3                    |                           |                                     |
|              |     |           | days              | misoprostol groups vs.                    |                           |                                     |
|              |     |           |                   | placebo (p <0.01).                        |                           |                                     |
|              |     |           |                   | Fewer gastric erosion (p                  |                           |                                     |
|              |     |           |                   | <0.05) and duodenal                       |                           |                                     |
|              |     |           |                   | p = 0.050  m                              |                           |                                     |
|              |     |           |                   | 50ug doses                                |                           |                                     |
| Donnelly     | 5.0 | N = 32    | Misoprostol       | Gastric erosion in 52%                    | "Misoprostol 100 µg       | Misoprostol 100QD                   |
| 2000         |     | -         | 100µg plus        | on aspirin plus placebo                   | daily can prevent low-    | vs. placebo plus                    |
|              |     | Healthy   | aspirin 300mg     | vs.17% on aspirin plus                    | dose aspirin induced      | ASA 300QD for 28                    |
| RCT          |     | volunteer | vs. placebo       | misoprostol (OR = $0.18$ ,                | gastric mucosal injury    | days. Data suggest                  |
|              |     | S         | plus aspirin      | Cl: 0.07-0.48),                           | without causing           | misoprostol protects                |

|                                    |     |                                                                                        | 300mg once<br>daily for 28<br>days                                                                                                                                                                                  | averaged over Days 5,<br>14, and 28. Percent<br>gastric petechiae: 42%<br>and 23% (OR = 0.42,<br>Cl: 0.17-0.97).                                                                                                                                                                                                              | identifiable adverse<br>effects."                                                                                                                                                                                                                        | from gastric injury<br>associated with<br>ASA.                                                                                                              |
|------------------------------------|-----|----------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Silverstein<br>1986<br>RCT         | 5.0 | N = 60<br>Healthy<br>male<br>volunteer<br>s                                            | Misoprostol<br>200µg vs.<br>placebo for 24<br>hours                                                                                                                                                                 | Mucosal protection in<br>20/30 on misoprostol<br>(67%) vs.1/30 on<br>placebo (3%) (p<br><0.001).                                                                                                                                                                                                                              | "[F]ive 200-micrograms<br>doses of misoprostol<br>given over 24 hr<br>protects the gastric<br>mucosa from the<br>injurious effect of a<br>single dose of aspirin."                                                                                       | Short-term<br>experimental study.<br>Suggests<br>misoprostol reduces<br>risk.                                                                               |
| Medina<br>Santillan<br>1999<br>RCT | 4.5 | N = 38<br>Healthy<br>volunteer<br>s                                                    | Sodium<br>diclofenac<br>75mg plus<br>misoprostol<br>50µg vs.<br>diclofenac for<br>14 days                                                                                                                           | Misoprostol showed<br>scores of 0-1 in 89% of<br>cases versus 63% in<br>diclofenac<br>sodium/placebo group<br>(p <0.05).                                                                                                                                                                                                      | "[C]ombination of<br>diclofenac and low-<br>dose of misoprostol<br>(50µg; bid) is<br>associated with<br>mucosal protection<br>against NSAID-<br>induced<br>gastroduodenal<br>damage."                                                                    | Sparse data support<br>misoprostol efficacy.                                                                                                                |
| Koch<br>2000<br>RCT                | 4.0 | N =<br>8,843<br>RA                                                                     | Misoprostol<br>plus NSAID<br>vs. NSAID<br>plus placebo                                                                                                                                                              | Relative risk reduction<br>of gastrointestinal<br>complications 40% with<br>misoprostol. Number<br>needed to treat to<br>prevent 1 event 250 in 6<br>months or 125 when<br>normalized at 1-year<br>treatment.                                                                                                                 | "[M]isoprostol<br>prevention of severe<br>complications is<br>effective."                                                                                                                                                                                | Large study. All RA<br>over a 6-month trial.<br>Endoscope based<br>on symptoms and<br>signs. Study helpful<br>for developing<br>clinical risk<br>estimates. |
|                                    | 1   | 1 • • • • • • •                                                                        | I =: · ·                                                                                                                                                                                                            | GI Issues: Sucralfate                                                                                                                                                                                                                                                                                                         | L                                                                                                                                                                                                                                                        |                                                                                                                                                             |
| RCT                                | 5.0 | N = 107<br>Patients<br>with<br>arthritis                                               | Diciofenac<br>200mg a day<br>vs. naproxen<br>1g a day plus<br>sucralfate gel<br>1gm BID or<br>placebo for 14<br>days.                                                                                               | More GU/DU ulcers in<br>placebo group (p<br><0.05). More on<br>placebo had heartburn<br>and epigastric pain at<br>final evaluation (51 vs.<br>30% and 49 vs. 28%; p<br><0.05).                                                                                                                                                | "Sucrairate gel reduces<br>both the incidence of<br>acute gastroduodenal<br>mucosal lesions and<br>symptoms in patients<br>with arthritis receiving<br>short-term nonsteroidal<br>anti-inflammatory<br>drugs."                                           | Data support<br>efficacy in<br>prevention.                                                                                                                  |
|                                    |     |                                                                                        | G                                                                                                                                                                                                                   | GI Issues: H-2 Blockers                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                          |                                                                                                                                                             |
| Ehsanullah<br>1988<br>RCT          | 6.0 | N = 297<br>RA or<br>OA<br>without<br>lesions in<br>the<br>stomach<br>and duo-<br>denum | Ranitidine<br>150mg twice<br>a day vs.<br>placebo twice<br>a day. NSAID<br>drug<br>treatment:<br>naproxen<br>750mg a day;<br>piroxicam<br>20mg a day;<br>diclofenac<br>100mg a day;<br>indomethacin<br>100mg a day. | Cumulative incidence of<br>peptic ulceration at 8<br>weeks 10.3% (27/263);<br>2/135 (1.5%) developed<br>duodenal ulceration in<br>the ranitidine group vs.<br>10/126 (8%) taking<br>placebo. Frequency of<br>gastric ulceration same<br>(6%) for the 2 groups at<br>8 weeks. Fewer gastric<br>lesions in ranitidine<br>group. | "Ranitidine 150 mg<br>twice daily significantly<br>reduced the incidence<br>of duodenal ulceration<br>but not gastric<br>ulceration when<br>prescribed<br>concomitantly with one<br>of four commonly used<br>non-steroidal anti-<br>inflammatory drugs." | RA or OA. Also<br>treatments with<br>naproxen,<br>diclofenac,<br>indomethacin or<br>piroxicam. Suggests<br>ranitidine prevents<br>DU, not GU.               |
| Robinson<br>1989<br>RCT            | 5.5 | N = 144<br>Patients<br>with<br>normal<br>endo-<br>scopic<br>findings                   | Ranitidine<br>150mg twice<br>a day vs.<br>placebo plus<br>ibuprofen,<br>indomethacin,<br>naproxen,                                                                                                                  | 47/57 (82%) of<br>ranitidine had no<br>mucosal damage in the<br>duodenum by study end<br>vs. 32/49 (65%) on<br>placebo.                                                                                                                                                                                                       | "[R]anitidine therapy<br>(150mg bid) was<br>effective in preventing<br>duodenal, but not<br>gastric injury resulting<br>from eight weeks of<br>NSAID treatment."                                                                                         | 8 weeks treatment<br>also included with<br>NSAID (ibuprofen,<br>naproxen, sulindac,<br>indomethacin,<br>piroxicam).                                         |

|                         |     | requiring<br>NSAIDs                                                                                            | sulindac, or<br>piroxicam for<br>8 weeks                                        |                                                                                                                                                                                                       |                                                                                                                                                                 |                                                                                               |
|-------------------------|-----|----------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|
| Robinson<br>1991<br>RCT | 4.5 | N = 673<br>Patients<br>receiving<br>NSAIDs<br>for<br>arthritic<br>or<br>musculo-<br>skeletal<br>condition<br>s | Ranitidine<br>150mg twice<br>daily vs.<br>placebo for 4<br>weeks or 8<br>weeks. | Protective effect against<br>duodenal mucosal<br>lesions including<br>duodenal ulcers (3<br>studies) and gastric<br>mucosal lesions<br>including gastric ulcers<br>(1 study) observed vs.<br>placebo. | "[R]antidine is effective<br>in preventing NSAID-<br>associated duodenal<br>ulcers and may be<br>appropriate<br>prophylaxis for certain<br>high-risk patients." | 4 RCTs for 4 weeks<br>or 8 weeks<br>treatment. Data<br>suggests pro-tective<br>for DU not GU. |

## OPIOIDS

Opioids are widely used to manage acute pain, post-operative pain, and pain associated with malignancy. A systematic review estimated that opioid use results in an average decrease of 30% in pain ratings for musculoskeletal pain.(500) However, these results do not include the approximately 50% of patients who do not tolerate opioids for these conditions (see Chronic Pain chapter and opioid evidence table). Opioids for treatment of non-malignant chronic pain is also increasingly controversial (see Chronic Pain chapter) particularly due to marked estimates of associated mortality risk with approximately equal numbers of deaths on a population-basis from both opioids and motor vehicle accidents now reported in both Utah and West Virginia.(501, 502) This suggests that the relative risks are greater due to lower population exposure to opioids. Additionally, there remains a lack of quality long-term studies demonstrating opioid safety and efficacy, as well as a lack of accompanying improvements in the population despite increasing use.(503-505) Use of opioids for chronic non-malignant pain is detailed in the Chronic Pain chapter including guidance on initiation, maintenance, and discontinuation of opioid therapy, criteria to diagnose addiction and problematic use, and adverse effects, along with sample opioid agreements and ADL, IADL, and Screener and Opioid Assessment for Patients with Pain forms.

Opioids have a wide therapeutic range and dosage and timing may need to be titrated. Commonly prescribed drugs in this drug class include codeine, morphine, oxycodone, hydromorphone, oxymorphone, hydrocodone, fentanyl, tramadol, and with many subtypes of extended, controlled, or immediate release formulations.(506) Adverse effects appear prominent, especially during introduction and/or dose adjustment. These include affects on the central nervous system (drowsiness, somnolence, fatigue, tolerance) and the gastrointestinal tract (constipation, nausea, dyspepsia), although there are other CNS and GI effects, as well as effects on the cardiovascular, respiratory, dermatologic, endocrine, and musculoskeletal systems. Tolerance, addiction, and drug-seeking behaviors are common.(507-512) Approximately 80% of patients experience some adverse effects from opioids and approximately 33 to 66% do not finish a clinical trial with opioids due primarily to these adverse effects (the large range in estimates is due to trial design such as whether a wash-out phase was included, length of treatment, and severity of pain).(500, 513)

1. Recommendation: Opioids for Post-operative and Acute Hip Pain

## Judicious use of opioids is recommended for treatment of post-operative hip pain or acute severe hip pain.

*Indications* – Acute, severe post-operative pain or select use for acute, severe non-operative hip pain.

*Dose/Frequency* – Per manufacturer recommendations; generally the lowest dose to achieve adequate pain relief in the acute pain setting without overly impairing other functions.

*Indications for Discontinuation* – Resolution of pain, sufficient reduction in pain to allow for management with other medications or methods, adverse effects.

Strength of Evidence – Recommended, Insufficient Evidence (I)
2. Recommendation: Routine Use of Opioids for Acute, Subacute, or Chronic Non-malignant Hip Pain Routine use of opioids for treatment of acute, subacute, or chronic non-malignant pain conditions is not recommended, although selected patients may benefit from judicious use (see below).

# Strength of Evidence – Not Recommended, Evidence (C)

3. Recommendation: Opioids for Subacute or Chronic Hip Pain Patients

# Opioids are recommended for select patients with subacute or chronic hip pain.

*Indications* – Select patients with subacute or chronic persistent pain that is not well-controlled (as manifested by decreased function attributable to their pain) after non-opioid treatment approaches have been tried. Other approaches that should have been first utilized include non-opioid medications (e.g., NSAIDs, acetaminophen), physical restorative approaches, behavioral interventions, self-applied modalities, and functional restoration. Patients with prior psychological disorders, depression, histories of drug abuse/dependence, and/or a personality disorder are more at risk for a poor outcome and should be very cautiously treated with opioids.

*Frequency/Dose* – Low dose of a weaker opioid for initial trials with or without NSAID. Patients should have ongoing clinical visits to monitor efficacy, adverse effects, compliance and surreptitious medication use. A trial of an increased dose would be recommended for patients experiencing improvement in functional outcomes during the trial, but with insufficient benefit.

*Indications for Discontinuation* – Failure of initial trial to result in objective functional improvement, resolution, improvement to the point of not requiring this intervention, intolerable adverse effects that are not self-limited, non-compliance, diversion, and/or surreptitious medication use.

# Strength of Evidence - Recommended, Insufficient Evidence (I) for select patients

### Rationale for Recommendations

There are 14 high- and moderate-quality studies evaluating the use of opioids for treating patients with chronic, non-malignant hip pain (see opioids evidence table) as well as many other studies in other non-malignant pain conditions (see Chronic Pain chapter). However, there is a lack of quality evidence of long-term opioid efficacy or adverse effects (see opioids evidence table) and quality evidence of high risks of mortality. Thus, there are no large scale studies with robust data to definitively address some of these important questions.

There are no quality trials evaluating the use of opioids in post-operative or acute severe hip pain patients, although there are trials of anesthetic approaches that appear to reduce the need for post-operative opioids (see Appendix 1). However, post-operative pain is an acute pain indication for which there is relatively little controversy. Patients should be transitioned to treatments with lower adverse effect profiles (e.g., NSAIDs, acetaminophen, exercise) as soon as possible based on the clinical course.

For patients with chronic hip pain, there is quality evidence that diclofenac is equivalent to tramadol and has a lower adverse effect profile.(348) Diclofenac has also been shown to be superior to dextropropoxyphene/ acetaminophen while having few adverse effects including less interference with work.(349) There are no quality studies that suggest that NSAIDs are inferior for treatment of hip pain patients. Comparable results have been found from studies of LBP patients (see Low Back Disorders chapter). Thus, there is quality evidence that other treatments are superior to opioids, that routine use is not indicated, and that other treatments should be tried first.

Nearly all 9 trials of opioids in patients with hip pain that included a placebo for comparison found the opioid modestly superior for pain relief among those who completed the trial, but there were no trials with moderate or marked benefits (see Figure 10).(514-522) While these studies suggest reductions in pain ratings compared with placebo, they do not document improvements in function; rather most suggest high adverse effects (see below). Half of the trials were of 4 weeks duration, with one of 8 weeks,(521) and two of 90 days duration.(517, 518) Thus, although one trial reported an open-label extension phase including data of up to 18 months,(520) there remain no quality long-term safety and efficacy data. The

one trial with the open-label extension phase printed a graph with an appearance of a modest increase in dose over time, noted that 5 patients had been hospitalized for possible oxycodone related adverse effects, reported most patients (56.6%) discontinued treatment mostly due to adverse effects, and documented that the dose of oxycodone required titration at 10 to 21% of clinic visits after 8 weeks of treatment. These data suggest intermediate term management of patients on opioids is potentially difficult in hip pain patients.

Most of the quality studies were designed for chronic hip pain management, although two trials included a requirement to be treated with an NSAID or COX-2 inhibitor,(518, 521) one evaluated arthritic flares,(514) and one evaluated breakthrough pain.(514, 519) Thus, there is quality evidence of mild efficacy for each of these indications. There is no quality evidence suggesting superiority of short- versus long-duration opioids(523) (see opioid evidence table), although many pain specialists recommend using long-acting or sustained-acting time released opioids to achieve a stable blood level. Pain specialists also recommend that for chronic pain conditions, opioids be used on a regular schedule and not as needed.

Adverse effects from opioids are very high, with estimates of more than 2 adverse effects per patient(524) and other estimates of 20 to 87% of patients with adverse effects (see opioid evidence table). There is a slight trend in the studies for higher adverse effects for more potent opioids and somewhat fewer adverse effects for less potent opioids such as tramadol, although studies are not consistent. Discontinuation rates in the trials ranged widely and also appear to approximately parallel trends in opioid strength.

The decision to treat hip pain with opioids, especially long-term, should be undertaken with care (see Chronic Pain chapter for recommendations on opioid screening, evaluation, and management). Since this decision typically has long-term impacts, if the physician does not have specialized knowledge and/or experience regarding the appropriate use of opioids, it is recommended that a second opinion be obtained from a physician with experience in chronic pain management and/or a psychological evaluation to confirm this decision before the patient is placed on long-term opioids (see Appendix 1, Chronic Pain chapter). Screening patients for prior issues including alcohol and other substance use, depression, psychological and personality disorders, and family history is recommended.(525-530) There is evidence that patients with higher psychological disorder profiles have approximately 3-fold as much placebo analgesia.(531) Opioid agreements and urine screening(532, 533) are also recommended as evidence suggests they are helpful.

Opioids are not invasive, have high adverse effects for a drug including rapid development of tolerance, and are low cost when generic formulations are used (chronic use of brand name medications may be moderate to high cost). While routine use of opioids for treating patients with chronic hip pain is not recommended, opioids are recommended for select patients in chronic hip pain settings after other treatment options have been exhausted in a manner consistent with the recommendations in this section.

Figure 9. Mean (SE) Global Pain Intensity in Patients Randomized to Double Blind Treatment with Placebo, Controlled Release (CR) Oxycodone (Oxy), or Immediate Release (IR) Oxycodone-Acetaminophen (APAP)



Pain intensity rated on categorical scale of 0 = none, 1 = slight, 2 = moderate, 3 = severe.

\*Active treatments significantly different from placebo (p≤0.05); not different from one another.

Caldwell JR, Hale ME, Boyd RE, Hague JM, Iwan T, Shi M, Lacouture PG. Treatment of osteoarthritis pain with controlled release oxycodone or fixed combination oxycodone plus acetaminophen added to nonsteroidal anti-inflammatory drugs: a double blind, randomized, multicenter, placebo controlled trial. *J Rheumatology*. 1999;26(4):862-9. Reprinted with permission from the Journal of Rheumatology.

# *Evidence for Use of Opioids* There are 3 high- and 11 moderate-quality RCTs incorporated in this analysis.

| Author/Year                | Score | Sample                                    | Comparison                                                                                                                                                                                                                                   | Results                                                                                                                                                                                                                                                                                                                                                                                                                          | Conclusion                                                                                                                                                                                                                                                                                                                                                                                          | Comments                                                                                                                                                                                                                                                                                                                                                                            |
|----------------------------|-------|-------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Silverfield<br>2002<br>RCT | 8.5   | N = 308<br>Hip or<br>knee<br>OA           | Tramadol/<br>acetaminophe<br>n<br>(37.5/325mg)<br>vs. placebo 1-<br>2 QID for 10<br>days                                                                                                                                                     | Discontinuation from<br>adverse effects was<br>tramadol/acetaminophe<br>n 12.7% vs. 5.4%<br>placebo. Pain intensity<br>scores (baseline/final):<br>Tramadol/<br>acetaminophen<br>(2.4/1.3) vs. placebo<br>(2.4/1.6), p <0.001.<br>Patients' overall<br>assessments (very<br>good and good):<br>Tramadol (80.0%) vs.<br>placebo (56.4%), p<br><0.001.                                                                             | "[A]ddition of<br>tramadol/aceta-<br>minophen to NSAID<br>or COX-2-selective<br>inhibitor therapy was<br>well tolerated and<br>effective in the<br>treatment of OA flare<br>pain."                                                                                                                                                                                                                  | Short-term trial of 10<br>days of addition of<br>tramadol for OA flare<br>in addition to NSAID<br>suggests modest<br>efficacy.                                                                                                                                                                                                                                                      |
| Caldwell<br>1999<br>RCT    | 8.0   | N = 107<br>Spine,<br>knee<br>OA           | Oxycodone<br>controlled<br>release 10mg<br>q 12 hours vs.<br>oxycodone<br>plus<br>acetaminophe<br>n 5/325mg<br>TID vs.<br>placebo. All<br>on NSAID.<br>Open label<br>titration run-in<br>for 30 days<br>then 30 day<br>RCT. Double<br>dummy. | Mean global pain<br>intensity scores<br>increased from open<br>label to DB-RCT [mean<br>(SE)]: placebo +1.0<br>(0.13) vs. controlled<br>release oxycodone 0.44<br>(0.13) vs. oxycodone-<br>ASAP 0.49 (0.11), p<br><0.004 comparing<br>active treatments vs.<br>placebo, NS between<br>active treatments.<br>Overall adverse<br>reactions included 50%<br>somnolence rates in<br>oxycodone group during<br>titration.             | "[C]ontrolled release<br>oxycodone q12h and<br>immediate release<br>oxycodone-APAP qid,<br>added to NSAID,<br>were superior to<br>placebo for reducing<br>OA pain and<br>improving quality of<br>sleep. The active<br>treatments provided<br>comparable pain<br>control and sleep<br>quality. Controlled<br>release oxycodone<br>was associated with a<br>lower incidence of<br>some side effects." | Most (60%) taking<br>opioids previously.<br>Dropout rates very<br>high with 35.9% lost<br>during initial open<br>label titration phase;<br>additional 33.6% lost<br>during trial (total<br>57.5% dropouts).<br>Suggests equivalency<br>of 2 opioids. Modest<br>efficacy vs. placebo,<br>results also only<br>directly applicable to<br>patients previously<br>treated with opioids. |
| Mullican<br>2001<br>RCT    | 8.0   | N = 462<br>Chronic<br>LBP<br>and/or<br>OA | Tramadol/<br>acetaminophe<br>n 37.5/325mg<br>vs. codeine/<br>acetaminophe<br>n 30/300mg<br>1-2 Q4-6 hour<br>up to 10 QD<br>for 4 weeks.<br>Double<br>dummy.                                                                                  | Pain scores not different<br>throughout. Total pain<br>relief scores (Day 1/22):<br>Tram/APAP 9.9±6.14/<br>11.9±5.83 vs.<br>Cod/APAP<br>10.1±6.19/11.6±6.24<br>(NS). Overall efficacy<br>scores 22 days: Tram/<br>APAP 2.9±1.12 vs. Cod/<br>APAP 2.9±1.12 vs. Cod/<br>APAP 2.8±1.16 (NS).<br>Somnolence (24 vs.<br>17%), constipation (21<br>vs. 11%) more common<br>in codeine group.<br>Similar in efficacy for<br>LBP and OA. | "[T]ramadol/APAP<br>tablets (37.5 mg/325<br>mg) are as effective<br>as codeine/APAP<br>capsules (30 mg/300<br>mg) in the treatment<br>of chronic<br>nonmalignant low<br>back pain and OA<br>pain and are better<br>tolerated."                                                                                                                                                                      | No placebo. 79.8%<br>completed study.<br>Comparable efficacy.                                                                                                                                                                                                                                                                                                                       |
| Fleischmann<br>2001        | 7.5   | N = 129<br>Knee                           | Titrated<br>doses of<br>tramadol 1-2                                                                                                                                                                                                         | Final pain intensity<br>scores: tramadol<br>2.10±1.06 vs. 2.48±1.13                                                                                                                                                                                                                                                                                                                                                              | "Tramadol may be<br>useful as<br>monotherapy in the                                                                                                                                                                                                                                                                                                                                                 | High dropout rate<br>(41.3% tramadol vs.<br>65.2% placebo), limits                                                                                                                                                                                                                                                                                                                  |

| RCT                                   |     | OA                                        | 50mg tablets<br>QID vs.<br>placebo for<br>91 days; 10-<br>day washout<br>period                                                                                               | placebo, $p = 0.082$ .<br>Patient overall<br>assessment tramadol<br>$0.10\pm1.41$ vs. placebo -<br>$0.44\pm1.3$ , $p = 0.038$ .<br>Dropout rates were high<br>(41.3% tramadol vs.<br>65.2% placebo).                                                                                                                                                                                                                                                                                                                                                           | treatment of joint pain<br>associated with OA."                                                                                                                                                                                                                                                                                                                                                                                                                        | strength of<br>conclusions; may limit<br>generalizability. Data<br>statistically negative<br>for main outcome, but<br>positive for others<br>suggesting modest<br>efficacy.                                                                                                                                                                    |
|---------------------------------------|-----|-------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Pavelka<br>1998<br>Crossover<br>Trial | 7.0 | N = 60<br>Hip or<br>knee<br>OA            | Tramadol 50-<br>100mg up to<br>TID vs,<br>diclofenac 25-<br>50mg up to<br>TID for 4<br>weeks. Doses<br>titrated                                                               | Mean tramadol dose<br>164.8 $\pm$ 54.1mg; mean<br>diclofenac dose<br>86.9 $\pm$ 21.4mg. Three in<br>each group terminated,<br>(reasons not noted).<br>Adverse events greater<br>during tramadol<br>treatment (20.0% vs.<br>3.3%, p = 0.0056). No<br>patient treatment<br>preference (46.7%<br>tramadol vs. 45.0%<br>diclofenac, p = 0.85).<br>Functionality scores<br>(WOMAC) improved in<br>tramadol group<br>39.6 $\pm$ 16.0 to 32.0 $\pm$ 17.4<br>vs. diclofenac 40.0 $\pm$ 17.2<br>to 30.1 $\pm$ 17.0 with no<br>significant difference<br>between groups. | "OA patients'<br>response to analgesic<br>treatment was highly<br>individual and the<br>response to one drug<br>was not predictive of<br>that to another drug.<br>As functional scored<br>improved (lower<br>WOMAC scores) on<br>analgesic vs. NSAID,<br>pain rather than<br>inflammation may be<br>the most important<br>aspect of treatment. A<br>significant proportion<br>of patients were not<br>treated satisfactorily<br>with diclofenac or<br>tramadol alone." | Data suggest<br>tramadol equivalent<br>to diclofenac on<br>average. Study<br>suggests some<br>preferred different<br>medications and<br>results not<br>predictable.                                                                                                                                                                            |
| Lloyd<br>1992<br>RCT                  | 6.5 | N = 86<br>Severe<br>hip OA                | Controlled-<br>release<br>dihydrocodein<br>e 60mg to<br>120mg BID<br>vs. dextro-<br>propoxyphen<br>e/paracetamo<br>I 32.5 to<br>325mg 2<br>tablets TID-<br>QID for 2<br>weeks | Average daily pain<br>scores Week 2:<br>dihydrocodeine<br>39.2±5.3 vs.<br>dextropropoxyphene<br>39.8±4.6 (NS). Pain on<br>hip ROM better in<br>hydrocodeine group.<br>Adverse effects worse<br>with dihydrocodeine and<br>more dropouts (total<br>dropout rate 33.7%)<br>Overall adverse effects:<br>dihydrocodeine<br>102AEs/ 43 patients<br>(2.4/patient) vs.<br>dextropropoxyphene<br>(84/43) (2.0/patient).                                                                                                                                                | "[A]fter 2-weeks'<br>treatment CR<br>dihydrocodeine<br>provided superior<br>analgesia to<br>dextropropoxyphene/<br>paracetamol with no<br>difference in side-<br>effects."                                                                                                                                                                                                                                                                                             | Short-term study.<br>Described as double<br>blind, but different<br>dosing regimens raise<br>questions about<br>blinding success.<br>Data suggest short-<br>term equivalency by<br>most measures, but<br>higher dropouts for<br>dihydrocodeine (43%<br>vs. 21%) and more<br>adverse effects<br>(39.5% vs. 9.3% of<br>dropouts).                |
| Parr<br>1989<br>RCT                   | 6.5 | N = 846<br>Mostly<br>hip or<br>knee<br>OA | Diclofenac<br>sodium slow<br>release<br>100mg QD<br>vs.<br>dextropropox<br>yphene<br>180mg plus<br>paracetamol<br>1.95gm QD<br>for 4 weeks                                    | Pain ratings (change in<br>VAS): diclofenac -27.0<br>vs. dextropropoxyphene<br>plus paracetamol -22.7,<br>p <0.05 (8% greater<br>reduction with<br>diclofenac). Physical<br>mobility scores: -10.8 vs.<br>-7.4 (p <0.01) (13%<br>better with diclofenac).<br>Work interference less<br>common with diclofenac<br>(3 vs. 11, p <0.05), and<br>time lost (3 vs. 16, p<br><0.05). Dizziness,<br>lightheadedness less                                                                                                                                              | "Pain as measured by<br>a visual analogue<br>scale (VAS) showed<br>8% greater pain<br>reduction with DSR<br>as compared with<br>D&P (P<0.05).<br>Physical mobility as<br>measured by the<br>(Nottingham Health<br>Profile) improved by<br>13% more with DSR<br>as compared with<br>D&P (P<0.05)."                                                                                                                                                                      | No regular NSAID<br>use in prior 6 months.<br>Dropouts 15.3%<br>diclofenac vs. 17.0%.<br>Study suggests<br>greater efficacy of<br>Diclofenac vs.<br>dextropropoxyphene<br>plus acetaminophen.<br>Benefits suggested<br>for working<br>populations from<br>diclofenac including<br>lower incidence of<br>problems at work and<br>lost worktime. |

|                     |     |                                                                          |                                                                                                                                                                                             | common for diclofenac<br>(14 vs. 30, $p < 0.05$ ), as<br>was CNS symptoms (48<br>vs. 93, $p < 0.01$ ).<br>Abdominal pain higher<br>with diclofenac (40 vs.<br>18, $p < 0.01$ ) and<br>diarrhea (14 vs. 2, $p$<br><0.01). Overall GI<br>effects not different (63<br>vs. 60); comparable<br>dropouts.        |                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|---------------------|-----|--------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Emkey<br>2004       | 6.5 | N = 307                                                                  | Tramadol/<br>acetaminophe                                                                                                                                                                   | Mean VAS scores were<br>(baseline/final) tramadol                                                                                                                                                                                                                                                           | "Tramadol<br>37.5mg/APAP 325                                                                                                                                                                      | Data suggest modest<br>efficacy of tramadol/                                                                                                                                                                                                                                                                                                                                                                                                                        |
| RCT                 |     | e or<br>severe<br>knee or<br>hip OA                                      | up to 4 tablets<br>a day 10<br>days, then up<br>to 8 tablets a<br>day for<br>duration as<br>added<br>therapy to<br>celecoxib or<br>rofecoxib for<br>91 days                                 | placebo<br>69.5±13.2/48.3±26.6.<br>Discontinuations due to<br>lack of efficacy higher in<br>the placebo group (17%<br>vs. 8.5%).                                                                                                                                                                            | tablets were effective<br>and safe as add-on<br>therapy with COX-2<br>NSAID for treatment<br>of OA pain."                                                                                         | placebo. Overall<br>dropouts 26.1% equal<br>in both groups, but<br>more insufficient pain<br>relief in placebo<br>(66.7% dropouts) and<br>adverse events in<br>active treatment<br>(48.8% dropouts).                                                                                                                                                                                                                                                                |
| Roth<br>2000<br>RCT | 6.0 | N = 133<br>Moderat<br>e to<br>severe<br>spine,<br>knee or<br>other<br>OA | Oxycodone<br>controlled<br>release 10mg<br>Q12 hour vs.<br>20mg Q 12<br>hour. vs.<br>placebo for<br>14 days; 6<br>month open<br>label<br>extension and<br>optional 12<br>month<br>extension | Mean pain intensities<br>(baseline/14 days,<br>interpretation of graphic<br>data): oxycodone 10mg<br>(2.5/1.9) vs. oxycodone<br>20mg (2.5/1.6) vs.<br>placebo (2.4/2.2), p<br><0.05 compared with<br>placebo.                                                                                               | "Around-the-clock<br>controlled-release<br>oxycodone therapy<br>seemed to be<br>effective and safe for<br>patients with chronic,<br>moderate to severe,<br>osteoarthritis-related<br>pain."       | Short term trial.<br>Overall dropouts<br>47.4% (81.5% of<br>placebo dropouts<br>ineffective, 60.5%<br>oxycodone dropouts<br>with adverse events).<br>Somnolence in 25-<br>27%, dizziness in 20-<br>30%, nausea in 27-<br>41% of active<br>treatment groups.<br>Data suggest modest<br>efficacy. In long-term<br>open-label extension,<br>10-21% required<br>dose titration at each<br>clinic visit. Dose<br>appeared to trend<br>upwards modestly<br>over 72 weeks. |
| Schnitzer<br>1999   | 6.0 | N = 236                                                                  | Tramadol<br>200mg a day                                                                                                                                                                     | In open-label, tramadol reduced VAS pain                                                                                                                                                                                                                                                                    | "In patients with<br>painful OA of the                                                                                                                                                            | Overall dropouts in active treatment                                                                                                                                                                                                                                                                                                                                                                                                                                |
| RCT                 |     | Knee<br>OA                                                               | vs. placebo<br>over 8 weeks<br>with 5 weeks<br>open label<br>run-in. All<br>treated with<br>Naproxen<br>500mg BID<br>and those<br>with marked<br>relief<br>excluded                         | scores by 19mm in<br>naproxen non-<br>responders vs. 5mm in<br>responders, $p < 0.05$ .<br>Maximum effective<br>naproxen dose for<br>naproxen responders,<br>221 for tramadol vs. 407<br>placebo, $p = 0.021$ . For<br>naproxen non-<br>responders, mean<br>effective doses: 419 vs.<br>396mg, $p = 0.71$ . | knee responding to<br>naproxen 1,000mg a<br>day, the additional of<br>tramadol 200mg/day<br>allows a significant<br>reduction in the<br>dosage of naproxen<br>without comprising<br>pain relief." | 19.3%. Main utility of<br>data may be in<br>treatment of patients<br>not responsive to<br>naproxen.                                                                                                                                                                                                                                                                                                                                                                 |
| Roth<br>1998        | 6.0 | N = 63                                                                   | Tramadol<br>50mg 1-2 Q                                                                                                                                                                      | Patient assessments<br>(excellent/very good):                                                                                                                                                                                                                                                               | "Tramadol may have<br>a role as adjunctive                                                                                                                                                        | 20.6% discontinued<br>open-label from                                                                                                                                                                                                                                                                                                                                                                                                                               |

| RCTOA<br>break-<br>through<br>pain4-6 hour PRN<br>vs. placebo.<br>Open label<br>run-in for 1<br>day, then 13<br>day RCTtramadol (11/20 = 55%)<br>vs. placebo (5/20 =<br>pain scores at end:<br>tramadol 0.85±0.32 vs.<br>placebo 1.32±0.33, p =<br>0.46. Cumulative<br>continuation rates 13<br>days: tramadol 84% vs.<br>53% (graphic data).<br>Adverse effects in<br>somnolence in tramadol<br>25% vs. 14%, nausea<br>35% vs. 14%, vertigo<br>20% vs. 5%.treatment for<br>breakthrough pain in<br>attration rates 13<br>days: tramadol 0.85±0.32 vs.<br>musculoskeletal pain<br>attributed to OA."                                                                                                                                                                                                                                            | adverse effects. Only<br>36.5% (23/63) of<br>original study<br>population completed<br>RCT. Data suggest<br>limited efficacy for<br>breakthrough pain<br>reduction in OA<br>flares, but dropouts<br>very high. |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Kjærsgaard- 6.0 N = 158 Codeine plus More use of rescue "When evaluated after S   Anderson Anderson T data of tractment T data of tractment T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Study prematurely                                                                                                                                                                                              |
| AndersenHip OAHip | high rates of adverse<br>reactions and<br>dropouts. Overall<br>drop-out rate was<br>51.8% versus 23.0%.                                                                                                        |
| Peloso 6.0 N = 66 Control- WOMAC pain scale "Single entity T   2000 44.8% improved 44.8% improved optimized approved approved                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Total 39.2% codeine                                                                                                                                                                                            |
| RCT   Hip and/<br>or knee   codeine vs.<br>placebo.   (263.5/145.4) in codeine<br>(263.5/145.4) in codeine<br>placebo.   codeine is an<br>effective treatment for<br>vs. 12.3% (252.4/   codeine is an<br>effective treatment for<br>pain due to OA of the<br>hip or knee."     OA   Dose titrated<br>from   221.3) controls (p =<br>0.0004). Rescue   pain due to OA of the<br>hip or knee."   a<br>hip or knee."     100mg/day   medication with<br>acetaminophen   vs. 9.2 controls. Patient<br>clinical effectiveness<br>CR codeine 2.1±0.9 vs.<br>0.9±1.0, p = 0.0001.   o                                                                                                                                                                                                                                                                 | 75% codeine<br>withdrawals due to<br>adverse effects;<br>16.2% of placebo<br>withdrawals due to<br>inadequate pain<br>control.                                                                                 |
| Caldwell 5.0 N = 295 Extended Reductions in WOMAC "Controlled release Ease   2002 0A index pain by 17% oxycodone q12h and e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Data suggest modest efficacy. 39.6%                                                                                                                                                                            |
| RCTModerat<br>e to<br>severe<br>hip and/morphine<br>morphinewith morphine ER QAM<br>dose vs. 20% QPM vs.<br>18% MS-controlled<br>release vs. 4% placeboimmediate release<br>oxycodone-APAP qid,<br>th<br>added to NSAID,<br>were superior to(fit<br>the controlled<br>the controlled<br>the controlled                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (88/222) of active<br>treatment patients<br>dropped out, with<br>60.2% (53/88) of                                                                                                                              |
| or knee     30mg QPM     (not different between 3     placebo for reducing     th       OA     vs. morphine     active treatments). ER     OA pain and     e       controlled     morphine had better     improving quality of sleep.     sleep. The active     l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | those due to adverse<br>effects. A subsequent<br>randomized open<br>label trial of 181 of                                                                                                                      |
| Contin) 15mg     Dropouts high at 40% of<br>BID vs.     treatments provided     tl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | these patients who                                                                                                                                                                                             |

|  | weeks.<br>Double<br>dummy. | across groups, except<br>placebo with more due<br>to lack of efficacy and<br>fewer from adverse<br>effects. Somnolence in<br>12-16%, dizziness in<br>10-12% of active | quality." Controlled<br>release oxycodone<br>was associated with a<br>lower incidence of<br>some side effects." | regimens and 52.5%<br>of those patients<br>withdrew with 33.1%<br>experiencing adverse<br>effects. |
|--|----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|
|  |                            | treatment patients.                                                                                                                                                   |                                                                                                                 |                                                                                                    |

# SKELETAL MUSCLE RELAXANTS

Skeletal muscle relaxants comprise a diverse set of pharmaceuticals designed to produce muscle relaxation through different mechanisms of action generally considered to be effects on the central nervous system (CNS) and not on skeletal muscle.(534, 535) These medications are widely used in primary care to treat painful conditions, most prominently low back pain,(536-542) muscle spasms,(543) and myalgias. They are generally not used for treatment of hip disorders.

1. Recommendation: Muscle Relaxants for Acute and Subacute Hip Pain with Significant Muscle Spasm Muscle relaxants are recommended for acute and subacute, moderate to severe hip pain from muscle spasm that is unrelieved by NSAIDs, avoidance of exacerbating exposures or other conservative measures.

*Indications* – Acute and subacute, moderate to severe hip pain from muscle spasm that is unrelieved by NSAIDs, avoidance of exacerbating exposures or other conservative measures.

*Frequency/Dose* – Initial dose in evening (not during workdays or if patient operates a motor vehicle, though daytime use acceptable if minimal CNS-sedating effects). If significant daytime somnolence results, particularly if it interferes with performance of conditioning exercises and other components of the rehabilitation process or treatment plan, discontinue or prescribe a reduced dose. Duration for exacerbations of chronic pain is limited to a couple weeks. Longer term treatment is generally not indicated.

*Indications for Discontinuation* – Resolution of pain, non-tolerance, significant sedating effects that carry over into the daytime, other adverse effects.

### Strength of Evidence - Recommended, Insufficient Evidence (I)

# 2. Recommendation: Muscle Relaxants for Chronic Hip Pain Muscle relaxants are not recommended for chronic hip pain.

### Strength of Evidence - Not Recommended, Insufficient Evidence (I)

### Rationale for Recommendations

There are no quality studies of these agents for treatment of patients with hip pain. Skeletal muscle relaxants have been evaluated in quality studies evaluating chronic back and neck, (544-546) (see Chronic Pain and Low Back Disorders chapters) although there are far more studies on acute low back pain.(547) The quality of the studies comparing these agents to placebo are likely overstated due to the unblinding that would be inherent in taking a drug with substantial CNS-sedating effects. The adverse effect profile is concerning, (548) with CNS sedation rates ranging from approximately 25 to 50% and a low but definite risk of abuse. (549, 550) Thus, prescriptions for skeletal muscle relaxants for daytime use should be carefully weighed against the need to drive vehicles, operate machinery, or otherwise engage in occupations where mistakes in judgment may have serious consequences (e.g., crane operators, air traffic controllers, construction workers, etc.). Skeletal muscle relaxants have beneficial uses, particularly for nocturnal administration to normalize sleep patterns disrupted by skeletal muscle pain, as well as for daytime use among the few patients who do not suffer from the CNS-depressant effects. They are low cost if generic medications are prescribed. Skeletal muscle relaxants are not recommended for continuous management of subacute or chronic hip pain, although they may be reasonable options for select acute pain exacerbations or for a limited trial as a 3rd- or 4th-line agent in more severely affected patients in whom NSAIDs and exercise have failed to control symptoms.

# Evidence for the Use of Skeletal Muscle Relaxants

There are no quality studies evaluating the use of skeletal muscle relaxants for patients with hip and groin pain.

# **TOPICAL MEDICATIONS AND LIDOCAINE PATCHES**

Topical medications include patches, capsaicin and sports creams, NSAIDs, wheatgrass cream, dimethyl sulfoxide (DMSO), N Acetylcysteine (NAC), and Eutectic Mixture of Local Anesthetics (EMLA). Capsaicin is applied to the skin as a cream or ointment and is thought to reduce pain by stimulating other nerve endings (effective through distraction). Rado-Salil ointment is a proprietary formulation of 14 agents, the two most common being menthol (55.1%) and methylsalicylate (26.5%). There are many other commercial products that similarly cause a warm or cool feeling in the skin. All of these agents are thought to work through a counter-irritant mechanism (i.e., feel the dermal sensation rather than the pain). Topical NSAIDs have been used to treat many different MSDs, including arthritis, lateral epicondylitis, and other tendinoses.(551, 552) Many different NSAIDs are compounded, including ibuprofen, naproxen, ketoprofen, piroxicam, and diclofenac.

1. Recommendation: Capsicum Creams for Acute, Subacute, or Chronic Hip Pain Capsicum is recommended for short-term treatment of acute or subacute hip pain as well as for acute exacerbations of chronic hip pain as a counterirritant.

Indications – Temporary flare ups of chronic hip pain or acute or subacute hip pain.

*Frequency/Duration* – Duration of use for patients with chronic pain is limited to an acute flare-up period, generally lasting no more than 2 weeks. Not to be used continuously or for more than 1 month as the cost is high compared to alternative treatments of greater or equal efficacy and the patient should be transitioning to an active treatment program. Caution should be exerted to avoid application near the groin.

Indications for Discontinuation – Resolution of pain, lack of efficacy, development of adverse effects.

Strength of Evidence - Recommended, Insufficient Evidence (I)

2. Recommendation: Topical NSAIDs, Lidocaine Patches, Eutectic Mixture of Local Anesthetics (EMLA), Other Creams/Ointments for Trochanteric Bursitis

There is no recommendation for or against the use of topical NSAIDs, lidocaine patches, eutectic mixture of local anesthetics (EMLA), or other creams/ointments to treat greater trochanteric bursitis pain as it is unclear whether the target tissue is sufficiently superficial to be treated topically.

Strength of Evidence - No Recommendation, Insufficient Evidence (I)

 Recommendation: Topical NSAIDs, Wheatgrass Cream, Lidocaine Patches, Eutectic Mixture of Local Anesthetics (EMLA), Other Creams/Ointments for Hip Pain Other than Trochanteric Bursitis Topical NSAIDs, wheatgrass cream, lidocaine patches, eutectic mixture of local anesthetics (EMLA), or other creams/ointments are not recommended for hip pain other than trochanteric bursitis as the target tissue is too deep. Counterirritants may be reasonable.

Strength of Evidence – Not Recommended, Insufficient Evidence (I)

### Rationale for Recommendations

Evidence of efficacy for topical medications and patches is relatively sparse for any disorder and not available for hip pain although there are some quality studies suggesting short- to intermediate-term benefits for some of these agents for more superficial tissues (see Chronic Pain, Elbow Disorders, and Hand, Wrist, and Forearm Disorders chapters). These agents, when demonstrated to have efficacy, appear weakly effective. They might cause deleterious effects if they are used long term. Topical applications of anesthetic agents over large areas are thought to carry significant risk of potentially fatal adverse effects.(553) There are many other commercially available creams and ointments, but no quality studies for the purposes of treating hip pain and the target tissue is very deep to the skin surface

although greater trochanteric bursitis may be sufficiently superficial to be accessible with these agents. Capsicum is recommended as a counterirritant option for treatment of hip pain based on analogy to treatment of low back pain and other chronic pain conditions.(554, 555)

### Evidence for the Use of Topical Medications

There are no quality studies evaluating the use of topical medications, including patches, capsaicin and sports creams, NSAIDs, wheatgrass cream, DMSO, NAC, and EMLA for treatment of hip and groin pain.

# TUMOR NECROSIS FACTOR-ALPHA BLOCKERS

A variety of tumor necrosis factor (TNF) alpha blockers, including infliximab (a chimeric monoclonal antibody directed against TNF-alpha), etanercept (a recombinant molecule comprising part of the TNF receptor plus the constant region of human immunoglobulin G1 that binds to TNF-alpha), and adalimumab (an IgG1 monoclonal antibody that binds to TNF-alpha) are in widespread use for rheumatologic and other inflammatory disorders. There may be indications for their use to treatment some patients in the setting of inflammatory rheumatologic disorders. However, this is beyond the scope of this guideline.

1. Recommendation: Tumor Necrosis Factor-alpha Blockers for Osteoarthrosis or Acute, Subacute, or Chronic Hip Pain, or Other Non-inflammatory Hip Disorders

Tumor necrosis factor-alpha blockers are not recommended for treatment of osteoarthrosis or acute, subacute, or chronic hip pain, including other non-inflammatory hip disorders.

Strength of Evidence – Not Recommended, Insufficient Evidence (I)

2. Recommendation: Tumor Necrosis Factor-alpha Blockers for Arthroplasty Patients with Periacetabular Osteolysis

Tumor necrosis factor-alpha blockers are not recommended for treatment of arthroplasty patients with peri-acetabular osteolysis.

Strength of Evidence – Not Recommended, Insufficient Evidence (I)

# Rationale for Recommendations

One quality study evaluated etanercept for treatment of periacetabular osteolysis in arthroplasty patients, but found a lack of efficacy.(556)

*Evidence for the Use of Tumor Necrosis Factor-alpha Blockers* There is 1 moderate-quality RCT incorporated in this analysis.

| Small comple size  |
|--------------------|
| Smail sample size. |
| Low power. No      |
| demonstrated from  |
| treatment. Study   |
| proposes           |
| volumetric CT for  |
| assessment.        |
|                    |

# GLUCOSAMINE, CHONDROITIN, AND METHYLSULFONYLMETHANE (MSM)

Glucosamine, chondroitin, and methylsulfonylmethane (MSM) are over-the-counter nutraceuticals, advocated as safe and effective treatment alternatives to NSAIDs for the management of osteoarthrosis. These supplements have also gained additional interest as agents that may potentially modify or slow the progression of osteoarthrosis.

Glucosamine is an amino acid monosaccharide that occurs naturally in the human body and is one of the principle substrates in the biosynthesis of cartilaginous glycosaminoglycans, proteoglycans, and hyaluronic acid.(557) Although the specific cause of osteoarthrosis is unknown, turnover of the cartilage

matrix is mediated by a multitude of complex autocrine and paracrine anabolic and catabolic factors, leading to loss of articular cartilage, subchondral bone remodeling, and low-level inflammation of the synovial membrane.(558) Glucosamine supplementation is hypothesized to beneficially affect the imbalance between rates of synthesis and degradation of cartilage proteoglycans.(557, 559) Glucosamine reportedly has anti-inflammatory properties.(560, 561) Glucosamine preparations come in two forms – glucosamine sulfate (pill and crystalline powder) or glucosamine hydrochloride – and are often combined with chondroitin sulfate and sometimes with methylsulfonylmethane. Most studies have utilized glucosamine sulfate rather than glucosamine hydrochloride, although there are no quality comparative head-to-head trials. Glucosamine sulfate is also available in suspension for intramuscular and intra-articular injection.(562, 563)

Glucosamine has few adverse effects with safety profiles comparable to placebo in the reviewed trials. However, there are two hypothetical risks that may suggest that select patient groups avoid these supplements. First, there is debate as to whether or not glucosamine, which is an aminoglycan, promotes insulin resistance;(564-566) although no adverse effect has been found in patients who have wellcontrolled diabetes mellitus or even in persons with glucose intolerance.(567, 568) Second, glucosamine preparations are commonly produced from the shells of shrimp and crabs (chitin), leading to concerns for potential allergic responses in persons with shellfish allergies. In a trial sponsored by the U.S. National Institutes of Health of 15 patients with known systemic allergies to shrimp, administration of glucosamine sulfate was not found to result in any immediate hypersensitivity reactions.(569) Glucosamine products in the U.S. are also commonly synthesized from grains, providing an alternate source for persons concerned with shellfish allergies. Therefore, these hypothetical risks appear to be low. The most common glucosamine dose is 1,500mg per day in single or divided doses.

Chondroitin, a sulfated glycosaminoglycan matrix, provides much of the structural elasticity. Chondroitin is thought to work via anti-inflammatory activity, stimulation of proteoglycans and hyaluronic acid synthesis, and decrease chondrocytic catabolic activity, although the exact mechanisms are unclear.(570) As with glucosamine, there are few reported adverse effects from chondroitin sulfate. This supplement is produced from animal cartilage such as bovine trachea, porcine, and sharks. The most common dose is 1,200mg per day in single or divided dosages. Chondroitin is most commonly combined with glucosamine in commercial preparations, sometimes additionally including MSM.

1. Recommendation: Glucosamine Sulfate, Chondroitin Sulfate, or Methylsulfonylmethane for Hip Osteoarthrosis

There is no recommendation for or against the use of glucosamine sulfate 1,500mg daily (single or divided dose), chondroitin sulfate, or methylsulfonylmethane for treatment of hip osteoarthrosis.

Strength of Evidence - No Recommendation, Insufficient Evidence (I)

2. Recommendation: Glucosamine Sulfate Intra-Muscular Injections for Hip Osteoarthrosis There is no recommendation for or against the use of glucosamine sulfate intra-muscular injections for the treatment of hip osteoarthrosis.

Strength of Evidence - No Recommendation, Insufficient Evidence (I)

3. Recommendation: Glucosamine Sulfate Intra-articular Injections for Hip Osteoarthrosis There is no recommendation for or against the use of glucosamine sulfate intra-articular injections for the treatment of hip osteoarthrosis.

# Strength of Evidence - No Recommendation, Insufficient Evidence (I)

4. Recommendation: Glucosamine Sulfate, Chondroitin Sulfate, or Methylsulfonylmethane for Osteoarthrosis Prevention

There is no recommendation for or against the use of glucosamine sulfate, chondroitin sulfate, or methylsulfonylmethane for prevention of osteoarthrosis.

Strength of Evidence - No Recommendation, Insufficient Evidence (I)

### Rationale for Recommendations

There has been some debate over the efficacy of these preparations in reducing pain, improving function, and slowing the progression of the joint space narrowing in osteoarthrosis (see glucosamine evidence table). Four quality studies have followed knee joint spaces with x-rays,(571-574) and one has followed the hip joint.(575) Three studies utilized glucosamine sulfate,(572, 573, 575) while two utilized chondroitin sulfate.(571, 574) Three studies demonstrated preservation of joint spaces compared with placebo, including some suggestions that over 3 years there was no joint space narrowing in the active treatment group.(572-574) The study that was negative was the study of the hip joint,(575) but the data also appeared to trend towards efficacy in both symptoms and x-ray findings. One of the chondroitin sulfate studies(571) found some beneficial x-ray findings, but the joint space was not statistically significant. Thus, while studies that utilized x-rays suggest benefits from treatment of knee osteoarthrosis with either glucosamine sulfate or chondroitin sulfate, quality evidence utilizing x-ray studies of efficacy for treating hip OA is not available.

There are 13 quality studies that included a comparison of glucosamine sulfate with placebo (see glucosamine evidence table). Of the 5 highest quality studies, one(576) was negative but trended toward benefits. There are 4 quality studies that included a comparison of chondroitin sulfate with placebo.(571, 574, 576, 577) The studies on chondroitin are somewhat mixed, as two suggest x-ray benefits as noted above, but symptoms did not improve in 2 studies(574, 576) though one trended toward benefit.(576) One quality study included an assessment of MSM and found it appeared beneficial.(578) Overall, the studies suggest benefits at rates well above chance associations.

Three studies compared these treatments with traditional NSAIDs(577) or acetaminophen.(579) Glucosamine hydrochloride, chondroitin sulfate, or combination thereof, was not superior to celecoxib 200mg per day.(577) However, the combination was successful for treating moderate to severe osteoarthrosis compared with placebo.(577) Two studies found glucosamine sulfate comparable to ibuprofen 1,200mg per day.(580, 581) Acetaminophen was found to be inferior to glucosamine sulfate.(579)

Glucosamine, alone or in combination with chondroitin, appears to provide first- or second-line therapy for patients with osteoarthrosis of the knee. These preparations are not invasive, appear safe and do not result in gastrointestinal erosions or the other common side effects of NSAIDS, are relatively inexpensive, and provide modest relief of knee osteoarthrosis pain, particularly in patients with more advanced pain. These medications may also modify or slow the progression of knee OA as measured by slowing of cartilage destruction and joint narrowing, although the clinical significance of this effect has not be fully identified. There is preferential evidence for the use of the sulfate salt rather than the hydrochloride formulation of glucosamine. There is one quality study involving MSM.(578) There is some evidence that a single daily dose may be more effective than divided doses. Thus, there is quality evidence that glucosamine with or without chondroitin is efficacious for treatment of osteoarthrosis. However, concerns have been raised regarding the use of different glucosamine formulations (hydrochloride versus sulfate), the difference in frequency and dosage strength, and the duration and severity of disease of the study populations. (582) Dose has not been standardized and reportedly ranges widely in available preparations. Therefore, due to lack of uniformity and standardization in preparations, some inconsistency in studies, the fact that most of the studies involved the knee, and that the single study of hip treatment including x-rays was statistically negative. (575) there is no recommendation for or against the use of these preparations for hip OA.

### Evidence for the Use of Glucosamine, Chondroitin, and Methylsulfonylmethane

There are 16 high-(254, 557, 562, 571-574, 576-579, 583-587) and 9 moderate-quality(563, 568, 569, 575, 580, 581, 588-590) RCTs incorporated in this analysis. There are 2 low-quality(591, 592) RCTs in Appendix 2.

| Author/Year<br>Study Type | Score<br>(0-11) | Sample<br>Size | Comparison<br>Group | Results | Conclusion | Comments |
|---------------------------|-----------------|----------------|---------------------|---------|------------|----------|
| Copyright                 | © 2016          | Reed Gr        | oup, Ltd.           |         |            | 119      |

|                                     |      |                            |                                                                                                                                                                                                                                                                  | Glucosamine vs. Placebo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|-------------------------------------|------|----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Uebelhart<br>2004<br>RCT            | 10.0 | N = 110<br>Knee<br>OA      | Chondroitin<br>sulfate 800mg<br>QD vs. placebo<br>for two 3-month<br>periods during 1<br>year                                                                                                                                                                    | Chondroitin group improved vs.<br>placebo at Months 9 and 12 ( $p < 0.05$ ; $p < 0.01$ ). Pain intensity decreased 42%<br>Month 9 and 12 in CS group vs. 25% in<br>placebo ( $p < 0.05$ ). Differences in VAS<br>scores and physician and patient<br>efficacy assessments favored CS at 6,<br>9, and 12 months ( $p < 0.01$ ). CS<br>treatment had a significant role upon<br>variation of joint space surface area<br>and mean joint space width ( $p = 0.03$ )<br>but not on minimum joint space width<br>vs. placebo.                                                       | "This study supports<br>the evidence that oral<br>CS of bovine origin<br>and high<br>pharmaceutical quality<br>is a well-tolerated<br>drug, which is<br>effective in reducing<br>pain and improving<br>function in patients<br>suffering from<br>symptomatic knee<br>osteoarthritis."                    | Dropout rate was<br>26% with no<br>difference<br>between the<br>groups.                                                                                                                                                                                                                                                                                                                                                                                         |
| Clegg<br>2006<br>RCT                | 9.5  | N =<br>1,583<br>Knee<br>OA | Oral<br>glucosamine<br>hydrochloride<br>(500mg TID) vs.<br>chondroitin<br>sulfate (400mg<br>TID) vs. both<br>glucosamine and<br>chondroitin<br>sulfate vs.<br>celecoxib 200mg<br>QD vs. placebo<br>in treatment of<br>knee<br>osteoarthritis in<br>6-month trial | Combined glucosamine and chondroitin<br>sulfate was borderline vs. placebo in<br>reducing WOMAC pain score 20% (p =<br>0.09). As compared with rate of<br>response to placebo (60.1%), rate of<br>response to combined treatment was<br>6.5% points higher (p = 0.09) and<br>celecoxib response rate was 10.0%<br>points higher (p = 0.008). For patients<br>with moderate-to-severe pain at<br>baseline, response rate significantly<br>higher with combined therapy vs.<br>placebo (79.2% vs. 54.3%, p = 0.002).<br>OMERACT-OARSI response rates<br>showed a similar result. | "Celecoxib was<br>demonstrated to<br>reduce pain effectively<br>in the overall group of<br>patients with<br>osteoarthritis of the<br>knee. The<br>combination of<br>glucosamine and<br>chondroitin sulfate<br>may be effective in the<br>subgroup of patients<br>with moderate-to-<br>severe knee pain." | Results showed<br>combination<br>glucosamine-<br>chondroitin to<br>have significantly<br>better outcomes<br>in subgroup of<br>moderate-to-<br>severe group<br>(WOMAC pain<br>score 301-400) in<br>WOMAC pain<br>reduction of 50%<br>or more, WOMAC<br>pain score change<br>from baseline and<br>WOMAC function<br>score. Results<br>with Celecoxib not<br>significant in<br>these categories.<br>Study used non-<br>conventional<br>glucosamine<br>preparation. |
| Pavelká<br>2002<br>RCT              | 9.5  | N = 202<br>Knee<br>OA      | Oral<br>glucosamine<br>sulfate (1,500mg<br>once daily) vs.<br>placebo for knee<br>osteoarthritis in<br>3-year trial of<br>disease<br>progression                                                                                                                 | After 3 years, average change in<br>progressive joint space narrowing with<br>placebo use -0.19mm (95% CI, -0.29 to<br>-0.09mm) while no narrowing change<br>with glucosamine sulfate use (0.04mm;<br>95% CI, -0.06 to 0.14mm), with a<br>significant difference between groups<br>( $p = 0.001$ ). Glucosamine sulfate<br>significantly higher improvement in 20%<br>on Lequesne index and 15% on<br>WOMAC index joint stiffness ( $p < 0.001$<br>and $p = 0.002$ , respectively) compared<br>with placebo.                                                                   | "Glucosamine sulfate<br>is the first<br>pharmacologic<br>intervention that<br>slowed the<br>progression of knee<br>osteoarthritis during<br>the long-term<br>treatment."                                                                                                                                 | High dropout rate<br>(81/202 = 41%<br>dropout) over the<br>3 year study,<br>although results<br>reported by intent-<br>to-treat.                                                                                                                                                                                                                                                                                                                                |
| Herrero-<br>Beaumont<br>2007<br>RCT | 9.0  | N = 318<br>OA              | Oral<br>glucosamine<br>sulfate (1,500mg<br>once daily) vs.<br>acetaminophen<br>(1,000mg TID)<br>vs. placebo<br>using double<br>dummy<br>technique in<br>treatment of<br>knee OA for 6                                                                            | Glucosamine sulfate more effective<br>than placebo in improving Lequesne<br>score with decrease of 3.1 points, vs.<br>1.9 for placebo (mean difference =-1.2<br>[95% Cl, -2.3 to<br>-0.8]; $p = 0.032$ ); 2.7-point decrease<br>with acetaminophen not significant vs.<br>placebo (mean difference =-0.8 [95%<br>Cl, -1.9 to 0.3]; $p = 0.18$ ). Similar<br>results observed for WOMAC. More<br>responders to glucosamine sulfate<br>(39.6%) and acetaminophen (33.3%)                                                                                                         | "The glucosamine<br>sulfate at the once-<br>daily dosage is an<br>effective medication<br>for knee osteoarthritis<br>symptoms, compared<br>with placebo. Although<br>acetaminophen also<br>had a higher<br>responder rate<br>compared with<br>placebo, it failed to                                      | Glucosamine<br>appeared superior<br>to acetaminophen<br>as well as<br>placebo.                                                                                                                                                                                                                                                                                                                                                                                  |

|                          |     |                       | months                                                                                                                                                                                | than placebo (21.2%) (p = 0.004 and p<br>= 0.047 vs. placebo).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | show significant<br>effects on the<br>algofunctional<br>indexes."                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                     |
|--------------------------|-----|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Usha<br>2004<br>RCT      | 9.0 | N = 118<br>OA         | Oral<br>glucosamine<br>(Glu) 500mg TID<br>vs. methyl-<br>sulfonylmethane<br>(MSM) 500mg<br>TID vs. both Glu<br>and MSM vs.<br>placebo in<br>osteoarthritis of<br>knee for 12<br>weeks | Placebo showed insignificant change in<br>mean pain index (mean difference =<br>1.57 [SD, ± 0.5]) to (mean difference =<br>1.16 [SD, ± 0.76]). Glu showed<br>significant decrease in mean pain index<br>(mean difference = $1.74$ [SD, ± 0.47]) to<br>(mean difference = $0.65$ [SD, ± 0.71]; p<br><0.001). MSM significantly decreased<br>mean pain index from (mean difference<br>= $1.53$ [SD, ± 0.51]) to (mean difference<br>= $0.74$ [SD, ± 0.65]) and combination<br>treatment highly significant decrease in<br>mean pain index (mean difference = $1.7$<br>[SD, ± 0.47]) to (mean difference = $0.36$<br>[SD, ± 0.33]; p <0.001). After 12 weeks,<br>mean swelling index significantly<br>decrease in swelling index with<br>combination therapy greater (mean<br>difference = $1.43$ [SD, ± 0.63]) to (mean<br>difference = $0.14$ [SD, ± 0.35]; p <0.05). | "The therapy with Glu,<br>MSM and their<br>combination produced<br>an analgesic, anti-<br>inflammatory effect in<br>patients with<br>osteoarthritis.<br>Combination therapy<br>showed better efficacy<br>in reducing pain,<br>swelling and<br>improving the<br>functional ability of<br>joints over individual<br>therapy. All the<br>treatments were well<br>tolerated." | Unclear whether<br>study medication<br>was Glu sulfate or<br>Glu hydrochloride.<br>Combination of<br>Glucosamine and<br>MSM appears<br>superior.                                                                                                    |
| Maziéres<br>2007<br>RCT  | 9.0 | N = 307<br>Knee<br>OA | Chondroitin<br>sulfate 500mg<br>BID vs. placebo<br>for 24 weeks for<br>knee<br>osteoarthritis                                                                                         | Decrease in pain was -26.2 (24.9) and -<br>19.9 (23.5) mm and improved function<br>was<br>-2.4(3.4) (-25%) and -1.7 (3.3) (-17%)<br>in chondroitin sulfate and placebo<br>groups, respectively (0.029 and 0.109).<br>OMERACT-OARSI responder rate was<br>68% in chondroitin sulfate and 56% in<br>placebo group ( $p = 0.03$ ). No significant<br>difference observed for changes in<br>biomarkers of inflammation.                                                                                                                                                                                                                                                                                                                                                                                                                                                  | "This study failed to<br>show an efficacy of<br>chondroitin sulfate on<br>the two primary<br>criteria considered<br>together, although<br>chondroitin sulfate<br>was slightly more<br>effective than placebo<br>on pain, OMERACT-<br>OARSI response rate,<br>investigator's<br>assessment and<br>quality of life."                                                        | Baseline<br>differences<br>between groups<br>on variable of<br>stage of disease<br>appear to be<br>present 69% vs.<br>59% of<br>chondroitin group<br>rated as<br>intermediate OA<br>disease. No<br>information on<br>other percentage<br>of groups. |
| Hughes<br>2002<br>RCT    | 8.5 | N = 80<br>Knee<br>OA  | Oral<br>glucosamine<br>sulfate (500mg<br>TID) vs. placebo<br>with<br>osteoarthritis of<br>the knee for 6<br>months                                                                    | Area under curve (AUC) analysis<br>revealed no significant difference<br>between placebo [mean = 1065.45,<br>SD=398.07] and glucosamine [mean =<br>1081.28, SD = 577.69]; p = 0.89 in<br>primary outcomes measures. No<br>differences between placebo and<br>glucosamine for treatment response ( $x^2$<br>statistic 0.006, p = 0.94). No significant<br>difference in use of rescue analgesia<br>between glucosamine (mean<br>paracetamol tablets taken 43, S.D.<br>63.92, range 0-252) and placebo (mean<br>paracetamol taken 45, S.D. 75.64,<br>range 0-264).                                                                                                                                                                                                                                                                                                     | "As a symptom<br>modifier in OA<br>patients with a wide<br>range of severities,<br>glucosamine sulfate<br>was no more effective<br>than placebo."                                                                                                                                                                                                                         | Permitted co-<br>treatment with<br>NSAIDs may have<br>confounded<br>results. Relatively<br>small sample size.                                                                                                                                       |
| McAlindon<br>2004<br>RCT | 8.5 | N = 205<br>Knee<br>OA | Oral<br>glucosamine<br>(1,500mg once<br>daily) and<br>placebo in 12<br>week trial for<br>knee                                                                                         | At week 12 followed-up from baseline;<br>no difference between glucosamine<br>and placebo groups in terms of change<br>in pain score ( $2.0\pm3.4$ vs. $2.5\pm3.8$ , p =<br>0.41), and analgesic use ( $133\pm553$ vs<br>$88\pm755$ , p = 0.12), after adjusting<br>covariates.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | "Although<br>glucosamine appears<br>to be safe, it is no<br>more effective than<br>placebo in treating the<br>symptoms of knee<br>osteoarthritis."                                                                                                                                                                                                                        | Baseline<br>differences of<br>comparison<br>groups.<br>Medication<br>supplier changed<br>during trial,                                                                                                                                              |

Copyright© 2016 Reed Group, Ltd.

|                        |     |                       | osteoarthritis                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                   | resulting in initial<br>use of<br>glucosamine                                                                                                                                          |
|------------------------|-----|-----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                        |     |                       |                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                   | replaced by<br>glucosamine<br>hydrochloride<br>powder. Study<br>completed<br>through Internet.                                                                                         |
| Mehta<br>2007<br>RCT   | 8.5 | N = 95<br>OA          | Oral<br>glucosamine<br>sulfate (750mg<br>BID) vs.<br>Reparagen<br>(900mg BID) in<br>mild to moderate<br>osteoarthritis of<br>knee for 8 weeks                                                | Glucosamine sulfate and reparagen<br>showed significant benefits in WOMAC<br>and VAS outcomes (20% improvement<br>from baseline) within 1 week of<br>treatment ( $p < 0.05$ ) and over 8 weeks<br>of treatment ( $p < 0.001$ ). Overall<br>WOMAC score benefit was 60%<br>reduction for glucosamine vs. 62%<br>reparagen. Response rate of 50%<br>reduction in WOMAC scores<br>significantly greater for reparagen<br>(58.3%) than glucosamine (38.2%) at<br>Week 4 ( $p = 0.05$ ). Rescue medication<br>(paracetamol) significantly lower in<br>reparagen group ( $p < 0.01$ ). | "Glucosamine sulfate<br>and reparagen<br>provided effective<br>relief of mild to<br>moderate<br>osteoarthritis of the<br>knee in this<br>population, with<br>continued<br>improvements upon<br>sustained treatment."                                                                                                                                                              | No placebo group.<br>Data suggest<br>reparagen may be<br>superior to<br>glucosamine                                                                                                    |
| Messier<br>2007<br>RCT | 8.5 | N = 89<br>Knee<br>OA  | Glucosamine<br>hydrochloride<br>1,500mg<br>chondroitin<br>sulfate/1,200mg<br>QD vs. placebo<br>for 6 months for<br>knee OA. Both<br>groups received<br>exercise training<br>and instruction. | Mean function did not vary significantly<br>between groups at 6-month ( $p = 0.52$ )<br>or 12-months ( $p = 0.50$ ). However,<br>mean WOMAC function combining both<br>groups improved significantly over time<br>( $p = 0.005$ ). There was no difference in<br>pain measures, 6-minute walk distance,<br>or knee strength at 6 or 12 months<br>between the groups.                                                                                                                                                                                                             | "Glucosamine<br>hydrochloride/chondro<br>itin sulfate group was<br>not superior to the<br>placebo group in<br>function, pain, or<br>mobility after both<br>phases of the<br>intervention (pill only<br>and pill plus<br>exercise)."                                                                                                                                               | Allocation unclear<br>with baseline<br>differences in<br>function present.                                                                                                             |
| Noack<br>1994<br>RCT   | 8.5 | N = 252<br>Knee<br>OA | Oral<br>glucosamine<br>sulfate (500mg<br>TID) vs. placebo<br>for knee<br>osteoarthritis<br>over 4 weeks                                                                                      | Lequesne index decreased to $7.45\pm0.5$<br>points in glucosamine group (average<br>3.2) and $8.4\pm0.4$ points in placebo<br>group (average 2.2) (p <0.05).<br>Proportion of responder patients was<br>52% with glucosamine and 37% with<br>placebo in an intention-to-treat analysis<br>(p = 0.016).                                                                                                                                                                                                                                                                           | "The treatment with<br>glucosamine sulfate<br>resulted in a<br>significantly higher<br>improvement knee<br>osteoarthritis in<br>relation to placebo."                                                                                                                                                                                                                             | Blinding of<br>assessor not<br>clear. Results of<br>per-protocol<br>analysis similar to<br>intent-to treat.                                                                            |
| Houpt<br>1999<br>RCT   | 8.0 | N = 118<br>Knee<br>OA | Oral flucosamine<br>hydrochloride<br>(500mg TID) vs.<br>placebo for<br>osteoarthritis of<br>the knee for 8<br>weeks                                                                          | Glucosamine reduced WOMAC pain<br>scores over 8 weeks (mean difference<br>= 46.36 [SD, 13.1]) to (mean difference<br>= 36.57 [SD, 19.5]) vs. placebo reduced<br>WOMAC pain scores (mean difference<br>= 42.42 [SD, 14.9]) to (mean difference<br>= 38.57 [SD, 19.3]). Glucosamine<br>hydrochloride has more than 2 times<br>the improvement compared to placebo<br>(21 vs. 9.1%). Between Week 5 and<br>Week 8, knees of patients taking<br>glucosamine appeared to show<br>improvement vs. placebo (p = 0.026).                                                                 | "There was no<br>significant difference<br>in pain reduction<br>between the<br>glucosamine<br>hydrochloride and<br>placebo group as<br>measured by<br>WOMAC. Secondary<br>endpoints of<br>cumulative pain<br>reduction as<br>measured by daily<br>diary and knee<br>examination were<br>favorable, suggesting<br>that glucosamine<br>hydrochloride benefits<br>some patients with | The methods<br>state pharmacists<br>were blinded to<br>treatment<br>allocation,<br>however, that<br>seems<br>impossible.<br>Outcomes<br>measures trend<br>towards positive<br>results. |

| Reginster<br>2001<br>RCT             | 8.0 | N = 212<br>Knee<br>OA | Oral<br>glucosamine<br>sulfate (1,500mg<br>QD) vs. placebo<br>for knee OA in 3<br>year trial of<br>disease<br>progression     | No average loss of joint-space width in<br>patients receiving glucosamine sulfate<br>(0.07mm, 95% CI, -0.17 to 0.32);<br>placebo had significant mean and<br>minimum joint-space narrowing (-<br>0.31mm, 95% CI, -0.57 to -0.04). As<br>assessed by WOMAC scores,<br>symptoms worsened slightly in placebo<br>vs. glucosamine sulfate (p = 0.016).                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | "The long-term effect<br>of glucosamine sulfate<br>was proved to benefit<br>for both combined<br>joint structure-<br>modifying and<br>symptom-modifying.<br>No alteration in<br>glycemic homeostasis<br>was found."                                                                                                          | High dropout rate<br>(73/212 = 34%),<br>although<br>demographic data<br>suggest a lack of<br>bias. NSAIDs<br>allowed during<br>study.                                                                            |
|--------------------------------------|-----|-----------------------|-------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Michel<br>2005<br>RCT                | 8.0 | N = 300<br>Knee<br>OA | Oral chondroitin<br>sulfate 800mg<br>QD vs. placebo<br>for 2 years for<br>knee OA                                             | Difference in joint space loss between<br>the two groups was significant for the<br>mean joint space width ( $0.14 \pm 0.57$<br>mm, p = 0.04) and for minimum joint<br>space width ( $0.12 \pm 0.52$ mm, p = 0.05)<br>favoring the chondroitin sulfate group<br>(no loss in chondroitin group). No<br>difference in WOMAC pain or function<br>scores.                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | "Chondroitin sulfate<br>halted structural<br>changes in<br>osteoarthritis of the<br>knee as assessed by<br>radiographic follow-up<br>over 2 years. There<br>were no significant<br>symptomatic effects in<br>this study. The clinical<br>relevance of the<br>observed structural<br>results has to be<br>further evaluated." | Dropout was 26%<br>at 2-years. Study<br>population had<br>relatively low pain<br>severity scores to<br>begin with, which<br>may have<br>contributed to lack<br>of improvement of<br>pain and function<br>scores. |
| Rozendaal<br>2008<br>RCT             | 7.5 | N = 222<br>Hip OA     | Oral<br>glucosamine<br>sulfate (750mg<br>BID vs. placebo<br>for hip<br>osteoarthritis<br>over 2 years                         | Change from baseline, WOMAC pain<br>score for glucosamine sulfate (mean<br>difference = -1.90 [SD, $\pm$ 1.6])<br>compared to placebo (mean difference<br>= -0.30 [SD $\pm$ 1.6]). Joint space<br>narrowing for glucosamine sulfate<br>group (mean difference = -0.094 [SD $\pm$<br>0.32]) compared to placebo (mean<br>difference = -0.057 [SD $\pm$ 0.32]). Over 2<br>years daily therapy after adjusting for<br>covariates, glucosamine sulfate no<br>better than placebo in reducing<br>WOMAC pain scores (mean difference<br>= -1.54 [95% CI, -5.43 to 2.36]), or<br>reducing WOMAC function scores<br>(mean difference = -2.01 [95% CI, -5.38<br>to 1.36]). Joint space narrowing not<br>significantly different between<br>glucosamine sulfate and placebo<br>(mean difference =-0.029 [95% CI, -<br>0.122 to 0.064]). | "Glucosamine sulfate<br>was no better than<br>placebo in reducing<br>symptoms and<br>progression of hip<br>osteoarthritis."                                                                                                                                                                                                  | Data suggest non-<br>statistically<br>significant trends<br>in symptoms and<br>joint space<br>narrowing in favor<br>of glucosamine.<br>Baseline disease<br>was mild based<br>on radiographic<br>grading overall. |
| Müller-<br>Fassbender<br>1994<br>RCT | 6.5 | N = 199<br>Knee<br>OA | Oral<br>glucosamine<br>sulfate 500mg.<br>TID vs. ibuprofen<br>400mg TID for 4<br>weeks treatment<br>of knee<br>osteoarthritis | Lequesne's index value progressively<br>decreased in both groups, although no<br>statistical significance was found<br>between the groups. Ibuprofen treated<br>patients experienced more prompt<br>relief, mainly evident during first 2<br>weeks. GS exerted its main clinical<br>effect from third week onward. GS<br>group had significantly fewer adverse<br>effects (p <0.001).                                                                                                                                                                                                                                                                                                                                                                                                                                         | "This 200 patient<br>comparative 4-week<br>study demonstrated<br>that oral glucosamine<br>sulfate was as<br>effective as ibuprofen<br>(1200 mg/day) in<br>controlling symptoms<br>in patients with active<br>OA of the knee.<br>Conversely,<br>glucosamine was<br>better tolerated than<br>ibuprofen."                       | Blinding and<br>allocation unclear.<br>No placebo<br>control. No<br>statistical<br>difference in<br>efficacy between<br>OTC ibuprofen<br>and GS in 4 week<br>trial.                                              |
| Rindone<br>2000<br>RCT               | 6.0 | N = 98<br>Knee<br>OA  | Oral<br>glucosamine<br>sulfate (500mg<br>TID) vs. placebo<br>for knee OA over                                                 | No statistical difference between mean<br>scores glucosamine and placebo while<br>resting [mean (SD): $3.2$ [2.5]<br>glucosamine group vs. $3.4$ [2.5] placebo,<br>p = $0.81$ ] or in mean scores walking                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | "Glucosamine was not<br>better than placebo in<br>reducing pain from<br>osteoarthritis of the<br>knee in this group of                                                                                                                                                                                                       | Study details are sparse.                                                                                                                                                                                        |

|                                        |     |                                                                                                                     | 2 months                                                                                                                                                                                                         | [mean (SD): 4.9 [2.8] glucosamine vs.<br>4.9 [2.2] placebo, p = 0.90].                                                                                                                                                                                                                  | patients."                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                         |
|----------------------------------------|-----|---------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                        |     |                                                                                                                     |                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                              | -                                                                                                                                                                                       |
| Scroggie<br>2003<br>RCT                | 6.0 | N = 38<br>Type 2<br>diabete<br>s<br>mellitus                                                                        | Glucosamine<br>sulfate<br>1,500mg/chondr<br>oitin sulfate<br>1,200mg vs.<br>placebo for 90<br>days in patients<br>with type 2<br>diabetes mellitus                                                               | HbA1c mean values changed very little<br>in both treatment groups during the<br>study. There were no significant<br>differences between the baseline<br>measures or between the groups.<br>There were no changes in medical<br>therapy in either group during the study<br>period.      | "This study<br>demonstrated that oral<br>glucosamine<br>supplementation does<br>not adversely affect<br>glycemic control when<br>administered to<br>patients with type 2<br>diabetes mellitus at<br>doses recommended<br>by the manufacturer."                                                                                                                                                               | Study goal to<br>assess glycemic<br>control among<br>diabetics<br>prescribed<br>GS/CS. Patients<br>in placebo group<br>had milder<br>condition of<br>diabetes.<br>Allocation unclear.   |
| Villacis<br>2006<br>Crossover<br>Trial | 5.5 | N = 15<br>Subject<br>s with<br>shrimp<br>allergy<br>and an<br>Immuno<br>CAP<br>class<br>level of<br>2 or<br>greater | Glucosamine<br>hydrochloride<br>1,500mg<br>chondroitin/<br>1200mg using<br>shell-fish derived<br>vs. synthetic<br>manufactured<br>glucosamine in<br>patients with<br>confirmed<br>shrimp/shell fish<br>allergies | Fifteen (15) subjects in crossover trial<br>of one dose oral challenge with 24-hour<br>follow-up. All subjects tolerated shell-<br>derived glucosamine without incident or<br>an immediate hypersensitivity<br>response.                                                                | "Glucosamine<br>supplements from<br>specific manufacturers<br>do not contain<br>clinically relevant<br>levels of shrimp<br>allergen and therefore<br>appear to pose no<br>threat to shrimp-<br>allergic individuals."                                                                                                                                                                                        | Small sample<br>size.<br>Randomization<br>and allocation<br>unclear. Results<br>cannot be inferred<br>to all<br>manufacturers of<br>shrimp/shell fish<br>derived<br>glucosamine.        |
| Lopes Vaz<br>1982<br>RCT               | 5.0 | N = 40<br>Uni-<br>lateral<br>knee<br>OA                                                                             | Glucosamine<br>sulfate (1.5g) vs.<br>ibuprofen (1.2g)<br>daily over 8<br>weeks                                                                                                                                   | Pain scores showed a significant<br>decrease during both treatments. No<br>significant differences were detected in<br>the general symptoms which appeared<br>during treatment. No significant<br>variations were recorded in the<br>hematological tests.                               | "The authors suggest<br>that the best<br>therapeutic results in<br>osteoarthritis could<br>possibly be obtained<br>by giving glucosamine<br>sulfate along with an<br>anti-inflammatory<br>agent during an initial<br>period of about 2<br>weeks to ensure<br>prompt reduction of<br>pain and then to<br>continue treatment for<br>a further 6 to 10<br>weeks or longer with<br>oral glucosamine<br>sulfate." | Comparison is<br>made with OTC<br>strength<br>ibuprofen.<br>Allocation,<br>baseline<br>characteristics<br>and blinding are<br>unclear. There<br>was no control for<br>co-interventions. |
| Pujalte<br>1980<br>RCT                 | 4.0 | N = 20<br>OA                                                                                                        | Glucosamine<br>sulfate (500mg<br>TID) vs. placebo<br>for 6-8 weeks for<br>non-specific OA                                                                                                                        | GS improved symptoms vs. placebo.<br>Patients given glucosamine sulfate<br>experienced earlier alleviation of<br>symptoms compared with placebo.<br>Glucosamine sulfate resulted in a<br>significantly larger proportion of<br>patients with lessening or<br>disappearance of symptoms. | "Oral glucosamine<br>sulfate treatment<br>produced significant<br>improvements in the<br>symptoms of pain,<br>joint tenderness and<br>swelling, as well as in<br>restriction of<br>movement.<br>Glucosamine sulfate is<br>a drug of first choice<br>for the basic treatment<br>of patients with<br>osteoarthritis."                                                                                          | Small sample size<br>with a lack of<br>study details.<br>Study inclusion<br>and exclusion<br>criteria unclear.<br>Body part (joint)<br>being studied<br>non-specific.                   |
| Drovanti<br>1980                       | 4.0 | N = 80<br>OA                                                                                                        | Glucosamine<br>sulfate 500mg<br>TID vs. placebo                                                                                                                                                                  | Glucosamine sulfate demonstrated<br>decrease in symptoms to a significantly<br>larger extent in significantly shorter time                                                                                                                                                              | " I he positive effect of<br>hospitalization on the<br>symptoms of                                                                                                                                                                                                                                                                                                                                           | Lack of details.<br>No control for co-<br>interventions.                                                                                                                                |

| RCT                      |     |                             | for 30 days for<br>non-specific OA                                                                                                                                                                                                                                                                                                                                                   | than placebo. Patients treated with<br>glucosamine sulfate had a 72%<br>reduction (placebo 36%) during survey<br>period. At end of treatment, significantly<br>more patients treated with glucosamine<br>sulfate experienced complete freedom<br>from pain or restricted function.                                                                                                                                                                                                                                                                                                                   | osteoarthritis may be<br>significantly<br>accelerated, and<br>increased by a factor<br>of almost two, with a<br>simple oral treatment<br>with glucosamine<br>sulfate."                                           | Patients in<br>hospital for<br>unclear reasons.<br>Multiple joint<br>locations included<br>(back, neck,<br>generalized).                                                                                                                                                                            |
|--------------------------|-----|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                          |     |                             |                                                                                                                                                                                                                                                                                                                                                                                      | Invasive Preparations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                     |
| Reichelt<br>1994<br>RCT  | 8.5 | N = 155<br>Knee<br>OA       | Intramuscular<br>injection<br>glucosamine<br>sulfate (400mg<br>twice a week) vs.<br>placebo for knee<br>osteoarthritis<br>over 6 weeks                                                                                                                                                                                                                                               | Intramuscular glucosamine sulfate vs.<br>placebo showed improvement in<br>symptoms of knee OA (pain and<br>movement limitation) over 6-week<br>therapeutic course ( $p < 0.05$ ). Response<br>rate 55% glucosamine ( $n = 73$ ) vs. 33%<br>( $n = 69$ ) placebo ( $p = 0.012$ ). Local and<br>systemic tolerability of intramuscular<br>glucosamine sulfate were good and<br>without significant difference compared<br>to placebo.                                                                                                                                                                  | "Intramuscular<br>glucosamine sulfate<br>reduced pain and<br>improved functional in<br>knee osteoarthritis<br>patients."                                                                                         | Some details<br>missing of<br>randomization,<br>allocation, and<br>blinding.                                                                                                                                                                                                                        |
| Vajaradul<br>1981<br>RCT | 5.0 | N = 54<br>Gonarth<br>-rosis | Intra-articular<br>injection of<br>glucosamine<br>sulfate (dose not<br>reported) vs.<br>saline placebo in<br>affected knee                                                                                                                                                                                                                                                           | After 5 consecutive weeks of<br>treatments, both treatments<br>significantly improved pain scores,<br>although pain reduction with<br>glucosamine was greater (mean<br>difference = $0.18, \pm 0.03; p < 0.01$ ) vs.<br>placebo (mean difference = $0.69, \pm 0.18; p = 0.01$ ).                                                                                                                                                                                                                                                                                                                     | "Glucosamine<br>treatment provided a<br>greater freedom from<br>pain than that given by<br>the mere injection of<br>placebo into the joint.<br>Moreover,<br>glucosamine showed<br>no resulting side<br>effects." | Glucosamine<br>group somewhat<br>older. Details<br>sparse, especially<br>blinding.                                                                                                                                                                                                                  |
|                          |     |                             | Glucos                                                                                                                                                                                                                                                                                                                                                                               | amine vs. Placebo Discontinuation Tr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ial                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                     |
| Cibere<br>2004<br>RCT    | 8.5 | N = 137<br>Knee<br>OA       | Oral<br>glucosamine<br>sulfate (up to<br>1,500mg a day)<br>vs. placebo for<br>knee OA in 6<br>month trial.<br>Randomized<br>discontinuation<br>trial (control was<br>discontinuation<br>of treatment) in<br>patient group<br>already using<br>glucosamine<br>sulfate with<br>reported<br>efficacy. Primary<br>outcomes<br>measures are<br>disease flare-up<br>and flare<br>severity. | After 6 months, disease flares in<br>intention-to-treat analysis were seen in<br>21 (45%) of 71 patients in glucosamine<br>group and 28 (42%) of 66 patients in<br>placebo group. Between-group<br>difference not statistically significant<br>(95% CI, -19 to 14; p = 0.76). After<br>adjustments, no difference in risk of<br>flare (Hazard ratio 0.8, (95% CI 0.5 to<br>1.4, p = 0.45) or use of acetaminophen<br>and NSAIDs, mean changes in<br>WOMAC pain scores on walking, pain,<br>stiffness, or function scales, or adverse<br>effects between glucosamine and<br>placebo groups (p >0.05). | "This study provided<br>no evidence of<br>symptomatic benefit<br>from continued use of<br>glucosamine sulfate<br>over and above found<br>with placebo."                                                          | Glucosamine<br>group had more<br>severe knee OA<br>based on<br>radiography at<br>baseline providing<br>an uncontrolled<br>potential<br>confounder.<br>Cannot rule out<br>possibility of long<br>term benefit in the<br>placebo<br>(discontinuation<br>group) from<br>earlier use of<br>glucosamine. |

# COMPLEMENTARY OR ALTERNATIVE TREATMENTS OR DIETARY SUPPLEMENTS

Many interventions have been attempted to treat chronic pain conditions, sometimes including patients with hip pain. Some of these interventions might be classified as dietary supplements or as complementary or alternative treatments.(593-596) A few of these include homeopathic treatments, naturopathic treatments, vitamins, herbal remedies (certain exceptions discussed below), spiritual healing, touch for healing, craniosacral therapy, aromatherapy, energy healing, and neural therapy. Most of these interventions do not have any quality evidence of efficacy. Some controversy surrounds the

issue of the value of placebo effects in healing.(597) As there are many interventions shown to be efficacious for the treatment of acute, subacute, and/or chronic pain, it is strongly recommended that patients be treated with therapies proven to be efficacious, whether the intervention is considered complementary or not.

# Recommendation: Complementary or Alternative Treatments or Dietary Supplements for Acute, Subacute, or Chronic Hip Pain

# Complementary or alternative treatments or dietary supplements, etc. are not recommended for treatment of acute, subacute, or chronic hip pain.

# Strength of Evidence - Not Recommended, Insufficient Evidence (I)

### Rationale for Recommendation

As there is no evidence of efficacy and they have not been shown to produce meaningful benefits or improvements in functional outcomes, complementary and alternative treatments including dietary supplements, etc., are not recommended.

*Evidence for the Use of Complementary or Alternative Treatments or Dietary Supplements, etc.* There are no quality studies evaluating the use of complementary or alternative treatments, dietary supplements, etc., for hip and groin pain.

### HERBAL AND OTHER PREPARATIONS

There are many treatments that have been attempted to treat chronic hip pain, especially due to osteoarthrosis, including herbal treatments.(598) Some interventions that might be classified as complementary or alternative methods or dietary supplements, etc.,(271, 593) are reviewed above. A few of these interventions include homeopathic, herbal, and naturopathic treatments. Besides the complementary and alternative methods, vitamins or dietary supplements have also been attempted as treatments for chronic pain conditions. Most of these do not have any quality evidence of efficacy,(599) and there is some controversy surrounding the issue of the value of placebo effects on healing.(597)

There are some remedies for which there is evidence with regards to the management of acute low back. pain and osteoarthrosis. White willow bark (Salix) extract has been studied in low back pain. A principal ingredient is salicin, with salicylic acid as the principal metabolite. Daily doses of 240mg salicin, approximately equivalent to 50mg of acetylsalicylate (which was sufficiently low as to suggest that this may not be the sole reason for its analgesic effect), have been shown to be more effective than placebo in alleviating pain and improving physical impairment scores in patients with acute low back pain, with gastrointestinal complaints occurring no more frequently than with placebo. Topical copper salicylates have also been used for treatment of arthritis.(600, 601) Extract of Harpagophytum procumbens (devil's claw root) has been used in Europe to treat musculoskeletal symptoms with some evidence that it may relieve acute low back pain, acute episodes of chronic low back pain, and osteoarthrosis more effectively than placebo in doses that have consisted of the equivalent of 50 to 100mg of harpagoside daily. Mild gastrointestinal upset has been reported at higher doses. Other treatments include ginger extract,(602-609) rose hips, (610-619) s-adenosylmethionine, (620-628) Camphora molmol, Maleluca alternifolia, Angelica sinensis, Aloe vera, Thymus officinalis, Menthe peperita, Arnica Montana, Curcuma longa, Tancaetum parthenium, avocado soybean unsaponifiables. (629-634) willow bark extract. (635, 636) copper salicylate, (600) and oral enzymes. (637-641)

Figure 10. Knee pain on standing as measured by 100-mm visual analog scale after 2 and 6 weeks in patients with osteoarthritis receiving placebo (n = 123) or ginger extract (n = 124), in the intent-to-treat analysis. Bars show the mean pain rating (in mm) and 95% confidence intervals.



Altman RD, Marcussen KC. Effects of a ginger extract on knee pain in patients with osteoarthritis. *Arthritis Rheum.* 2001;44(11):2531-8. Reprinted with permission from John Wiley and Sons.

Recommendation: Willow Bark (Salix), Ginger Extract, Rose Hips, Camphora Molmol, Maleluca Alternifolia, Angelica Sinensis, Aloe Vera, Thymus Officinalis, Menthe Peperita, Arnica Montana, Curcuma Longa, Tancaetum Parthenium, and Zingiber Officinicalis, Avocado Soybean Unsaponifiables, Oral Enzymes, Topical Copper Salicylate, S-Adenosylmethionine, and Diacerein Harpagoside for Acute, Subacute, or Chronic Hip Pain

There is no recommendation for or against use of willow bark (Salix), ginger extract, rose hips, camphora molmol, maleluca alternifolia, angelica sinensis, aloe vera, thymus officinalis, menthe peperita, arnica montana, curcuma longa, tancaetum parthenium, and zingiber officinicalis, avocado soybean unsaponifiables, oral enzymes, topical copper salicylate, S-Adenosylmethionine, and diacerein harpagoside for treatment of acute, subacute, or chronic hip pain.

### Strength of Evidence - No Recommendation, Insufficient Evidence (I)

### Rationale for Recommendation

Most of these agents have no quality evidence available (e.g., Camphora molmol, Maleluca alternifolia, Angelica sinensis, Aloe vera, Thymus officinalis, Menthe peperita, Arnica Montana, Curcuma longa, Tancaetum parthenium, Harpagoside) for acute, subacute, and chronic hip pain. Some have conflicting results (e.g., willow bark (Salix), rose hips, avocado soybean unsaponifiables, and ginger extract). Still others have no quality studies comparing the active ingredient with placebo (e.g., S-Adenosylmethionine, harpagoside, oral enzymes) and one agent appears ineffective (copper salicylate).

However, none of these agents has had a standardized dose, resulting in a lack of clarity of patient dosing. All of the studies comparing the agent to a standard NSAID dose found the NSAID superior; only those with lower doses of NSAIDs sometimes found evidence suggesting equivalency (see herbal and other preparations evidence table). These agents are not invasive, have unclear adverse effect profiles, and over time are moderate to high cost. Thus, there is no recommendation for or against use of these agents.

### Evidence for the Use of Herbal and Other Preparations

There are 9 high- and 10 moderate-quality RCTs or crossover trials incorporated in this analysis. There is 1 low-quality RCT(616) in Appendix 2.

| Author/Yea<br>r<br>Study<br>Type | Scor<br>e (0-<br>11) | Sample<br>Size | Comparison<br>Group | Results                                              | Conclusion             | Comments           |  |  |
|----------------------------------|----------------------|----------------|---------------------|------------------------------------------------------|------------------------|--------------------|--|--|
| S-Adenosylmethionine             |                      |                |                     |                                                      |                        |                    |  |  |
| Najm                             | 9.0                  | N = 61         | SAMe 600mg BID      | Celecoxib superior for                               | "SAMe has a slower     | No placebo         |  |  |
| 2004                             |                      | Knee           | VS. Celecoxib       | pain relief in first month (p $-0.024$ ). During 2nd | onset of action but is | comparison. Data   |  |  |
| Crossover                        |                      | OA             | weeks each.         | month, no differences in                             | celecoxib in the       | equally effective, |  |  |
| Trial                            |                      |                | Double dummy.       | pain. Total COOP score:                              | management of          | although           |  |  |

#### Copyright© 2016 Reed Group, Ltd.

|                                      |     |                                                        |                                                                                                                                                         | baseline 48.7±8.7 vs.<br>SAMe 39.9±9.3 vs.<br>celecoxib 39.8±11.3. SF-<br>36 scores did not differ.                                                                                                                                                                                                                                                                   | symptoms of knee<br>osteoarthritis. Longer<br>studies are needed<br>to evaluate the long-<br>term effectiveness of<br>SAMe and the<br>optimal dose to be<br>used."                                                                                 | celecoxib 100mg<br>BID has faster<br>onset of pain<br>relief.                                                                                                                                                                                                                     |
|--------------------------------------|-----|--------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Glorioso<br>1985<br>RCT              | 7.5 | N = 150<br>Hip or<br>knee<br>OA                        | SAMe 400mg vs.<br>ibuprofen 400mg<br>TID for 30 days                                                                                                    | "Pain pool" average<br>symptoms: SAMe (10.32<br>±2.8) vs. ibuprofen (10.29<br>±2.9), NS. Rigidity in<br>minutes: SAMe (19.45±<br>14.8 vs. ibuprofen 17.85±<br>15.20, NS). Patient and<br>physician assessments<br>not different between<br>groups. Patient judgment<br>(much better and better<br>combined): SAMe<br>(44/58.7%) vs. ibuprofen<br>(40/75 = 53.3%), NS. | "The reported data<br>confirmed that<br>SAMe is effective in<br>the treatment of<br>symptoms of<br>degenerative joint<br>decreases;<br>moreover SAMe<br>exhibited a slightly<br>more marked activity<br>than the reference<br>drug in particular." | No placebo<br>control.<br>Comparison to<br>OTC dosage of<br>ibuprofen with<br>similar efficacy.                                                                                                                                                                                   |
| Vetter<br>1987<br>RCT                | 4.5 | N = 36<br>OA<br>knee,<br>hip or<br>spine               | S-<br>Adenosylmethionin<br>e 400mg TID vs.<br>indomethacin<br>50mg TID for 4<br>weeks.                                                                  | Global clinical scores<br>(baseline/post-treatment):<br>SAMe (12.6/8.2) vs.<br>indomethacin (11.1/5.9).<br>Scores mostly improved<br>for each diagnostic group:<br>knee ( $p < 0.02$ ), hip (SAMe<br>p = 0.043 vs.<br>indomethacin $p = 0.11$ )<br>and spine (SAMe $p = 0.11$<br>vs. indomethacin $p = 0.043$ ).                                                      | "SAMe in the<br>treatment of<br>osteoarthritis does<br>not seem to differ<br>from that of<br>indomethacin, but its<br>tolerability appears<br>to be better<br>compared with that<br>of indomethacin."                                              | No placebo group.<br>Small sample size<br>and likely<br>underpowered.<br>Suggests SAMe<br>may be effective<br>in reducing<br>symptoms.                                                                                                                                            |
| Müller-<br>Fassbender<br>1987<br>RCT | 4.0 | N = 36<br>OA of<br>hip,<br>knee or<br>spine            | S-<br>Adenosylmethionin<br>e 400mg TID vs.<br>ibuprofen 400mg<br>TID for 4 weeks.                                                                       | Global clinical scores<br>(baseline/post treatment):<br>SAMe (31.7/17.6) vs.<br>ibuprofen (35.6/16.6).<br>Scores also improved for<br>knee, hip and spine with<br>both treatments (p <0.01).<br>Reductions in scores<br>trended towards favoring<br>ibuprofen.                                                                                                        | "Both treatments<br>were well tolerated<br>and no patient from<br>either group<br>withdrew from the<br>study."                                                                                                                                     | Submaximal<br>ibuprofen dose<br>bias favors SAMe;<br>no placebo. Small<br>sample with study<br>likely<br>underpowered for<br>detecting<br>differences.<br>Suggests SAMe<br>equivalent to low<br>dose ibuprofen.                                                                   |
|                                      |     |                                                        | V                                                                                                                                                       | Villow Bark (Salix)                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                   |
| Biegert<br>2004<br>2 RCTs            | 9.0 | N = 127<br>Hip or<br>knee<br>OA plus<br>RA (n =<br>26) | Willow bark<br>extract (240mg<br>salicin a day) vs.<br>diclofenac 100mg<br>a day vs. placebo<br>for 6 weeks. Two<br>RCTs, one for OA<br>and one for RA. | WOMAC pain scores:<br>diclofenac $-23\pm20$ vs.<br>willow bark $-8\pm21$ vs.<br>placebo $-5\pm23$ . (NS<br>between willow bark and<br>placebo but p = 0.003<br>between diclofenac and<br>placebo). Other WOMAC<br>subscores and total<br>scores had similar results.<br>Most improvement was<br>achieved after 2 weeks of<br>treatment.                               | "[N]o evidence of<br>relevant analgesic or<br>antiinflammatory<br>efficacy in willow<br>bark extract for<br>patients with OA and<br>RA."                                                                                                           | Two RCTs both<br>suggest<br>diclofenac<br>superior to willow<br>bark extract or<br>placebo for OA or<br>RA. Some<br>baseline<br>differences; 12 %<br>of willow bark<br>group, 40 %<br>diclofenac group<br>and 27% in<br>placebo group<br>received physical<br>therapy, p = 0.01). |

| Schmid<br>2001<br>RCT                                   | 8.0 | N = 86<br>Hip or<br>knee<br>OA  | Willow bark<br>extract (240mg<br>salicin a day) vs.<br>placebo for 2<br>weeks.                                                                                           | WOMAC pain indices<br>(baseline/Day 14): willow<br>bark $34.1\pm19.3/29.3$ ) vs.<br>placebo (44.1 $\pm26.5/45.1$ ),<br>p = 0.047. Patient<br>assessments differed<br>between the 2 groups (p =<br>0.0002) as did physicians<br>(p = 0.0073).                                                                                                                                                                     | "[W]illow bark extract<br>showed a moderate<br>analgesic effect in<br>osteoarthritis and<br>appeared to be well<br>tolerated."                                                                                                                                                          | Pain scores<br>somewhat worse<br>in placebo at<br>baseline,<br>suggesting trial<br>favored active<br>treatment. Data<br>suggest willow<br>bark superior to<br>placebo.                                                                        |
|---------------------------------------------------------|-----|---------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                         | T   | T                               | 1                                                                                                                                                                        | Ginger Extract                                                                                                                                                                                                                                                                                                                                                                                                   | l l                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                               |
| Bliddal<br>2000<br>Randomize<br>d<br>Crossover<br>Trial | 7.5 | N = 75<br>Hip or<br>knee<br>OA  | Ginger extract<br>170mg EV.ext-33<br>TID vs. ibuprofen<br>400mg TID vs.<br>placebo TID.<br>Double dummy.                                                                 | Ranking of efficacy of 3<br>treatments: ibuprofen,<br>ginger extract, placebo<br>found for VAS (Friedman<br>test: 24.65, p <0.00001)<br>and Lequesne-index (p<br><0.00005). In crossover<br>study, no difference<br>between placebo and<br>ginger extract. Explorative<br>tests of differences for 1st<br>treatment period showed<br>better effect of ibuprofen<br>and ginger extract than<br>placebo (p <0.05). | "[A] statistically<br>significant effect of<br>ginger extract could<br>only be<br>demonstrated by<br>explorative statistical<br>methods in the first<br>period of treatment<br>before cross-over,<br>while a significant<br>difference was not<br>observed in the<br>study as a whole." | Ginger in the<br>studied dosage<br>not shown to<br>provide relief.<br>Comparative arm<br>is OTC ibuprofen<br>dose. OTC<br>ibuprofen dose<br>superior to other 2<br>arms.                                                                      |
| Wigler<br>2003<br>Crossover<br>Trial                    | 7.0 | N = 29<br>Knee<br>OA            | Zintona EC vs.<br>placebo QID for 3<br>months each<br>treatment                                                                                                          | Mean VAS on movement<br>scores (baseline/post):<br>ginger (76.1/41.0) vs.<br>placebo (76.9/50.0), NS.<br>Handicap scores also<br>reduced both groups, but<br>NS between groups.<br>Reduction in knee<br>circumference favored<br>ginger (p = 0.15).                                                                                                                                                              | "Zintona EC was as<br>effective as placebo<br>during the first 3<br>months of the study,<br>but at the end of 6<br>months, 3 months<br>after crossover, the<br>ginger extract group<br>showed a significant<br>superiority over the<br>placebo group."                                  | Data mostly<br>negative for<br>efficacy of ginger<br>compared with<br>placebo. Some<br>data suggest<br>some efficacy.                                                                                                                         |
| Altman<br>2001<br>RCT                                   | 6.5 | N = 247<br>Knee<br>OA           | Ginger extract<br>(255mg EV.EXT<br>77 extracted from<br>2.5-4.0gm dried<br>ginger rhizomes<br>plus 0.5-1.5gm<br>dried galanga<br>rhizomes) vs.<br>placebo for 6<br>weeks | Pain after walking 50 feet<br>(baseline/post): ginger<br>( $49.9 \pm 24.3/34.6 \pm 29.5$ ) vs.<br>placebo ( $53.1 \pm 25.1/44.2 \pm 28.3$ ), p = 0.016.<br>WOMAC pain favored<br>treatment (p = 0.11) as did<br>function (p = 0.13), while<br>stiffness statistically<br>positive (p = 0.018). More<br>reductions in knee pain on<br>standing with ginger<br>( $63\%$ ) vs. placebo 50%, p<br>= 0.048.           | "A highly purified<br>and standardized<br>ginger extract had a<br>statistically<br>significant effect on<br>reducing symptoms<br>of OA of the knee.<br>This effect was<br>moderate"                                                                                                     | Somewhat greater<br>advanced disease<br>in ginger group at<br>baseline (7.3% vs.<br>4.1% Stage 4)<br>favors placebo.<br>Adequacy of<br>blinding unclear as<br>placebo had<br>coconut oil. Data<br>suggest modest<br>reduction in<br>symptoms. |
| Haghighi<br>2005<br>RCT                                 | 4.0 | N = 120<br>Hip or<br>knee<br>OA | Ginger extract<br>30mg BID vs.<br>ibuprofen 400mg<br>TID vs. placebo<br>for 1 month                                                                                      | VAS pain (baseline/1<br>month): ginger<br>(71.7±3.5/30±3.7) vs.<br>ibuprofen<br>(71.2±2.4/28±3.4) vs.<br>placebo (64.2±2.8/<br>56.5±3.6) (p <0.0001 but<br>NS comparing ginger vs.<br>OTC ibuprofen).                                                                                                                                                                                                            | "Ginger extract and<br>ibuprofen were<br>significantly more<br>effective than the<br>placebo in the<br>symptomatic<br>treatment of OA,<br>while there was no<br>significant difference<br>between the ginger<br>extract and<br>ibuprofen groups in<br>a test for multiple               | Methodological<br>issues including<br>blinding not well<br>described.<br>Baseline data<br>demonstrate<br>statistically<br>significant<br>differences in<br>disease severity<br>measures yet<br>appear to<br>represent these                   |

|                                 |     |                                                                  |                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                         | comparison."                                                                                                                                                                                                                                | as "P>0.05." If<br>methodological<br>issues overcome,<br>data suggest<br>comparable<br>efficacy between<br>ginger and OTC<br>ibuprofen and<br>superiority to<br>placebo.                                                 |
|---------------------------------|-----|------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Winther                         | 9.0 | N – 94                                                           | Rose-hin powder                                                                                                                       | Rose Hips<br>WOMAC pain scores                                                                                                                                                                                                                                                                                                                          | "[T]be present herbal                                                                                                                                                                                                                       | Data are mixed                                                                                                                                                                                                           |
| 2005<br>Crossover<br>Trial      | 5.0 | Knee or<br>hip OA                                                | 5g a day vs.<br>placebo for 3<br>weeks                                                                                                | (baseline/3 weeks/3<br>months): rose hips<br>$(33.7\pm19.4/29.4\pm$<br>$18.3/32.8\pm20.6)$ vs.<br>placebo<br>$(33.7\pm19.4/35.3\pm21.5/35.6\pm$<br>$\pm$<br>20.4) p = 0.014 at 2                                                                                                                                                                        | remedy can alleviate<br>symptoms of<br>osteoarthritis and<br>reduce the<br>consumption of<br>'rescue mediation.'"                                                                                                                           | with some<br>outcomes positive<br>and some not<br>different.                                                                                                                                                             |
|                                 |     |                                                                  |                                                                                                                                       | weeks and $p = 0.125$ at 3<br>months. Stiffness, ALD<br>and PGAD all statistically<br>negative at 3 weeks.                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                             |                                                                                                                                                                                                                          |
| Rein 2004<br>Crossover<br>Trial | 8.5 | N = 112<br>OA in<br>hip,<br>knee,<br>hand,<br>shoulde<br>r, neck | Rose-hip powder<br>5g a day vs.<br>placebo for 3<br>months each<br>treatment arm                                                      | Pain reduction in placebo<br>first group: $1.02\pm1.45$ vs.<br>$1.91\pm1.43$ , p = 0.008.<br>Among those given rose<br>hip first, pain reduction<br>$1.45\pm1.28$ vs. $1.72\pm1.37$ ,<br>p = 0.61. Consumption of<br>rescue medication<br>showed similar effects.                                                                                       | "Hyben Vital reduces<br>the symptoms<br>osteoarthritis. We<br>interpret the marked<br>differences in the<br>response of the two<br>groups as indicating<br>a strong "carryover"<br>effect of Hyben<br>Vital."                               | Dropout rate high.<br>Assumes lack of<br>pain rebound in<br>group given active<br>medication first is<br>due to carry<br>forward effect of<br>prior active<br>treatment. No<br>data to show<br>wearing off over<br>time. |
|                                 |     |                                                                  | (                                                                                                                                     | Copper Salicylate                                                                                                                                                                                                                                                                                                                                       | <b>–</b>                                                                                                                                                                                                                                    |                                                                                                                                                                                                                          |
| Shackel<br>1997<br>RCT          | 9.5 | N = 116<br>Hip and/<br>or knee<br>OA                             | I opical copper-<br>salicylate gel vs.<br>placebo gel 1.5g<br>to the forearm BID<br>for 4 weeks                                       | Pain scores:<br>(baseline/Week 4): CS<br>34.8±29.3/28.4±25.4 vs.<br>placebo 30.5±29.7/24.9±<br>25.8, p = 0.94. Other out-<br>comes NS. Number<br>requiring paracetamol for<br>adjunctive analgesia: 77%<br>copper-salicylate, 71% for<br>placebo. More skin rashes<br>observed in C-S group<br>(83%) vs. placebo (52%)<br>(p = 0.002).<br>Oral Enzymone | "Copper-salicylate<br>gel applied to the<br>forearm was no<br>better than placebo<br>gel as pain relief for<br>patients with<br>osteoarthritis of the<br>hip or knee, but<br>produced<br>significantly more<br>skin rashes."                | Data suggest lack<br>of efficacy of<br>copper-salicylate<br>gel applied on the<br>forearm for<br>hip/knee OA.                                                                                                            |
| Akhtar                          | 75  | N = 98                                                           | Enteric-coated                                                                                                                        | Lequesne's Algofunctional                                                                                                                                                                                                                                                                                                                               | "ERC can be                                                                                                                                                                                                                                 | Results suggest                                                                                                                                                                                                          |
| 2004<br>RCT                     |     | Knee<br>OA                                                       | Phlogenzym <sup>®</sup><br>(bromelain 90mg,<br>trypsin 48mg and<br>rutosid 100mg)<br>TID vs. diclofenac<br>50mg BID. Double<br>dummy. | Index improved in 6<br>weeks among ERC 13.0<br>to 9.4 (26.3%) vs. DC<br>from 12.5 to 9.4 (23.6%)<br>(non-inferiority<br>demonstrated). Index of<br>severity/complaint indices<br>did not differ, improved for<br>each arm compared with<br>baseline. Adverse events<br>did not differ (27.5% v.<br>23.1%).                                              | considered as an<br>effective and safe<br>alternative to<br>NSAIDs such as<br>diclofenac in the<br>treatment of painful<br>episodes of OA of<br>the knee. Placebo-<br>controlled studies are<br>now needed to<br>confirm these<br>results." | Phlogenzym<br>equivalent to<br>diclofenac.                                                                                                                                                                               |

| Klein<br>2006<br>RCT    | 6.5 | N = 90<br>Hip OA             | Enteric-coated<br>Phlogenzym® 2<br>TID vs. EC<br>diclofenac 50mg<br>BID. Double<br>dummy.                                                  | Phlogenzym not inferior<br>using multiple measures<br>including pain, joint<br>stiffness, physical<br>function, and Lequesne's<br>index.                                                                                                                                                                                                                                                                                                                                                                                     | "This study showed<br>significant non-<br>inferiority from 6<br>weeks treatment<br>with PE in patients<br>with OAthere was<br>no real difference<br>between PE and DC<br>100mg per day,<br>implying an equal<br>benefit-risk relation."                                                                                                                                                                                                                                                                                                       | Study suggests<br>comparable<br>efficacy between<br>phlogenzym and<br>diclofenac.                                     |
|-------------------------|-----|------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|
| Singer<br>2001<br>RCT   | 6.0 | N = 63<br>Knee<br>OA         | Enteric-coated<br>Phlogenzym® 6<br>per day vs.<br>Diclofenac 50mg<br>TID for 1 week<br>then BID for 3-<br>week treatment.<br>Double dummy. | Lequesne indices<br>improved in 93.6% of<br>enzyme group vs. 87.5%<br>diclofenac. Sum of<br>Lequesne indices over 14<br>days: enzyme 12.27 vs.<br>diclofenac 10.79 (NS). At<br>Day 49, enzymes 9.81 vs.<br>12.77 (p = 0.0165). Pain<br>on movement scores did<br>not differ over active<br>treatment, but favored<br>enzyme group at Day 49,<br>28 days after 3-week<br>treatment stopped.                                                                                                                                   | "[S]hort-term<br>evaluation indicates<br>that Phlogenzym®<br>as an oral enzyme<br>formulation can be<br>considered as an<br>effective and safe<br>alternative to non-<br>steroidal anti-<br>inflammatory drugs<br>such as diclofenac in<br>the treatment of<br>active osteoarthritis<br>of the knee."                                                                                                                                                                                                                                         | Some details<br>sparse. Data<br>suggest<br>comparable<br>efficacy between<br>Phlogenzym and<br>diclofenac.            |
|                         |     |                              | Avocado                                                                                                                                    | Soybean Unsaponifiable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                       |
| Maheu<br>1998<br>RCT    | 9.5 | N = 164<br>Knee or<br>hip OA | Avocado/Soybean<br>Unsaponifiables<br>(ASU) 300mg<br>daily for 6 months<br>vs. placebo for<br>symptomatic<br>efficacy                      | Significantly greater<br>improvement in all<br>outcome measures<br>(Lequesne's Functional<br>Index p <0.01, Pain on<br>VAS p = 0.02, Functional<br>disability p <0.001) in ASU<br>group compared with<br>placebo at 6 months.                                                                                                                                                                                                                                                                                                | "ASU treatment<br>showed significant<br>symptomatic efficacy<br>over placebo in the<br>treatment of OA,<br>acting from month 2<br>and showing a<br>persistent effect<br>after the end of<br>treatment "                                                                                                                                                                                                                                                                                                                                       | The study does<br>not have<br>demonstrated<br>changes in<br>outcomes<br>measures such as<br>RTW.                      |
| Lequesne<br>2002<br>RCT | 9.0 | N = 163<br>Hip OA            | Avocado/soybean<br>unsaponifiables<br>(ASU) 300mg<br>daily for 2 years<br>vs. placebo for<br>joint space<br>narrowing                      | At 2-year follow-up, mean<br>joint space width in ASU<br>and placebo groups was<br>$1.87\pm1.0$ mm and<br>$1.90\pm1.33$ (p = 0.90).<br>However, in a subgroup of<br>patients with initially more<br>severe narrowing, joint<br>space loss between initial<br>and final radiograph in<br>ASU group was half that<br>in placebo group (-<br>$0.43\pm0.51$ mm vs<br>$0.86\pm0.62$ mm, p <0.01).<br>No differences in regard to<br>symptomatic effects in<br>each of subpopulations,<br>and NSAID use similar in<br>both groups. | "The clinical results<br>concerning<br>symptoms in this<br>study were<br>surprising. No<br>difference on clinical<br>parameters was<br>observed between<br>ASU and placebo<br>groups, which<br>contrasts with<br>previous results<br>significantly favoring<br>ASU over placebo.<br>ASU seemed to<br>statistically<br>significantly reduce<br>progression of the<br>narrowing of the joint<br>space in a post-hoc<br>analysis in the<br>subpopulation of<br>more severely<br>affected patients,<br>compared with those<br>receiving placebo." | High withdrawal<br>rate over 2-year<br>period (41%),<br>although ITT and<br>per-protocol<br>analyses were<br>similar. |
| Diotman                 | 9.0 | IN = 164                     | Avocado/soybean                                                                                                                            | wean cumulative dose of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Over 6 weeks, ASU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                       |

| 1997 |           | unsaponifiables    | NSAID used between Day      | reduced the need for  | Unclear if this is |
|------|-----------|--------------------|-----------------------------|-----------------------|--------------------|
|      | Primary   | (ASU) 300mg        | 45 and 90 significantly     | NSAID in patients     | preliminary report |
| RCT  | femoro-   | daily for 3 months | lower in ASU group          | with lower limb OA.   | of same study      |
|      | tibial or | vs. placebo for    | reflecting smaller          | Further studies are   | (Maheu).           |
|      | hip OA    | symptomatic        | proportion of patients in   | needed to evaluate    |                    |
|      |           | efficacy           | group who resumed           | the duration of the   |                    |
|      |           |                    | NSAID use. For patients     | persistence of this   |                    |
|      |           |                    | with hip osteoarthritis who | effect and its impact |                    |
|      |           |                    | went back on NSAID,         | on patient care and   |                    |
|      |           |                    | cumulative dose, time       | on treatment costs."  |                    |
|      |           |                    | spent back on drug          |                       |                    |
|      |           |                    | significantly lower in ASU. |                       |                    |
|      |           |                    | No difference in knee OA.   |                       |                    |
|      |           |                    | Algofunctional index score  |                       |                    |
|      |           |                    | fell in both groups, but    |                       |                    |
|      |           |                    | significantly larger in ASU |                       |                    |
|      |           |                    | group vs. placebo, p <0.01. |                       |                    |
|      |           |                    | No difference in VAS        |                       |                    |
|      |           |                    | scores.                     |                       |                    |

# DIACEREIN (Diacerhein)

Diacerein is an alternative pharmaceutical therapy developed to treat osteoarthrosis which has purported inhibitory action on interleukin-1, metalloproteases, and other inflammatory mediators which are involved in cartilage destruction in *in vivo* and animal models including inflammatory arthropathies.(642-650) It also stimulates prostaglandin E<sub>2</sub> synthesis and does not affect phospholipase A<sub>2</sub>, cyclooxygenase (COX), or lipooxygenase, and thus does not affect the gastric mucosa as do NSAIDs.(651) Diacerein has been used as a disease-modifying agent in patients with moderately progressive joint narrowing.(652-655) It is available by prescription in only a few Asian and European countries, and is not currently available in the U.S. The adverse effect profile is generally significantly higher than placebo, most commonly due to higher incidence of diarrhea(643, 656) and darkening of the urine and the magnitude of its effects on pain are small.(644) Diacerein may not be a treatment option for most patients. Optimal dose has been suggested to be 50mg twice daily.(643) It may be an alternative to NSAIDs as a second- or third-line treatment particularly for patients with a history of upper gastrointestinal bleeding as it appears to be potentially associated with lower rates of gastric lesions.(651) However, one quality study suggests NSAIDs are superior to diacerein for relief of pain.(656)

### Recommendation: Diacerein for Treatment of Osteoarthrosis

# There is no recommendation for or against the use of diacerein for the treatment of osteoarthrosis.

### Strength of Evidence - No Recommendation, Insufficient Evidence (I)

### Rationale for Recommendation

Diacerein is not currently available in the U.S. There are a few quality studies of diacerein specific to the knee joint or combining hip and knee osteoarthrosis patients included in this analysis. (643, 657-666) Five high- or moderate-quality studies that compared diacerein against placebo demonstrated modest pain relief from diacerein. (643, 652, 658, 667, 668) A study to establish dose-response showed statistically significant improvement of symptoms with 50, 100, and 150mg daily dose, but with fewer side effects and best efficacy with the 100 mg per day group. (643) There is evidence suggesting the effects of diacerein last weeks to months after cessation of therapy, (656, 658) which is not found among those on an NSAID. (656) In addition to the symptomatic relief qualities reported, there is one moderate quality study that demonstrated a significant difference in joint space narrowing versus placebo. (652) A 2x2 factorial study comparing diacerein, tenoxicam, diacerein with tenoxicam and placebo demonstrated early efficacy of tenoxicam. However, after 4 weeks, the diacerein plus placebo also reached statistically significantly better symptomatic relief than placebo alone. (656) There was no added synergistic effect, such that the diacerein plus tenoxicam group was no better or worse than by themselves.

Examination of diacerein efficacy in two studies that used diacerein as one of the control arms rather than the main active research arm were not as conclusive in favor of diacerein. A comparison of diacerein to hyaluronic acid intra-articular injections over 1 year did not demonstrate diacerein to be more effective than an oral placebo, but the study had significant methodological weaknesses to make conclusions uncertain, as a possible placebo effect of intra-articular injection may have masked oral diacerein treatment.(669) Two studies comparing diacerein to Harpagophytum procumbens (Devil's Claw Root) demonstrated both to be effective in improving scores over baseline, but there was no placebo group for comparison.(670, 671)

### Evidence for the Use of Diacerein

There are 6 high- and 4 moderate-quality RCTs or randomized crossover trials incorporated in this analysis. There are 2 low-quality RCTs(672, 673) in Appendix 2.

| Author/Yea<br>r<br>Study Type                        | Score<br>(0-11) | Sample<br>Size              | Comparison<br>Group                                                                                          | Results                                                                                                                                                                                                                                                                                                                                                                                                              | Conclusion                                                                                                                                                                                                                                                                                                                                                        | Comments                                                                                                                                                                    |
|------------------------------------------------------|-----------------|-----------------------------|--------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                      | <u> </u>        |                             |                                                                                                              | Diacerein vs. Placebo                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                             |
| Dougados<br>2001<br>RCT                              | 9.0             | N = 507<br>Hip OA           | Diacerein 50mg<br>twice daily vs.<br>placebo for 3-<br>years                                                 | Radiographic progression of at<br>least 0.5mm during study<br>lower and occurred later in<br>diacerein group vs. placebo.<br>Cumulative radiographic<br>progression rates of 0.5mm:<br>29.2% diacerein vs. 35.7%<br>placebo at end of 1st year, and<br>42.5% diacerein vs. 50.2%<br>with placebo at end of second<br>year. No difference observed<br>in use of analgesics and<br>NSAIDs.                             | "This study confirms<br>previous clinical findings<br>indicating that the<br>demonstration of a<br>structure-modifying effect in<br>hip OA is feasible, and<br>shows, for the first time, that<br>treatment with diacerein for<br>3 years has a significant<br>structure-modifying effect as<br>compared with placebo,<br>coupled with a good safety<br>profile." | Large sample size.<br>Study suggests<br>small benefit in<br>delayed<br>radiographic<br>progression.                                                                         |
| Pavelka<br>2007<br>RCT                               | 9.0             | N = 168<br>Knee OA          | 50mg diacerein<br>BID vs. placebo<br>for 3 months,<br>followed by 3<br>month off-<br>treatment period        | WOMAC A scores (baseline/<br>Month 5): diacerein ( $261\pm87.3$ /<br>144±105.7) vs. placebo ( $239\pm$<br>80.2/191±108.3), p <0.0001.<br>Total WOMAC scores p<br><0.0001. Acetaminophen<br>consumption favored diacerein<br>(1.0±1.11 vs. 1.5±1.34), p =<br>0.0018.                                                                                                                                                  | "[T]he findings of this study<br>indicate that diacerein is an<br>effective treatment for<br>symptomatic knee OA. In<br>addition, it has long<br>carryover effect and an<br>acceptable safety profile."                                                                                                                                                           | Allocation method<br>unclear. Results<br>suggest mild<br>benefit of<br>diacerein.                                                                                           |
| Lingetti<br>1982<br>Randomized<br>Crossover<br>Trial | 8.5             | N = 20<br>Hip or<br>knee OA | Placebo x 2<br>weeks, diacerein<br>25mg BID x 4<br>weeks x 50mg<br>BID for 8 weeks                           | Total score (includes pain)<br>baseline $9.25\pm1.17$ , $9.15\pm1.69$<br>after placebo, $5.50\pm2.42$ ,<br>diacerein 50mg a day, and<br>$1.90\pm1.77$ . Diacerein 100mg a<br>day (p <0.001 for diacerein vs.<br>placebo). Walking speed<br>significantly decreased on<br>diacerein.                                                                                                                                  | "The results obtained<br>confirm the therapeutic<br>value of diacetylrhein in the<br>treatment of osteoarthrosis<br>of the hip and knee."                                                                                                                                                                                                                         | Crossover trial with<br>small sample size.<br>Unclear if treatment<br>sequence<br>completely<br>randomized and<br>blinded.<br>Comparisons with<br>no/low dose<br>intervals. |
| Pelletier<br>2000<br>RCT                             | 6.0             | N = 484<br>Knee OA          | Placebo BID vs.<br>diacerein 25mg<br>BID vs. diacerein<br>50mg BID vs.<br>diacerein 75mg<br>BID for 4 months | VAS pain rating differences to<br>Week 24: placebo $-10.9\pm19.3$<br>vs. 50mg a day $-15.6\pm21.0$ vs.<br>100mg a day $-18.3\pm19.3$ vs.<br>150mg a day $-14.3\pm23.7$ (p<br><0.05 100mg a day vs.<br>placebo). WOMAC pain,<br>stiffness scores significant for<br>100mg a day dose (p <0.05).<br>Patient global efficacy<br>assessments: placebo<br>52.9 $\pm30.9$ vs. 50mg a day<br>62.7 $\pm28.1$ vs. 100mg a day | "The results of this dose-<br>finding study confirm<br>previous study findings that<br>diacerein is an effective<br>treatment for the signs and<br>symptoms of knee OA, and<br>that based on the results<br>from ITT analysis, the<br>optimal daily dosage is<br>100mg/day (50mg twice<br>daily)."                                                                | High drop-out rate<br>(28%-39%) in all<br>groups.<br>Compliance rate<br>uncertain.<br>Suggests mild<br>benefit of<br>diacerein.                                             |

| Kay<br>1980<br>Crossover<br>Trial | 5.0 | N = 12<br>Hip or<br>knee OA   | Diacerein 50mg a<br>day for 4 weeks<br>preceded and<br>followed by 4<br>weeks of placebo                                                                                                                                                                    | 61.1 ±24.6 vs. 150mg a day<br>61.0±29.3 (p <0.05 50mg a<br>day vs. placebo). Significantly<br>higher frequency of AEs<br>observed for 150mg a day<br>diacerein (18.9%) vs. other<br>groups (11.2% placebo, 12.7%<br>50mg a day, 9.9% 100mg a<br>day).<br>Data not in aggregate. Overall<br>improvements on Diacerein<br>marked in 3/12 (25%) and<br>slightly improved in 3/12<br>(25%). Remainder 4/12<br>(33.3%) unchanged; 2/12<br>worse.                                                                       | "Improvement was not<br>apparent for several weeks<br>after starting active<br>treatment and remission<br>lasted for 2 weeks to 3 or<br>more months after the drug<br>was withdrawn."                                                                                                                                                                     | Sparse details and<br>limited analyses.<br>Appears a<br>crossover trial,<br>however<br>randomization and<br>blinding unclear.                                                                                      |
|-----------------------------------|-----|-------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Nauven                            | 7.5 | N = 280                       | 2x2 factorial                                                                                                                                                                                                                                               | Patient overall assessments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | "Both tenoxicam and                                                                                                                                                                                                                                                                                                                                       | Allocation method                                                                                                                                                                                                  |
| 1994<br>RCT                       |     | Hip OA                        | design: diacerein<br>placebo +<br>tenoxicam<br>placebo vs.<br>tenoxicam 20mg<br>and diacerein<br>placebo vs.<br>diacerein 50mg<br>BID and<br>tenoxicam<br>placebo vs.<br>diacerein 50mg<br>BID and<br>tenoxicam 20mg<br>for 8 weeks                         | rated good or very good:<br>placebo (41%) vs. tenoxicam<br>(61%) vs. diacerein (49%) vs.<br>combination (66%). Functional<br>Lequesne impairment index<br>ratings (8.4±4.1 vs. 6.9±4.6 vs.<br>7.7±4.6 vs. 6.3±3.8). Number<br>needing analgesic rescue<br>lower in tenoxicam than<br>diacerein group. Tenoxicam<br>began to differ from control<br>after 2 weeks with persistent<br>beneficial effects through trial.<br>Diacerein differed from<br>controls after 6 weeks for pain<br>and functional impairment. | diacerein appear to be<br>superior to placebo, and<br>neither agent appears to<br>significantly enhance or<br>detract from the efficacy of<br>the other when they are<br>administered concomitantly.<br>The onset of action of<br>diacerein appears to be<br>delayed (> or = 4 weeks)."                                                                   | unclear. Results<br>suggest tenoxicam<br>modestly superior<br>to diacerein for<br>both speed of<br>onset and<br>magnitude of<br>response.<br>Diacerein has<br>higher adverse<br>effect of diarrhea<br>(37% v. 4%). |
|                                   | 1   | 1                             | Di                                                                                                                                                                                                                                                          | acerein vs. Other Intervention                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | S                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                    |
| Pham<br>2004<br>RCT               | 8.5 | N = 301<br>Medial<br>knee OA  | Three courses of<br>3 intra-articular<br>(IA) injections of<br>2.5mL hyaluronic<br>acid (HA) +oral<br>placebo vs. IA<br>injections of<br>saline solution +<br>diacerein 50mg<br>BID vs. IA<br>injections of<br>saline solution +<br>oral placebo, 1<br>year | VAS pain ratings: injections -<br>33.5 $\pm$ 28.5 vs. diacerein -<br>33.9 $\pm$ 25.7 vs. placebo -<br>34.5 $\pm$ 27.4, p = 0.96. Patient's<br>global assessments: -<br>29.7 $\pm$ 26.9 vs32.8 $\pm$ 24.0 vs<br>31.1 $\pm$ 42.7, p = 0.82.<br>Percentage patients' very<br>good or good responses: 72%<br>v. 65% v. 76%. No differences<br>in adverse effects (p = 0.76)                                                                                                                                           | "A weak but statistically<br>significant structural<br>deterioration occurred over<br>1 year, together with<br>clinically relevant<br>symptomatic improvement<br>in patients receiving oral<br>drug and iterative IA<br>injections. Symptomatic<br>and/or structural effects for<br>both this new HA compound<br>and diacerein were not<br>demonstrated." | Study suggests no<br>clear benefit of any<br>treatment arm.                                                                                                                                                        |
| Leblan                            | 8.5 | N = 122                       | Diacerein 50mg                                                                                                                                                                                                                                              | Mean pain score reductions on                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | "Harpagophytum was at                                                                                                                                                                                                                                                                                                                                     | Data suggest                                                                                                                                                                                                       |
| 2000<br>RCT                       |     | Hip and<br>knee OA            | BID vs.<br>harpagophytum<br>(2,610mg a day)<br>for 4 months.<br>Double dummy.                                                                                                                                                                               | Day 20: harpagophytum –<br>30.6±3.3 vs. diacerein –<br>25.5±3.6. Cumulative doses of<br>NSAID used at Day 20:<br>harpagophytum 20.9 vs.<br>diacerein 55.15, p <0.05.                                                                                                                                                                                                                                                                                                                                              | least as effective as a<br>reference drug (diacerhein)<br>in the treatment of knee or<br>hip osteoarthritis and<br>reduced the need for<br>analgesic and nonsteroidal<br>anti-inflammatory therapy."                                                                                                                                                      | harpagophytum at<br>least as effective<br>as diacerein and<br>more effective by<br>some measures.<br>Adverse effects of<br>diacerein appear<br>greater.                                                            |
| Chantre<br>2000<br>RCT            | 8.0 | N = 122<br>Hip and<br>knee OA | Diacerein 50mg<br>BID vs. Harpadol<br>(6 capsules a<br>day, each<br>containing 435mg                                                                                                                                                                        | VAS pain scores (baseline/16<br>weeks): harpagophytum<br>(63.6±13.2/31.3±22.9) vs.<br>diacerein<br>(61.6±11.1/35.8±22.8), p =                                                                                                                                                                                                                                                                                                                                                                                     | "The results confirm that the<br>two drugs are equally<br>effective in the treatment of<br>osteoarthritis of the knee or<br>the hip. Improvements in all                                                                                                                                                                                                  | No placebo<br>comparison group.<br>Suggests<br>harpagophytum at<br>least comparable                                                                                                                                |

|                                           |     |                                                                                                                                                        | of powder<br>Harpagophytum<br>procumbens) for<br>4 months. Double<br>dummy.                                                                             | 0.34. Lequesne functional<br>indices were not different ( $p = 0.71$ ). Diclofenac rescue<br>tablets consumed at week 12<br>favored harpagophytum (20.9<br>vs. 55.51), $p = 0.01$ .        | efficacy parameters were<br>observed within each<br>treatment group but there<br>was no significant difference<br>in the therapeutic response<br>between the 2 groups for any<br>efficacy parameters." | to diacerein, if not<br>superior based on<br>NSAIDs<br>consumed.                                                  |
|-------------------------------------------|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|
|                                           |     |                                                                                                                                                        |                                                                                                                                                         | Gastric Erosions                                                                                                                                                                           |                                                                                                                                                                                                        |                                                                                                                   |
| Petrillo<br>1991<br>2 RCTs in 1<br>report | 4.5 | Study 1:<br>N = 23<br>with<br>normal<br>or minor<br>endo-<br>scopic<br>findings<br>Study 2:<br>N = 30<br>with<br>grade 2<br>or 3<br>gastric<br>lesions | Study 1:<br>diacetylrhein<br>50mg BID vs.<br>naproxen 250mg<br>TID for 4 weeks.<br>Study 2:<br>diacetylrhein<br>50mg BID vs.<br>placebo for 4<br>weeks. | Study 1: 1/10 (10%)<br>developed gastric lesions on<br>endoscopy vs. 5/10 (50%), p<br>>0.05. Study 2: 11/13 (85%)<br>of diacerein group improved<br>at 4 weeks vs. 9/15 (60%), p<br>>0.05. | "[D]iacetylrhein possesses a<br>good degree of gastric<br>tolerability and may be used<br>in antirheumatic maintenance<br>treatment even when gastric<br>lesions are present."                         | Some details<br>sparse.<br>Underpowered.<br>Suggests higher<br>gastric erosions in<br>naproxen than<br>diacerein. |

# **REFERRAL TO ALLIED HEALTH PROFESSIONALS AND OTHER PHYSICAL METHODS**

# Devices

Some patients with hip pain might benefit from limited use of devices, particularly as an assistive aid towards regaining improved or full function. These aids include crutches, walkers, and canes. However, aids might also be detrimental in individuals whose function declines with the aid. In general, devices are recommended when there is either: 1) improvement expected and the device is part of a plan to regain better or normal function; or 2) the device is essential to achieve the maximum function possible within the limits of fixed defects.

### CANES AND CRUTCHES

Recommendation: Canes and Crutches for Moderate to Severe Acute, Subacute, or Chronic Hip or Groin Pain

Canes and crutches are recommended for moderate to severe acute hip or groin pain or subacute and chronic hip or groin pain where the device is used to advance the activity level.

Indications – Moderate to severe acute hip or groin pain or subacute or chronic hip or groin pain.

Strength of Evidence – Recommended, Insufficient Evidence (I)

### Rationale for Recommendation

For acute injuries, crutches and canes may be helpful during the recovery and/or rehabilitative phase to increase functional status (e.g., from wheelchair to walker to cane). Other than such circumstances, use of assistive devices including wheelchairs, canes, and crutches is not recommended. For chronic hip or groin pain, crutches may paradoxically increase disability through debility. In those circumstances, institution or maintenance of advice for use of crutches or canes should be carefully considered against potential risks.

### Evidence for the Use of Canes and Crutches

There are no quality studies evaluating the use of canes and crutches for hip and groin pain.

### MAGNETS AND MAGNETIC STIMULATION

High-intensity magnetic stimulation purportedly causes depolarization of nerves and has been found to result in an anti-nociceptive effect in rats.(674) As electromagnetic fields have been known to increase osteoblastic activity, proponents believe that magnetic fields have therapeutic value in the treatment of musculoskeletal disorders.

Recommendation: Magnets and Magnetic Stimulation for Osteoarthrosis or Acute, Subacute, or Chronic Hip Pain

# Magnets and magnetic stimulation is not recommended for treatment of osteoarthrosis or acute, subacute, or chronic hip pain.

# Strength of Evidence - Not Recommended, Insufficient Evidence (I)

### Rationale for Recommendation

There is no significant evidence from which to draw conclusions on the utility of magnets as a treatment modality for osteoarthrosis or acute, subacute, or chronic hip pain. However, there is evidence for lack of efficacy in the treatment of low back pain.(675) Magnets are not invasive, have no adverse effects, and are low cost. Other treatments have proven efficacy.

### Evidence for the Use of Magnets and Magnetic Stimulation

There are no quality studies evaluating the use of magnets and magnetic stimulation for osteoarthrosis or acute, subacute, or chronic hip pain.

# **ORTHOTICS, SHOE INSOLES, AND SHOE LIFTS**

Orthotics, shoe insoles, and shoe lifts commonly prescribed for low back pain (see Low Back Disorders chapter), and more specifically for individuals who have lower extremities that are substantially different in length, referred to as "leg length discrepancies" – generally defined as more than 2 to 3cm. These discrepancies are theoretically linked to increased risk of LBP, and may be of consequence with hip pain. In theory, shoe lifts may ameliorate this leg length discrepancy and thereby reduce LBP or hip pain.

### Recommendation: Orthotics, Shoe Insoles, or Shoe Lifts for Hip Pain

# Orthotics, shoe insoles, or shoe lifts are recommended for patients with significant leg length discrepancy with hip pain felt to be a consequence of that discrepancy.

*Indications* – Significant leg length discrepancy (usually at least 2cm), with hip pain or other adverse health attribute thought to be related to the discrepant length.

### Strength of Evidence - Recommended, Insufficient Evidence (I)

### Rationale for Recommendation

There are no quality studies of these devices for hip pain patients. These devices are not invasive, have few adverse effects, and are low cost. Thus they are recommended for select patients with significant leg length discrepancies felt to be producing or contributing to symptoms.

### Evidence for the Use of Orthotics, Shoe Insoles, or Shoe Lifts

There are no quality studies evaluating the use of orthotics, shoe insoles and shoe lifts for hip pain.

# Allied Health Therapies ACUPUNCTURE

Acupuncture has been used to treat many musculoskeletal conditions including spine pain and osteoarthrosis, particularly of the knee (see Chronic Pain and Knee Disorders chapters), with some evidence that patients seek this treatment if they have more severe pain.(676) There is a paucity of quality literature on applications for hip arthritis.(677-679) Multiple techniques have been used, including manual needle stimulation, electrical needle stimulation (electroacupuncture), superficial dry needling, and deep dry needling.(680) Acupuncture administrations may involve moxibustion and cupping. Moxibustion is a traditional Chinese therapy involving burning of an herb (mugwort) to stimulate blood flow and balance "Qi." Cupping is another ancient Chinese practice involving placement of a cup on the skin with negative pressure induced either through heat or suction and tension is placed on the

underlying tissue. Besides traditional acupuncture, there are many other types of acupuncture that have arisen, including accessing non-traditional acupuncture points.(681) High-quality evidence has documented that use of traditional acupuncture locations is not necessary to derive equivalent benefits from treatment of low back pain (see Chronic Pain and Low Back Disorders chapters).(682-684)

# 1. Recommendation: Acupuncture for Chronic Osteoarthrosis of the Hip

# Acupuncture is moderately recommended for select use for treatment of chronic osteoarthrosis of the hip as an adjunct to more efficacious treatments.

*Indications* – Moderate to severe chronic osteoarthrosis of the hip. Prior treatments should include NSAIDs, weight loss, and exercise including a graded walking program and strengthening exercises.

*Frequency/Duration* – A limited course of 6 appointments(685) with clear objective and functional goals to be achieved. Additional appointments would require documented functional benefits, lack of plateau in measures and probability of obtaining further benefits. There is quality evidence that traditional acupuncture needle placement is unnecessary.(686)

*Indications for Discontinuation* – Resolution, intolerance, non-compliance including non-compliance with aerobic and strengthening exercises.

# Strength of Evidence - Moderately Recommended, Evidence (B)

2. Recommendation: Acupuncture for Acute or Subacute Hip Pain

There is no recommendation for or against the use of acupuncture for acute or subacute hip pain.

# Strength of Evidence – No Recommendation, Insufficient Evidence (I)

# Rationale for Recommendations

There are a few quality studies that evaluate acupuncture for treatment of hip osteoarthrosis; more studies address knee osteoarthrosis.(687-700) Some have concluded that evidence suggests there is no effect of acupuncture on pain.(632) One trial evaluated gluteal trigger points;(701) otherwise, there are no other quality studies for other hip conditions. Some trials have combined acupuncture with electrical currents and others have applied electrical currents to acupuncture sites. For treatment of musculoskeletal conditions, there are no quality studies to show clear benefit of electroacupuncture over needling. There continue to be some questions about efficacy of acupuncture,(702, 703) with concerns about biases, e.g., attention and expectation bias in these study designs as well as adequacy of placebo acupuncture treatments.(679, 704)

All four quality studies that included hip osteoarthrosis patients suggest benefits from acupuncture, although the techniques used vary widely.(686, 687, 705, 706) These trials included comparisons with no acupuncture, (687) routine care, (705) and exercise and advice. (685) One trial compared electroacupuncture, hydrotherapy, and education, finding electroacupuncture superior. (706) The fourth quality study found that traditional needle placement is unnecessary, (686) which is similar to the evidence-based conclusion for acupuncture for low back pain (see Low Back Disorders chapter). Studies reporting results after the cessation of acupuncture have nearly all found lasting benefits, (685, 687, 706) although there are no long-term follow-up studies reported. High-quality studies for all of these potential indications with sizable populations and long follow-up periods are needed. Acupuncture when performed by experienced professionals is minimally invasive, has minimal adverse effects, and is moderately costly. Despite significant reservations regarding its true mechanism of action, a limited course of acupuncture may be recommended for treatment of hip osteoarthrosis as an adjunct to a conditioning and weight loss program. Acupuncture is recommended to assist in increasing functional activity levels more rapidly. Primary attention should remain on the conditioning program. Acupuncture is not recommended for those not involved in a conditioning program or who are non-compliant with graded increases in activity levels.

# Evidence for the Use of Acupuncture

There are 5 moderate-quality RCTs incorporated in this analysis. There are 2 low-quality RCTs(685, 707) in Appendix 2.

| Author/Year<br>Study Type          | Score                                           | Sample<br>Size               | Comparison<br>Group                                                                                                                                                                                                                                                                                                                                     | Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Conclusion                                                                                                                                                                                                                                                                                              | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|------------------------------------|-------------------------------------------------|------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                    | <u>((() () () () () () () () () () () () ()</u> |                              |                                                                                                                                                                                                                                                                                                                                                         | Hip Osteoarthrosis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | l                                                                                                                                                                                                                                                                                                       | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Witt<br>2006<br>RCT                | 6.0                                             | N = 712<br>Hip or<br>knee OA | Acupuncture (up<br>to 15 sessions)<br>vs. no<br>acupuncture<br>(delayed<br>treatment for 3<br>months).<br>Acupuncture<br>individualized.                                                                                                                                                                                                                | WOMAC scores improved<br>with acupuncture (17.6, SE<br>1.0; WOMAC 30.5±1.0) vs.<br>controls (0.9, SE 1.0;<br>WOMAC 47.3±1.0), p<br><0.001. All other WOMAC<br>indices significantly improved<br>(p <0.001). Quality of life<br>scores also improved, p<br><0.001. Treatment success<br>also occurred in those with<br>delayed treatment.                                                                                                                                                                                                                                                                                                                                 | "[A]cupuncture plus<br>routine care is<br>associated with marked<br>clinical improvement in<br>patients with chronic<br>OA-associated pain of<br>the knee or hip."                                                                                                                                      | Large sample size;<br>additional 2,921<br>received<br>acupuncture, but not<br>randomized.<br>Individualized<br>acupuncture<br>treatments modestly<br>weaken conclusion.<br>Treatment made no<br>difference. Non-<br>randomized had<br>almost identical<br>results to those<br>randomized to<br>immediate<br>acupuncture. Data<br>support efficacy of<br>acupuncture for<br>intermediate-term<br>symptom relief, but<br>non-interventional<br>control biases in<br>favor of intervention |
| Fink<br>2001<br>RCT                | 6.0                                             | N = 67<br>Hip OA             | Traditional needle<br>placement and<br>manipulation (20<br>minutes) vs.<br>needles away<br>from classic<br>positions, not<br>manipulated. All<br>needles within L2-<br>L5 dermatomes;<br>10 treatments 3<br>weeks.                                                                                                                                      | All measures improved in<br>both groups from Week 2 to<br>2 months, including patients'<br>satisfaction, Lequesne index,<br>quality of life, and VAS pain<br>(graphic data). There were<br>no differences between<br>groups [e.g., VAS pain verum<br>54.6±18.9 vs. control<br>55.3±23.5 (NS)].                                                                                                                                                                                                                                                                                                                                                                           | "[N]eedle placement in<br>the area of the affected<br>hip is associated with<br>improvement in the<br>symptoms of<br>osteoarthritis. It<br>appears to be less<br>important to follow the<br>rules of traditional<br>acupuncture<br>techniques."                                                         | No observation or<br>other control group.<br>Patient blinding<br>unclear. Suggests<br>needle placement<br>per traditional<br>acupuncture is<br>unnecessary and<br>manipulation of<br>needles is also not<br>necessary.                                                                                                                                                                                                                                                                  |
| Stener-<br>Victorin<br>2004<br>RCT | 5.0                                             | N = 45<br>Hip OA             | Electro-<br>acupuncture<br>(most painful hip<br>area, 4 of BL54,<br>36, GB29, 30, 31<br>and ST31; and<br>distal points<br>GB34, BL60) plus<br>education (2x2-<br>hour meetings)<br>vs. hydrotherapy<br>(warm-up,<br>mobility,<br>strengthening)<br>plus education vs.<br>education alone<br>for 30 minute<br>appointments, 10<br>times over 5<br>weeks. | Pain related to motion and on<br>load (baseline/after 10<br>treatments/3 months/6<br>months): EA (37/22/ 24/17)<br>vs. hydrotherapy (55/35/<br>25.5/28) vs. control (56/<br>/48.5/ 59), p <0.05 comparing<br>EA and hydro at 3 months to<br>baseline and EA vs. baseline<br>at 6 months. Disability rating<br>index: EA (36/28/ 33.5) vs.<br>hydro (45/23.5/26.5) vs.<br>control (43//45). Daytime<br>ache improved in EA and<br>hydrotherapy for 3 months.<br>Night-time ache reduced 3<br>months with hydrotherapy vs.<br>6 months EA. Quality of life<br>improved in EA and<br>hydrotherapy groups up to 3<br>months after last treatment.<br>No changes in education | "EA and hydrotherapy,<br>both in combination<br>with patient education,<br>induce long-lasting<br>effects, shown by<br>reduced pain and ache<br>and by increased<br>functional activity and<br>quality of life, as<br>demonstrated by<br>differences in the pre-<br>and post-treatment<br>assessments." | Small sample sizes<br>and high dropouts<br>by 6 months. Trial<br>had multiple<br>interventions, thus<br>attribution of<br>benefits to any one<br>intervention difficult.<br>Use of educational<br>intervention as<br>control might bias in<br>favor of intervention.                                                                                                                                                                                                                    |

|                         |     |                                     |                                                                                                                                                                                                                          | group alone.                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                            |
|-------------------------|-----|-------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Reinhold<br>2008<br>RCT | 5.0 | N = 489<br>Hip or<br>knee OA        | Acupuncture plus<br>routine care (10-<br>15 appointments)<br>vs. routine care<br>for 3 months                                                                                                                            | Costs higher for acupuncture<br>over 3 months [mean cost-<br>difference: 469.50 euros<br>(95%CI 135.80-803.19).<br>Overall ICER 17,845 euros<br>per QALY gained. Cost<br>effectiveness better for<br>females. | "Acupuncture was a<br>cost effective treatment<br>strategy in patients with<br>chronic osteoarthritis<br>pain."                                                                                                                                                              | Acupuncture<br>administered by<br>multiple providers<br>and relatively<br>unstructured.<br>Unclear if economic<br>data from Germany<br>applies to U.S.                                                                                     |
|                         |     |                                     | Glu                                                                                                                                                                                                                      | teal Muscle Trigger Points                                                                                                                                                                                    |                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                            |
| Huguenin<br>2005<br>RCT | 7.5 | N = 60<br>Male<br>soccer<br>runners | Dry needling of<br>gluteal trigger<br>points (most<br>upper outer<br>buttocks, 3-5<br>points each,<br>0.3mm diameter,<br>25mm long<br>acupuncture<br>needles) vs.<br>placebo needling<br>(blunted needle to<br>1 minute) | VAS pain did not differ<br>between groups (graphic<br>data). No significant changes<br>in ROM in either group. ROM<br>with straight leg raise did not<br>differ between groups.                               | "Neither dry needling<br>nor placebo needling of<br>the gluteal muscles<br>resulted in any change<br>in straight leg raise or<br>hip internal rotation.<br>Both interventions<br>resulted in subjective<br>improvement in activity<br>related muscle pain and<br>tightness." | Short-term trial of 3<br>days. No long-term<br>outcomes data.<br>Attempted blinding<br>failed (p <0.001<br>between groups).<br>Study also involves<br>athletes from soccer<br>clubs, thus<br>applications to other<br>populations unclear. |

### HOT AND COLD THERAPIES

It has been proposed that cold and heat have actual therapeutic benefits to modify the disease processes (e.g., cold to allegedly reduce acute inflammation and swelling and heat to speed healing through increased blood supply).(708, 709) However, it has been proposed that these various modalities are distractants that apparently do not materially alter the clinical course.(710) Still it is postulated that the distractants allow increased activity levels, thus even though distractants might not directly modify the disease processes, this theory supports using these modalities through indirect mechanism(s) of action.(711) Many patients with chronic pain report a temporary soothing effect from the application of heat or the use of ice packs in the home setting.

### Cryotherapies

Cold or cryotherapies involve applications of cold or cooling devices to the skin. They have been used for treatment of non-operative pain and post-operative pain.(712)

1. Recommendation: Home Use of Cryotherapies for Osteoarthrosis or Acute, Subacute, or Chronic Hip Pain

Cryotherapies are recommended for home use if efficacious for the temporary relief of osteoarthrosis or acute, subacute, or chronic hip pain.

*Frequency/Duration* – Education regarding home cryotherapy application may be part of the treatment if cold is effective in reducing pain.

Indications for Discontinuation - Non-tolerance, including exacerbation of hip pain.

Strength of Evidence – Recommended, Insufficient Evidence (I)

2. Recommendation: Cryotherapy for Treatment of Hip Arthroplasty and Surgery Patients Cryotherapy is recommended for treatment of hip arthroplasty and surgery patients.

*Frequency/Duration* – Pain relief with cold therapy for the first four post-operative days(712) (see Figure 11). This includes cold-compression.

Indications for Discontinuation – Non-tolerance, including exacerbation of LBP.

Strength of Evidence – **Recommended**, Evidence (C)

Rationale for Recommendations

Copyright© 2016 Reed Group, Ltd.

There is one moderate-quality trial that addresses cryotherapies; however, it addressed post-operative arthroplasty patients and suggested benefits with significantly lower pain scores.(712) There are no quality trials that evaluate cryotherapy for treatment of other hip conditions. Among post-operative patients, earlier reductions in pain scores and improved mobility may assist in reducing post-operative complications including DVTs, thus cryotherapies including more expensive cryotherapy delivered by machines which are moderately costly appear justifiable and are recommended for these post-operative patients. For other patients, self applications of cryotherapies using towels or reusable devices are non-invasive, minimal cost, and without complications. While cryotherapy is generally not helpful in patients with osteoarthrosis, a small minority may find benefit, thus, cryotherapy is recommended as a potential distractant or counter-irritant. Other forms of cryotherapy can be considerably more expensive, including chemicals or cryotherapeutic applications in clinical settings and are not recommended.

Figure 11. Comparison of Pain Relief between Cryotherapy and Control Groups after THA. Pain Scores Measured Postoperatively from day 1 to day 4 were Significantly Lower for the Cryotherapy Group than for the Control Group.



Reprinted from *J Arthroplasty*, 19(3), Saito N, Horiuchi H, Kobayashi S, Nawata M, Takaoka K, Continuous local cooling for pain relief following total hip arthroplasty, pp. 334-7, Copyright (2004) with permission from Elsevier.

| Author/Yea<br>r Study<br>Type | Score<br>(0-11) | Sample<br>Size | Comparison<br>Group | Results                          | Conclusion                | Comments        |
|-------------------------------|-----------------|----------------|---------------------|----------------------------------|---------------------------|-----------------|
| Saito                         | 4.5             | N = 46         | Cryotherapy         | Half cryotherapy patients had    | "Did not find a           | Suggests        |
| 2004                          |                 |                | (cold               | no pain post-op Day 3 vs. 5      | reduction in blood loss   | cryotherapy     |
|                               |                 | Cementle       | compress) vs.       | days in controls. Less           | as a result of the        | reduces pain    |
| RCT                           |                 | ss THA         | no                  | mepivacaine used for             | cooling. The              | scores first 4  |
|                               |                 |                | cryotherapy         | anesthesia for cryotherapy       | cryotherapy had no        | post-op days.   |
|                               |                 |                | for 4 days          | group (295±99 vs. 489±160mg,     | effect on the CK or       | However, it is  |
|                               |                 |                | post-op             | p <0.001), but diclofenac doses  | CRP levels, indicating    | ineffective for |
|                               |                 |                |                     | did not differ (58 vs. 60mg, p = | that it has no inhibitory | reducing        |
|                               |                 |                |                     | 0.53). Did not reduce blood loss | effects on muscle         | blood loss.     |
|                               |                 |                |                     | or affect creatine kinase or C-  | damage or                 |                 |
|                               |                 |                |                     | reactive protein.                | inflammation."            |                 |

### *Evidence for the Use of Cryotherapy for Hip Arthroplasty* There is 1 moderate-quality RCT incorporated in this analysis.

### **Heat Therapies**

Many forms of heat therapy have been used to treat musculoskeletal pain including hot packs, moist hot packs, sauna, warm baths, infrared, diathermy, and ultrasound. The depth of penetration of some heating agents is minimal since transmission is via conduction or convection, but other modalities have deeper penetration.(713) A particular methodological problem with most studies of heat therapy is that despite occasional attempts at, and claims of, successful blinding, it is impossible to blind the patient from these interventions as they produce noticeable, perceptible tissue warming. Not surprisingly, some of these heat-related modalities have been shown to reduce pain ratings more than placebo for patients with low back pain. It is less clear whether there are meaningful, long-term benefits. Heat therapies are passive treatments. In chronic pain settings, use of heat should be minimized to self-treatments of flare-ups with primary emphasis on functional restoration elements (e.g., exercises).

Recommendation: Self-application of Heat Therapy for Osteoarthrosis or Acute, Subacute, or Chronic Hip Pain

# Self-application of low-tech heat therapy is recommended for treatment of osteoarthrosis or acute, subacute, or chronic hip pain.

*Indications* – Applications may be periodic or continuous. Applications should be home-based as there is no evidence for efficacy of provider-based heat treatments. Primary emphasis should generally be on functional restoration program elements, rather than on passive treatments in patients with chronic pain.

*Frequency/Duration* – Self-applications may be periodic. Education regarding home heat application should be part of the treatment plan if heat has been effective for reducing pain.

*Indications for Discontinuation* – Intolerance, increased pain, development of a burn, other adverse event.

# Strength of Evidence – Recommended, Insufficient Evidence (I)

### Rationale for Recommendation

Self-application of heat-using towels or reusable devices is non-invasive, minimal cost, and without complications. While they are generally not helpful in patients with osteoarthrosis, heat therapy may be helpful in a small minority, and thus is recommended as potential distractant or counter-irritant. Other forms of heat can be considerably more expensive, including chemicals or cryotherapeutic applications in clinical settings and are not recommended.

# Evidence for the Use of Heat Therapy

There are no quality studies evaluating heat therapy for osteoarthrosis or acute, subacute, or chronic hip pain.

# DIATHERMY, INFRARED THERAPY, AND ULTRASOUND

There are many other commercial modalities to deliver heat; these generally differ on how deeply the heat is felt. None of these modalities have demonstrated major efficacy for any disorder; however, there have been limited uses for treatment of specific disorder with a specific intervention (see Hand, Wrist, and Forearm Disorders; Elbow Disorders; Low Back Disorders; and Chronic Pain chapters).

# Recommendation: Diathermy, Infrared Therapy, or Ultrasound for Hip Osteoarthrosis or Acute, Subacute, or Chronic Hip Pain

There is no recommendation for or against the use of diathermy, infrared therapy, or ultrasound for treatment of hip osteoarthrosis or for patients with acute, subacute, or chronic hip pain.

# Strength of Evidence - No Recommendation, Insufficient Evidence (I)

### Rationale for Recommendations

There are no quality studies evaluating the use of diathermy, infrared, or ultrasound for patients with hip pain. Ultrasound and diathermy are reportedly ineffective for treatment of knee arthritis patients.(253, 714) While not invasive and have low complication rates, these modalities are moderate to high cost depending on the number of treatments.

### Evidence for the Use of Diathermy, Infrared, or Ultrasound

There are no quality studies evaluating the use of diathermy, infrared, or ultrasound for treatment of hip osteoarthrosis or acute, subacute, or chronic hip pain.

# LOW-LEVEL LASER THERAPY

Low-level laser treatment usually involves laser energy that does not induce significant heating. It is theorized that the mechanism of action is through photoactivation of the oxidative chain.(715)

Recommendation: Low-level Laser Therapy for Hip Osteoarthrosis or Acute, Subacute, or Chronic Hip Pain

# There is no recommendation for or against the use of low-level laser therapy for treatment of osteoarthrosis or acute, subacute, or chronic hip pain.

# Strength of Evidence - No Recommendation, Insufficient Evidence (I)

### Rationale for Recommendation

The few available studies that have evaluated low-level laser therapy for treatment of osteoarthrosis conflict on the efficacy.(716) There are no quality studies evaluating low-level laser therapy for treatment of osteoarthrosis of the hip, a particularly deep joint. Low-level laser therapy is not invasive, has few adverse effects, but is costly.

### Evidence for the Use of Low-Level Laser Therapy

There are no quality studies evaluating the use of low-level laser therapy for hip osteoarthrosis or acute, subacute, or chronic hip pain.

### MANIPULATION AND MOBILIZATION

Manipulation and mobilization are two types of manual therapy. Manipulation has been used to treat hip disorders.(717, 718) There is quality evidence of efficacy of manipulation particularly for treatment of acute low back pain (see Low Back Disorders chapter) and neck pain. There is a controlled comparative clinical study suggesting hip arthroplasty patients might ambulate greater distances if manipulated in the early post-operative period.(719)

1. Recommendation: Manipulation or Mobilization for Acute Hip Pain, Hip Osteoarthrosis, or Surgical or Hip Fracture Patients

There is no recommendation for or against the use of manipulation or mobilization for treatment of acute hip pain, hip osteoarthrosis, or for surgical or hip fracture patients.

Strength of Evidence - No Recommendation, Insufficient Evidence (I)

2. Recommendation: Manipulation or Mobilization for Subacute or Chronic Hip Pain

The use of manipulation or mobilization is recommended for patients with subacute or chronic hip pain.

### Strength of Evidence – Recommended, Evidence (C)

### Rationale for Recommendations

There is quality evidence of efficacy for manipulation or mobilization in treating hip osteoarthrosis, acute, subacute, or chronic hip pain patients,(233) but further quality studies are needed. There is one high-quality study of manipulation in hospitalized hip patients that found a lack of efficacy.(720) However, this study did not include treatment to the hip or knee. Manipulation is not invasive, has low adverse effects, but is moderately costly depending on the number of treatments. There is no recommendation for or against use in these patients with the exception of patients with subacute or chronic hip pain.

Evidence for the Use of Manipulation or Mobilization

There is 1 high- and 1 moderate-quality RCT incorporated in this analysis. There is 1 low-quality RCT in Appendix 2.

| Author/Year | Score  | Sample       | Comparison Group       | Results                           | Conclusion          | Comments              |
|-------------|--------|--------------|------------------------|-----------------------------------|---------------------|-----------------------|
| Study Type  | (0-11) | Size         |                        |                                   |                     |                       |
| Licciardone | 8.5    | N = 60       | Osteopathic            | Functional Independence           | "The (osteopathic   | Heterogeneous         |
| 2004        |        |              | manipulative treatment | Measure total scores improved:    | manipulative        | mixture of patients   |
|             |        | Hospital-    | protocol (OMT) vs.     | OMT 26.5 points vs. sham 26.2     | treatment) protocol | and individualization |
| RCT         |        | ized knee    | sham treatment         | points, $p = 0.86$ . Lengths of   | used does not       | of treatments         |
|             |        | or hip OA    | protocol. Manipulation | stay were OMT 15.4 days vs.       | appear to be        | received preclude     |
|             |        | surgery or   | was individualized     | sham 12.3 days (p = 0.09). All    | efficacious in this | robust conclusions    |
|             |        | hip fracture | (myofascial release,   | measures were not different       | hospital            | about indications for |
|             |        |              | strain/counterstrain,  | except rehabilitation efficiency, | rehabilitation      | any one diagnosis.    |
|             |        |              | muscle energy, soft    | which favored the sham group      | population."        | Inpatient             |
|             |        |              | tissue, high-velocity  | over OMT (2.0 vs. 2.6 for sham,   |                     | rehabilitation        |
|             |        |              | low amplitude          | p = 0.01).                        |                     | population also might |
|             |        |              |                        |                                   |                     | 142                   |

Copyright© 2016 Reed Group, Ltd.

|                 |     |         | mobilization,<br>craniosacral). All<br>received standard<br>care. |                                                           |                                   | limit generalizability.<br>At face value, OMT<br>was not effective. |
|-----------------|-----|---------|-------------------------------------------------------------------|-----------------------------------------------------------|-----------------------------------|---------------------------------------------------------------------|
| Hoeksma<br>2004 | 7.5 | N = 109 | Manual therapy program (stretching,                               | After 5 weeks, 81% manual vs.<br>50% exercise improved (p | "The effect of the manual therapy | Use of multiple techniques limits                                   |
|                 |     | Hip OA  | hip joint traction,                                               | <0.05). Quality of life and hip                           | program on hip                    | ability to interpret or                                             |
| RCT             |     |         | traction manipulation in                                          | function: manual vs. exercise                             | function is superior              | generalize results.                                                 |
|                 |     |         | high velocity thrust                                              | baseline: 41 1+18 vs 37 9+18                              | to the exercise                   |                                                                     |
|                 |     |         | repeated until optimal                                            | (NS); Week 29: 51.4±22 vs.                                | patients with OA of               |                                                                     |
|                 |     |         | results) vs. Exercise                                             | 49.9±24 (NS). Harris hip score:                           | the hip."                         |                                                                     |
|                 |     |         | therapy program.                                                  | baseline: 54.0±15 vs. 53.1±14                             |                                   |                                                                     |
|                 |     |         |                                                                   | (NS); Week 29: 70.2±20 vs.                                |                                   |                                                                     |
|                 |     |         |                                                                   | 59.7±18 (p <0.05)                                         |                                   |                                                                     |

### MASSAGE

Massage is a commonly used treatment for chronic muscular pain administered by multiple health care providers as well as family or friends. It is most typically used for treatment of spine and torso pain (see Chronic Pain and Low Back Disorders chapters).

Recommendation: Massage for Hip Osteoarthrosis or Acute, Subacute, or Chronic Hip Pain There is no recommendation for or against the use of massage for hip osteoarthrosis or acute, subacute, or chronic hip pain.

Strength of Evidence - No Recommendation, Insufficient Evidence (I)

### Rationale for Recommendation

Massage is a commonly used treatment for musculoskeletal pain, but few studies evaluated disorders other than LBP.(721-723) While massage is not invasive and has few adverse effects, it is moderate to high cost (when professionally administered) depending on the number of treatments. Other treatments are available with documented efficacy.

### Evidence for the Use of Massage

There are no quality studies evaluating the use of massage to treat hip osteoarthrosis or acute, subacute, or chronic hip pain.

### REFLEXOLOGY

Reflexology is a complementary or alternative treatment. It entails the physical act of applying pressure to the feet and hands with specific thumb, finger, and hand techniques without the use of oil or lotion. Reflexology is based on a system of zones and reflex areas that reflect an image of the body on the feet and hands with a premise that such work effects a physical change to the body.

Recommendation: Reflexology for Hip Osteoarthrosis or Acute, Subacute, or Chronic Hip Pain Reflexology is not recommended for treatment of hip osteoarthrosis or acute, subacute, or chronic hip pain.

### Strength of Evidence - Not Recommended, Insufficient Evidence (I)

### Rationale for Recommendation

There are no quality studies of reflexology for hip pain. It also has not been shown to be efficacious for the treatment of chronic LBP in a moderate-quality study.(724) Other treatments have been shown to be efficacious.

Evidence for the Use of Reflexology

There are no quality studies evaluating the use of reflexology for hip osteoarthrosis or acute, subacute, or chronic hip pain.

# **Electrical Therapies**

There are multiple forms of electrical therapies used to treat musculoskeletal pain. These include highvoltage galvanic, H-wave stimulation, interferential therapy (IFT or IT), iontophoresis, microcurrent, percutaneous electrical nerve stimulation (PENS), sympathetic electrotherapy, and transcutaneous electrical stimulation (TENS). The mechanism(s) of action, if any, are unclear.

# **ELECTRICAL STIMULATION THERAPIES**

Recommendation: Electrical Stimulation Therapies for Treatment of Hip Osteoarthrosis or Acute, Subacute, or Chronic Hip Pain

There is no recommendation for or against the use of electrical therapies outside of research settings for the treatment of hip osteoarthrosis or acute, subacute, or chronic hip pain.

# Strength of Evidence - No Recommendation, Insufficient Evidence (I)

# Rationale for Recommendation

There are no quality studies for any of these therapies in occupational populations with hip pain. There is one quality study suggesting efficacy of iontophoresis with sodium salicylate for hip pain in children with sickle cell disease;(725) however, applicability to occupational populations and others is unclear. Some of these electrical therapies are thought to be of greater benefit for certain types of disorders, such as iontophoresis with glucocorticosteroid for trochanteric bursitis and gluteus medius tendinopathy; however, there are no quality studies available. These therapies are mostly non-invasive with low adverse effects, but are moderate to high cost when examined in aggregate. There is no recommendation for or against the use of these therapies. There are other treatments that are effective.

# Evidence for the Use of Electrical Therapies

There are no quality studies evaluating the use of electrical therapies for hip osteoarthrosis or acute, subacute, or chronic hip pain.

# TRANSCUTANEOUS ELECTRICAL NERVE STIMULATION (TENS)

TENS is a modality to control pain through electrical stimulation delivered by pads placed on the surface of the skin for the treatment of many painful conditions, including both non-inflammatory and inflammatory disorders, although it has most typically been used for spine disorders (see Chronic Pain and Low Back Disorders chapters).(726-732)

1. Recommendation: TENS for Hip Osteoarthrosis or Acute, Subacute, or Chronic Hip Pain There is no recommendation for or against the use of TENS for hip osteoarthrosis or acute, subacute, or chronic hip pain.

# Strength of Evidence - No Recommendation, Insufficient Evidence (I)

2. Recommendation: TENS for Emergency Transport of Patients with Hip Fracture TENS is moderately recommended for emergency transport of patients with hip fracture.

Indication - Hip fracture.

Duration – During emergency transport.

# Strength of Evidence – Moderately Recommended, Evidence (B)

# Rationale for Recommendations

There are no quality studies of TENS that directly address hip osteoarthrosis or other hip conditions. However, a high-quality study suggests TENS reduces pain during emergency transport,(733) thus there is evidence to suggest TENS might be successful for this limited indication. TENS is not invasive, has low adverse effects, and is moderately costly. There is currently no recommendation for TENS as a treatment for hip disorders.
*Evidence for the Use of TENS* There is 1 high-quality RCT incorporated in this analysis. There is 1 low-quality RCT(734) in Appendix 2.

| Author/Year<br>Study Type | Score<br>(0-11) | Sample<br>Size | Comparison<br>Group | Results                   | Conclusion                  | Comments               |
|---------------------------|-----------------|----------------|---------------------|---------------------------|-----------------------------|------------------------|
| Lang                      | 8.0             | N = 72         | TENS vs.            | VAS pain (baseline/after  | "TENS is a valuable and     | Post hoc excluded 9    |
| 2007                      |                 |                | sham TENS           | transport): TENS          | fast-acting pain            | from data analyses due |
|                           |                 | Hip            | during              | (89±9/59±6) vs. placebo   | treatment under the         | to non-fractures.      |
| RCT                       |                 | fractures      | emergency           | (86±12/79±11), p <0.01.   | difficult circumstances of  | Baseline TENS group's  |
|                           |                 |                | transport           | Heart rate 67±11 vs. 99±8 | "out-of-hospital rescue."   | pain trended towards   |
|                           |                 |                |                     | (p <0.01). Blood pressure | Because of its lack of      | shorter duration. Data |
|                           |                 |                |                     | trended towards higher in | side effects, it could also | suggest TENS reduces   |
|                           |                 |                |                     | placebo (e.g., diastolic  | be a valuable tool in the   | pain in emergency      |
|                           |                 |                |                     | 86±18 vs. 97±12, NS).     | hospital."                  | transport setting.     |

# **INJECTIONS**

There are a several types of injections that have been used for patients with hip pain. These include: intraarticular glucocorticosteroid injections, viscosupplementation, prolotherapy and botulinum injections.

## INTRAARTICULAR GLUCOCORTICOSTEROID INJECTIONS

Intraarticular glucocorticosteroid injections are sometimes performed to attempt to deliver medication with minimal systemic effects to the hip joint.(735-741) Their usual purpose is to gain sufficient relief to either resume conservative medical management or to delay operative intervention. These injections are generally, although not always, performed under fluoroscopic or ultrasound guidance.

### Recommendation: Intraarticular Glucocorticosteroid Injections for Hip Osteoarthrosis Intraarticular glucocorticosteroid injections are moderately recommended for the treatment of hip osteoarthrosis.

*Indications* – Hip joint pain from osteoarthrosis sufficient that control with NSAID(s), acetaminophen, weight loss and exercise is unsatisfactory.

*Frequency/Dose/Duration* – An injection should be scheduled, rather than a series of 3. Medications used in the RCTs were triamcinolone hexacetonide 40mg or triamcinolone acetonide 80mg, or methylprednisolone 40mg or 80mg (see glucocorticosteroid injection table). Anesthetics have most often been bupivacaine or mepivacaine. Multiple doses have been utilized with no head-to-head comparisons in trials; however, a comparative clinical trial found greater efficacy for methylprednisolone 80mg over 40mg.(741)

Indications for Discontinuation – A second glucocorticosteroid injection is not recommended if the first has resulted in significant reduction or resolution of symptoms. If there has not been a response to a first injection, there is less indication for a second. If the interventionalist believes the medication was not well placed and/or if the underlying condition is so severe that one steroid bolus could not be expected to adequately treat the condition, a second injection may be indicated (a second injection is particularly recommended to be performed under ultrasound or fluoroscopic guidance). In patients who respond with a pharmacologically appropriate several weeks of temporary, partial relief of pain, but who then have worsening pain and function and who are not (yet) interested in surgical intervention, a repeat steroid injection is an option. There are not believed to be benefits beyond approximately 3 of these injections in a year. Patients requesting a 4th injection should have reassessment of conservative management measures and be counseled for possible surgical intervention.

## Strength of Evidence – Moderately Recommended, Evidence (B)

# Rationale for Recommendation

There are 4 high- or moderate-quality RCTs evaluating efficacy of glucocorticosteroid injections for treatment of hip OA. Both of the highest quality trials had positive results (see Figure 12).(735, 736) The lowest quality study did not clearly document efficacy, but also was underpowered with small numbers of subjects per treatment arm.(740) Thus, the quality evidence documents efficacy of these injections. The

length of benefits is somewhat unclear with approximately 3 months of benefit and no quality evidence of long-term efficacy. There are no head-to-head medication or dose comparisons to identify the optimal combination. A non-randomized study suggested methylprednisolone 80mg was superior to 40mg; however, the results need to be replicated in a quality trial.(741) The primary use of the injections appears to be to improve symptoms and delay, but not prevent, surgical intervention in most patients. There is no quality evidence to support, or require, a series of 3 injections and no quality evidence of a limit to the number of injections. There is some evidence to suggest steroid injections may be superior to hyaluronic acid injections (see Figure 13).(737) Hip injections may require ultrasound or fluoroscopy, as there are no quality trials of blind injections and all quality trials utilized it, although some physicians perform these injections without the use of fluoroscopy or ultrasound.(737, 741) Hip injections are invasive, have a low risk of adverse effects, but are relatively costly. They are an option for treatment of hip patients particularly after inadequate results from NSAID trials, exercise, or other conservative interventions.

Figure 12. Percentage of patients receiving either placebo or intraarticular corticosteroid injection who showed a response from baseline up to 6 months as defined by a 20% decrease in the summed score for the Western Ontario and McMaster Universities Osteoarthritis Index pain subscale



Lambert RGW, Hutchings EJ, Grace MGA, Jhangri GS, Conner-Spady B, Maksymowych WP. Steroid injection for osteoarthritis of the hip. A randomized, double-blind, placebo-controlled trial. Arth Rheum. 2007;56(7):2278-87. Reprinted with permission from John Wiley and Sons.





Reprinted from OsteoArthritis and Cartilage, 14, Qvistgaard E, Christensen R, Torp-Pedersen S, Bliddal H, Intra-articular treatment of hip osteoarthritis: a randomized trial of hyaluronic acid, corticosteroid, and isotonic saline, 163-170, Copyright (2006), with permission from Elsevier.

### Evidence for the Use of Glucocorticosteroid Injections

There are 3 high- and 1 moderate-quality RCT incorporated in this analysis. There is 1 low-quality study in Appendix 2.

| Author/Year               | Score  | Sample                               | Comparison                                                                                                                                                                                                        | Results                                                                                                                                                                                                                                                                                                                                                                             | Conclusion                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Comments                                                                                                                                                                                        |  |  |  |
|---------------------------|--------|--------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Study Type                | (0-11) | Size                                 | Group                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                 |  |  |  |
| Intraarticular Injections |        |                                      |                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                 |  |  |  |
| Lambert<br>2007<br>RCT    | 10.0   | N = 52<br>Hip OA                     | Triamcinolone<br>hexacetonide<br>40mg plus<br>bupivacaine 10mg<br>vs. bupivacaine.<br>Fluoroscopy<br>used.                                                                                                        | WOMAC pain scores:<br>(baseline/1 month/2<br>months): placebo<br>( $314.3\pm76.2/276.4\pm$<br>129.0/306.5±121.2) vs.<br>steroid ( $310.1\pm54.6/149.6\pm$<br>113.0/157.4±127.2), p =<br>0.0005 and p <0.0001<br>respectively; 50%<br>response rates for<br>WOMAC differed (61.3%<br>vs. 14.3%), p = 0.001.                                                                          | "[C]orticosteroid injection<br>can be an effective<br>treatment of pain in hip<br>OA, with benefits lasting<br>up to 3 months in many<br>cases."                                                                                                                                                                                                                                                                                                              | Data suggest<br>injections are<br>efficacious for up to 3<br>months, although<br>patients followed for<br>6 months and<br>differences may be<br>exceeded 3 months.                              |  |  |  |
| Qvistgaard<br>2006<br>RCT | 9.0    | N = 101<br>Hip OA                    | Intraarticular<br>Hyaluronic acid 3<br>2mL injections vs.<br>methylprednisolon<br>e 40mg (and 2<br>placebo<br>injections) vs.<br>saline; 3<br>injections given at<br>14 day intervals;<br>ultrasound-<br>guidance | Significant effect on<br>walking pain ( $p = 0.044$ )<br>due to improvement<br>following corticosteroid vs.<br>saline with effect-size 0.6<br>(95% Cl, 0.1-1.1, $p =$<br>0.021). Effect size for HA<br>vs. saline 0.4 (95% Cl, -0.1<br>to 0.9, $p = 0.13$ ). Peak-<br>effect after 2 weeks. No<br>differences between<br>treatments at endpoint. No<br>significant adverse effects. | "Patients treated with<br>corticosteroids<br>experienced significant<br>improvement during the 3<br>months of intervention,<br>with an effect size<br>indicating a moderate<br>clinical effect. Although a<br>similar significant result<br>following treatment with<br>HA could not be shown,<br>the effect size indicated a<br>small clinical<br>improvement. A higher<br>number of patients in<br>future HA studies would<br>serve to clarify this point." | Longest follow-up 90<br>days. Data suggest<br>glucocorticosteroid<br>injection may be<br>superior to hyaluronic<br>acid to saline. Most<br>data suggest no<br>benefits of either at<br>90 days. |  |  |  |
| Kullenberg<br>2004<br>RCT | 8.5    | N = 80<br>Hip OA                     | Triamcinolone<br>acetonide 80mg<br>vs. mepivacaine<br>1% 2mL;<br>fluoroscopy used                                                                                                                                 | VAS total pain scores:<br>(baseline/3 weeks/12<br>weeks): anesthetic<br>( $12.0\pm1.0/12.4\pm1.8/$ ) vs.<br>steroid ( $12.2\pm2.2/$<br>$3.8\pm2.6/7.9\pm3.9$ ). No<br>complications.                                                                                                                                                                                                | "[I]ntraarticular<br>corticosteroids might<br>improve pain and range of<br>motion of the affected<br>joint in patients with hip<br>OA."                                                                                                                                                                                                                                                                                                                       | Lack of anesthetic in<br>glucocorticosteroid<br>group could<br>potentially unblind<br>study. Data suggest<br>injections are<br>efficacious.                                                     |  |  |  |
| Flanagan<br>1988<br>RCT   | 5.0    | N = 36<br>Hip OA<br>awaitin<br>g THA | Triamcinolone<br>20mg vs.<br>bupivacaine 0.5%<br>10mL vs. saline;<br>fluoroscopy used                                                                                                                             | Percentages of patients<br>improving (1/2 months):<br>steroid (75/33.3) vs.<br>bupivacaine (58.3/75/) vs.<br>saline (63.6/60).                                                                                                                                                                                                                                                      | "The majority of patients<br>had good pain relief for 1<br>month but in general this<br>was not maintained and<br>some patients were much<br>worse after the injection."                                                                                                                                                                                                                                                                                      | Small numbers in<br>each group. Limited<br>data provided. Data<br>do not clearly support<br>injections.                                                                                         |  |  |  |

### VISCOSUPPLEMENTATION INJECTIONS

Viscosupplementation has been performed particularly for knee osteoarthrosis, but hip osteoarthrosis patients have also been studied.(738, 742-745)

#### Recommendation: Intraarticular Hip Viscosupplementation Injections for Hip Osteoarthrosis Intraarticular hip viscosupplementation injections are recommended for treatment of hip osteoarthrosis.

*Indications* – Hip joint pain from osteoarthrosis to the extent that control is unsatisfactory with NSAID(s), acetaminophen, weight loss, and exercise strategies. Patient should generally have failed treatment with

glucocorticosteroid injection which has been shown in one study to be superior particularly considering difference between 1 injection and 3 injections required for viscosupplementation.(737) Similar to glucocorticosteroid injections, the purpose is to gain sufficient relief to either resume conservative medical management or to delay operative intervention. Injections are recommended to be performed under either ultrasound or fluoroscopic guidance.(742, 743, 746-750)

*Dose* – There is no apparent difference in outcomes for high versus low molecular weight preparations.(743)

Frequency/Duration – One injection approximately every 7 to 14 days; up to 3 injections.(737, 743)

*Indications for Discontinuation* – A second (or third) injection is not recommended if there are adverse effects or the clinical results have been a significant reduction or resolution of symptoms.

## Strength of Evidence - Recommended, Insufficient Evidence (I)

## Rationale for Recommendation

There have been suggestions that viscosupplementation of the hip joint may be beneficial for patients with hip osteoarthrosis;(742, 743, 746-751) however, there are no reported trials including a placebo. Most systematic reviews have concluded the evidence is suggestive, but weak.(738, 744, 745, 750) Open-label trials show an approximately 50% response rate and there is some evidence of results lasting 6 months.(743, 746-750) No long-term treatment trials have been reported. There were no differences seen between low- and high-molecular weight hyaluronan visco-supplementation injections.(743) Both resulted in approximately 40% reductions in pain ratings with benefits lasting 6 months. However, a high-quality trial showed glucocorticosteroid injections are superior, thus they should generally be used initially(737) and these injections are recommended although with insufficient evidence.

Injections have mostly been done under ultrasound, (746-748) although they can be done under fluoroscopy. (743) These injections are invasive, have a low risk of adverse effects, but are relatively costly. They are an option for treatment of hip patients particularly after inadequate results from NSAID trials, exercise, or other conservative interventions generally including glucocorticosteroid injection.

| Author/Yea<br>r Study     | Score<br>(0-11) | Sampl<br>e Size      | Comparison<br>Group                                                                                                            | Results                                                                                                                                                                          | Conclusion                                                                                                                                                                               | Comments                                                                                                                   |
|---------------------------|-----------------|----------------------|--------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|
| Туре                      |                 |                      |                                                                                                                                |                                                                                                                                                                                  |                                                                                                                                                                                          |                                                                                                                            |
|                           |                 |                      | Glucos                                                                                                                         | saminoglycan Injections                                                                                                                                                          |                                                                                                                                                                                          |                                                                                                                            |
| Qvistgaard<br>2006<br>RCT | 9.0             | N =<br>101<br>Hip OA | Intraarticular<br>hyaluronic acid 3<br>2mL injections vs.<br>methyl-                                                           | Significant effect on<br>walking pain (p =<br>0.044) due to<br>improvement following                                                                                             | "Patients treated with<br>corticosteroids<br>experienced significant<br>improvement during the                                                                                           | Longest follow-up<br>90 days. Data<br>suggest<br>glucocorticosteroid                                                       |
|                           |                 |                      | prednisolone<br>40mg (and 2<br>placebo injections)<br>vs. saline. 3<br>injections given at<br>14 day intervals;<br>ultrasound- | corticosteroid vs.<br>saline with effect-size<br>0.6 (95% Cl, 0.1-1.1, p = 0.021). Effect size for<br>HA vs. saline 0.4 (95%<br>Cl, -0.1 to 0.9, p =<br>0.13). Peak-effect after | 3 months of<br>intervention, with an<br>effect size indicating a<br>moderate clinical effect.<br>Although a similar<br>significant result<br>following treatment with                    | injection may be<br>superior to<br>hyaluronic acid to<br>saline. Most data<br>suggest no benefits<br>of either at 90 days. |
|                           |                 |                      | guidance                                                                                                                       | 2 weeks. No<br>differences between<br>treatments at endpoint.<br>No significant adverse<br>effects.                                                                              | HA could not be<br>shown, the effect size<br>indicated a small<br>clinical improvement. A<br>higher number of<br>patients in future HA<br>studies would serve to<br>clarify this point." |                                                                                                                            |

### *Evidence for the Use of Intraarticular Hip Viscosupplementation Injections* There is 1 high- and 2 moderate-quality RCTs(737, 743, 752) incorporated in this analysis.

| Gramajo<br>1989<br>RCT | 7.0 | N = 62<br>Hip or<br>knee<br>OA                   | Glycosaminoglyca<br>n-peptide complex<br>(GPC) ("Rumalon")<br>injections vs.<br>placebo injections.<br>3 injections a week<br>for 8 week course,<br>3 courses per<br>year.                                        | Night pain (before/after<br>treatment): GPC<br>$2.4\pm2.9/0.4\pm0.69$ vs.<br>placebo $2.1\pm1.58/1.9$<br>$\pm0.83$ , p <0.001.<br>Results comparable for<br>day pain (p <0.01) and<br>joint mobility (p<br><0.005). Time to walk<br>10 meters: GPC<br>$21.8\pm6.88/18.0\pm4.86$<br>vs. $24.1\pm7.31/$<br>$23.9\pm3.3$ seconds, p<br><0.001. No adverse<br>effects reported.                                                              | "[G]lycosaminoglycan-<br>peptide complex<br>('Rumalon') offers not<br>only an effective but<br>also a well-tolerated<br>form of treatment<br>which can be used to<br>replace or supplement<br>non-steroidal anti-<br>inflammatory drugs,<br>particularly in long-<br>term therapy." | Co-interventions<br>uncontrolled.<br>Therapy requires<br>72 injections per<br>year.                                                                                                                |
|------------------------|-----|--------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Tikiz<br>2005<br>RCT   | 6.0 | N = 48<br>patient<br>s with<br>56 hips<br>Hip OA | Lower molecular<br>weight hyaluronan<br>(LMW HA)<br>(Ostenil) 2mL vs.<br>higher molecular<br>weight<br>viscosupplement<br>(hylan G-F 20,<br>Synvisc) 2ML; 1<br>intra-articular<br>injection Q week<br>for 3 weeks | VAS, WOMAC,<br>Lequesne scores<br>reduced in both<br>groups; lasted 6<br>months; % reduction<br>(LMWHA vs.<br>HMWHA): 38 vs. 40%<br>(p <0.001) VAS pain,<br>43 vs. 40% WOMAC<br>(p <0.001), 47 vs. 49%<br>Lequesne (p <0.001).<br>No difference between<br>2 groups; 3 dropouts<br>due to pain. Local<br>adverse effects pain<br>and/or swelling in 3/32<br>hips (9%) with LMW<br>HA vs. 3/24 hips<br>(12.5%) with hylan G-F<br>20 (NS). | "[B]oth types of<br>viscosupplementation<br>produced a significant<br>clinical improvement<br>during the 6-month<br>follow-up period.<br>However, no<br>significant difference<br>was found in outcomes<br>between higher and<br>lower molecular weight<br>hyaluronan."             | Data suggest either<br>equal efficacy or<br>equal lack of<br>efficacy as there<br>was no placebo<br>control, however<br>magnitude of<br>reductions and<br>duration of effect<br>suggests efficacy. |
|                        | 1   | 1                                                | Glucos                                                                                                                                                                                                            | saminoglycan Injections                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                    |
| Gramajo<br>1989<br>RCT | 7.0 | N = 62<br>Hip or<br>knee<br>OA                   | Glycosaminoglyca<br>n-peptide complex<br>(GPC)<br>("Rumalon")<br>injections vs.<br>placebo injections;<br>3 injections a<br>week for 8 week<br>course, 3 courses<br>per year.                                     | Night pain (before/after<br>treatment): GPC<br>$2.4\pm2.9/0.4\pm0.69$ vs.<br>placebo $2.1\pm1.58/1.9$<br>$\pm0.83$ , p <0.001.<br>Results comparable for<br>day pain (p <0.01) and<br>joint mobility (p<br><0.005). Time to walk<br>10 meters: GPC<br>$21.8\pm6.88/18.0\pm4.86$<br>vs. 24.1 $\pm7.31/$<br>23.9 $\pm3.3$ seconds, p<br><0.001. No adverse<br>effects reported                                                             | "[G]lycosaminoglycan-<br>peptide complex<br>('Rumalon') offers not<br>only an effective but<br>also a well-tolerated<br>form of treatment<br>which can be used to<br>replace or supplement<br>non-steroidal anti-<br>inflammatory drugs,<br>particularly in long-<br>term therapy." | Co-interventions<br>uncontrolled.<br>Therapy requires<br>72 injections per<br>year.                                                                                                                |

### **PROLOTHERAPY INJECTIONS**

Prolotherapy injections attempt to address a theoretical cause or mechanism for chronic pain. This therapy involves repeated injections of irritating, osmotic, and chemotactic agents (e.g., dextrose, glucose, glycerin, zinc sulphate, phenol, guaiacol, tannic acid, pumice flour, sodium morrhuate) combined with an injectable anesthetic agent to reduce pain, into back structures, especially ligaments, with the theoretical construct that it will strengthen these tissues.

Recommendation: Prolotherapy Injections for Acute, Subacute, or Chronic Hip Pain Prolotherapy injections are not recommended for treatment of acute, subacute, or chronic hip pain.

### Strength of Evidence – Not Recommended, Insufficient Evidence (I)

### Rationale for Recommendation

There are no quality studies of prolotherapy injections for treatment of patients with hip pain. The highest quality evidence for treatment of other conditions has shown no benefit of prolotherapy injections.(753) Prolotherapy injections are invasive and have a stated purpose of causing irritation and have reported adverse consequences (see Chronic Pain chapter). These injections are invasive, have adverse effects, and are costly. There are other treatments with documented efficacy available for treatment of these patients.

### Evidence for the Use of Prolotherapy Injections

There are no quality studies evaluating the use of prolotherapy injections for hip pain.

### **BOTULINUM INJECTIONS**

Botulinum injections have antinociceptive properties and have been used to produce muscle paresis.(754-757) These injections have primarily been used for non-occupational conditions such as cervical dystonia, (758) strabismus, blepharospasm, (759) and severe primary axillary hyperhidrosis. (759, 760) In the hip region, there are treatments that have been used mainly for children with spasticity due to cerebral palsy.(761-763) These injections are thought to directly treat a taut muscle band and to have analgesic properties.(755-757)

Recommendation: Botulinum Injections for Hip Osteoarthrosis or Other Hip Disorders There is no recommendation for or against the use of botulinum injections for hip osteoarthrosis or other hip disorders.

### Strength of Evidence – No Recommendation, Insufficient Evidence (I)

### Rationale for Recommendation

These costly injections have resulted in deaths. (764) There are other treatment strategies with documented efficacy.

### Evidence for the Use of Botulinum Injections

There are no quality studies evaluating the use of Botulinum toxin A for treating hip osteoarthrosis or other hip disorders.

### PRE-OPERATIVE AUTOLOGOUS BLOOD DONATION

Autologous blood donation has been used to attempt to reduce risks of bloodborne pathogen transmission in the event a blood transfusion is required. (765-775)

### Recommendation: Pre-operative Autologous Blood Donation

#### There is no recommendation for or against the use of pre-operative autologous blood donation.

Strength of Evidence – No Recommendation, Insufficient Evidence (I)

#### Rationale for Recommendation

There is one moderate-quality trial suggesting autologous blood donation is ineffective in healthy patients undergoing hip arthroplasty. (766) More transfusions are required for those who have donated blood preoperatively and the costs are higher without measurable benefits. However, there are certain clinical scenarios in which pre-operative autologous blood donation may be beneficial, and the patient's age and health status needs to be considered. Therefore, there is no recommendation for or against the use of preoperative autologous blood donation.

Evidence for the Use of Pre-operative Autologous Blood Donation There is 1 moderate-quality RCT incorporated in this analysis.

| Author/Year<br>Study Type | Score<br>(0-11) | Sample<br>Size | Comparison<br>Group                    | Results                                 | Conclusion                  | Comments                            |
|---------------------------|-----------------|----------------|----------------------------------------|-----------------------------------------|-----------------------------|-------------------------------------|
| Billote<br>2002           | 7.0             | N = 96         | Autologous blood<br>donation (2 units, | Hemoglobin levels<br>lower on admission | "Preoperative<br>autologous | Results suggest<br>autologous blood |
|                           |                 | Patients       | last donation at                       | (129±13g/ L vs.                         | donation provided           |                                     |

#### Copyright© 2016 Reed Group, Ltd.

scheduled for primary THR least 2 weeks before surgery) vs. no donation prearthroplasty. All treated with FeSO4 325mg BID. 138±12g/L, p <0.05) as well as different in the recovery room; 54/54 (100%) nondonors no transfusions vs. 13/42 (31.0%) donors. no benefit for nonanemic patients undergoing primary total hip replacement surgery." as conducted in this trial and costs were \$758 higher per patient for this population.

# GLUTEUS MEDIUS TENDINOSIS AND TEARS ("ROTATOR CUFF OF THE HIP"), TROCHANTERIC BURSITIS AND GREATER TROCHANTERIC PAIN SYNDROME

Gluteus medius tendinosis or tears, trochanteric bursitis, and greater trochanteric pain syndrome are a constellation of symptoms and signs that have overlap. They parallel shoulder tendinoses and subacromial bursitis, although they have not been shown to have a direct mechanistic parallel between the hip and shoulder. These entities are increasingly recognized as significant causes of hip pain and morbidity.(49, 182, 186, 192, 193, 776-778) However, similar to the shoulder, many cases of bursitis may actually be manifestations of gluteus medius tendinosis.(182) As with the shoulder, it appears that bursitis does not generally occur without some tendinosis also present.(182) The gluteus medius tendon is the structural analog of the supraspinatus tendon; the degenerative pathophysiology is comparable. Thus, the entity has been considered analogous to "rotator cuff" of the hip.(182, 194, 779-781)

Risk factors are not defined. Purported factors associated with tendon ruptures have generally included age, trauma, fractures, diabetes mellitus, obesity, anabolic steroid use, renal failure, hyperparathyroidism, dystrophic calcification, rheumatoid arthritis, systemic lupus erythematosus, and gout. (40, 777) Also comparable with the shoulder, most cases appear to be partial tears and not related to acute specific trauma. (182, 782, 783)

There are no quality studies of diagnostic testing and diagnostic strategies are somewhat unclear.(47, 69, 191) Patients with trochanteric bursitis are usually treated without diagnostic testing. Tests for gluteus medius tears usually involve x-rays and MRI. There are no quality studies of gluteus medius tendinosis, tears or trochanteric bursitis other than for glucocorticosteroid injections.

1. Recommendation: Glucocorticosteroid Injections for Acute, Subacute, or Chronic Trochanteric Bursitis, Greater Trochanteric Pain Syndrome and Gluteus Medius Tears with Accompanying Clinical Bursitis

Trochanteric glucocorticosteroid injections are recommended as a treatment option for acute, subacute, or chronic trochanteric bursitis, greater trochanteric pain syndrome, and gluteus medius tears with accompanying clinical bursitis.

*Indications* – Symptoms of trochanteric bursitis of at least a couple weeks with prior treatment that has included NSAIDs or acetaminophen and avoidance of aggravating activities.

*Dose* – The two quality studies used either: 1) methylprednisolone 60mg plus 2.5mL 0.5% bupivacaine;(784) or 2) betamethasone plus lidocaine and suggested better outcomes with higher doses.(785) The higher quality study had no placebo control. However, there are multiple glucocorticosteroid medications and no head-to-head comparisons between different medications.

*Frequency/Duration* – Each injection should be scheduled separately and the effects of each evaluated before additional injections are scheduled rather than scheduling a series of 3 injections. The most tender location is recommended be targeted(784) and fluoroscopic guidance is not necessary for an initial injection,(784) although it may be a more reasonable option for a second injection if the first injection is unsatisfactory.

*Indications for Discontinuation* – Resolution of symptoms, decrease in symptoms to a tolerable level or failure to gain significant benefits.

Strength of Evidence – Recommended, Evidence (C)

 Recommendation: NSAIDs or Acetaminophen for Acute, Subacute, or Chronic Trochanteric Bursitis, Greater Trochanteric Pain Syndrome and Gluteus Medius Tears with Accompanying Clinical Bursitis NSAIDs or acetaminophen are recommended for treatment of acute, subacute, or chronic trochanteric bursitis, greater trochanteric pain syndrome and gluteus medius tears with accompanying clinical bursitis (see NSAID frequency, dose discontinuation).

Strength of Evidence – Recommended, Insufficient Evidence (I)

3. Recommendation: Limitations for Greater Trochanteric Bursitis/Greater Trochanteric Pain Syndrome Limitations may be helpful in the acute phase of greater trochanteric bursitis/greater trochanteric pain syndrome.

### Strength of Evidence – Recommended, Insufficient Evidence (I)

4. Recommendation: Progressive Exercise for Acute, Subacute, Chronic Trochanteric Bursitis, Greater Trochanteric Pain Syndrome and Gluteus Medius Tears with Accompanying Clinical Bursitis Progressive, eccentric exercise is recommended for gluteus medius tendinosis and tears, particularly to strengthen the lateral hip musculature (see exercise frequency, dose, discontinuation information).

Strength of Evidence – Recommended, Insufficient Evidence (I)

 Recommendation: Surgical Repair for Gluteus Medius Tears Surgical repair is recommended for gluteus medius tears that are non-responsive to medical management.

### Strength of Evidence – Recommended, Insufficient Evidence (I)

### Rationale for Recommendations

Trochanteric bursitis has been treated with glucocorticosteroid injections.(784-790) There are only two quality studies of glucocorticosteroid injection for trochanteric bursitis. The high quality study had no placebo control; however, it provided quality evidence that fluoroscopic guidance was not necessary for an initial injection. The moderate-quality trial compared 3 different doses of betamethasone, however, without a placebo control. As the probability of clinical response was higher in the higher dose group,(785) there is some evidence these injections are likely effective compared with placebo and are recommended. These injections are invasive, have a low risk of adverse effects, but are relatively costly. They are an option for treatment of hip patients particularly after inadequate results from NSAID trials, exercise or other conservative interventions.

| There is 1                | There is 1 high- and 1 moderate-quality RCT incorporated in this analysis. |                                   |                                                                                        |                                                                                                                                                                                                                                                                                                  |                                                                                                                                                   |                                                                                                         |  |  |  |
|---------------------------|----------------------------------------------------------------------------|-----------------------------------|----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|--|--|--|
| Author/Year<br>Study Type | Score<br>(0-11)                                                            | Sample<br>Size                    | Comparison Group                                                                       | Results                                                                                                                                                                                                                                                                                          | Conclusion                                                                                                                                        | Comments                                                                                                |  |  |  |
|                           | Trochanteric Bursal Injections                                             |                                   |                                                                                        |                                                                                                                                                                                                                                                                                                  |                                                                                                                                                   |                                                                                                         |  |  |  |
| Cohen<br>2009             | 8.5                                                                        | N = 65<br>Greater                 | Fluoroscopic vs. blind<br>glucocorticoid<br>injections with 60mg                       | Success rate at 1 month<br>only in 7(22%) blind vs. 4<br>(13%) fluoro guided and 3                                                                                                                                                                                                               | "Although using<br>fluoroscopic<br>guidance                                                                                                       | Data support blind<br>injection, at least for<br>the first injection.                                   |  |  |  |
| RCT                       |                                                                            | trochanteri<br>c pain<br>syndrome | depomethylprednisolo<br>ne plus 2.5mL 0.5%<br>bupivacaine into most<br>tender location | month success in 15(47%)<br>blind vs. 13 (41%) fluoro<br>guided, $p = 0.38$ . Pain at<br>rest at 3 months 2.6 vs.<br>1.9, $p = 0.34$ ; pain with<br>activity 4.8 vs. 4.7, $p =$<br>0.90. Post-hoc analyses,<br>no differences in<br>successful injections by<br>age, gender, BMI, opioid<br>use. | dramatically<br>increases<br>treatment costs for<br>greater<br>trochanteric pain<br>syndrome, it does<br>not necessarily<br>improve<br>outcomes." | Data support efficacy<br>even though only<br>37% of first attempts<br>enter bursa. No<br>placebo group. |  |  |  |
| Shbeeb                    | 4.0                                                                        | N = 83                            | Betamethasone 6mg                                                                      | Percentages improving                                                                                                                                                                                                                                                                            | "Corticosteroid and                                                                                                                               | No placebo control.                                                                                     |  |  |  |

Evidence for the Use of Glucocorticosteroid Injection for Trochanteric Bursitis

| 1996 |            | vs. 12mg vs. 24mg all  | after injection: 1 week    | lidocaine injection | Range of doses used   |
|------|------------|------------------------|----------------------------|---------------------|-----------------------|
|      | Trochanter | i mixed with 4mL 1%    | (77.1%), 6 weeks (68.8%),  | for trochanteric    | corresponding to      |
| RCT  | c bursitis | lidocaine. Fluoroscopy | 6 months (61.3%). Those    | bursitis is an      | dose-response         |
|      |            | not used.              | receiving 24mg more likely | effective therapy   | relationship suggests |
|      |            |                        | to have improvement (p     | with prolonged      | trochanteric bursal   |
|      |            |                        | <0.012).                   | benefit."           | injections at least   |
|      |            |                        |                            |                     | somewhat              |
|      |            |                        |                            |                     | efficacious.          |

# FEMOROACETABULAR IMPINGEMENT, "HIP IMPINGEMENT," AND LABRAL TEARS

Impingement, a pathophysiological theoretical construct, is thought to involve either abnormalities of the femoral head ("cam impingement") or acetabulum ("pincer impingement"), depending on the appearance of the hip joint.(47) Developmental abnormalities are thought to result in the condition, including a mild slipped capital femoral epiphysis.(166, 791-796) The condition is also believed to develop and cause hip pain in athletes, e.g., hockey players(797) and those involved in kicking activities such as martial arts.(48, 798) The rationale behind an athletic injury to the labrum is thought to involve a slipped capital femoral epiphysis and/or repeated deep flexion, abduction and internal rotation.(166) Slipped capital femoral epiphysis, fractures and osteonecrosis are thought to be causes due to altered anatomical orientation.(47, 791, 792, 795) A second group of patients have this condition after arthroplasty.(166, 799)

Femoroacetabular impingement has been theorized to increase risk for hip osteoarthrosis.(38-48) This theory includes a corollary that early identification could lead to successfully surgically intervention, e.g., clearing hip motion and alleviating femoral abutment.(166, 800, 801) Thus the process of osteoarthrosis delayed or aborted(38, 185) with some estimates of delaying arthroplasty by 20 years.(69) However, there is no quality epidemiological evidence in support of this theory or corollary.(45) More data are being collected to support these theories beginning with large case series.(38)

Labral tears could be considered as distinct entities. Some authors believe these are the most common cause of mechanical hip joint symptoms including popping, catching and locking.(153, 802, 803) Yet, labral tears are present in over 58-90% of middle-aged to older hips studied,(804-806) most often in conjunction with other degenerative phenomenon,(153, 804, 807, 808) including degenerative joint disease and tendinosis/ impingement.(44, 48, 69, 809-811) Most tears are reportedly in the anterosuperior part of the labrum.(158, 181, 805, 812) The pathophysiology of labral tears is controversial, particularly as these appear to be more analogous to a disease where precipitating events are either seemingly minor or absent.(48, 153) Theories for potential causes include age-related degeneration similar to other cartilaginous structures, degenerative articular surfaces, acute trauma, and stereotypical use.(48, 813)

Patients with hip impingement typically present with anterior groin pain exacerbated by hip flexion.(48, 166) Pain usually increases with prolonged sitting, difficulty getting in and out of an automobile or chair, and walking up slopes.(48, 166, 182) An antalgic gait may be present, along with severe trochanteric tenderness, reduced range of motion and weak abduction for acute significant tendon tears.(777) Lateral hip pain with radiation to the thigh may occur, as well as buttock or groin pain.(182, 782, 783) Passive hip range of motion is normal, but internal rotation of a 90° flexed hip is painful and the lateral trochanter is tender.(182, 814) Pain may also be reproduced with figure-four or flexed-abducted externally rotated (FABER) position. The distance between the lateral genicular line and the examination table is usually increased.(166) There may be limitation in internal rotation in the affected hip.(48) Resisted abduction provokes pain as does pain when standing on the affected leg for at least 30 seconds.(182) A minority of patients may be mistakenly diagnosed with "low back pain"(182) as that clinical "diagnostic" categorization has frequently aggregated lumbar, lumbosacral and gluteal pain. There are no quality studies comparing diagnostic testing and thus diagnostic strategies are somewhat unclear. Diagnostic tests for chronic hip pain thought to be femoroacetabular impingement or labral tears usually include x-rays and MR arthrography.(183, 196, 815-817)

 Recommendation: NSAIDs, Local Glucocorticosteroid Injections and/or Physical or Occupational Therapy for Treatment of "Hip Impingement" or Labral Tears
 NSAIDs, local glucocorticosteroid injections, and/or physical or occupational therapy are recommended for treatment of "hip impingement" or labral tears (37, 38, 45, 818, 819) (see NSAID frequency, dose discontinuation information, as well as exercise frequencies and information inferred from treatment of osteoarthrosis).

### Strength of Evidence – Recommended, Insufficient Evidence (I)

### Rationale for Recommendation

A chronic or relapsing course is more common in elderly patients.(182) There are no quality studies that address treatment for femoroacetabular/hip impingement. A trial of conservative therapy has been recommended.(46, 158, 795, 800, 802, 820) Reduction, modification, or elimination of activities that significantly provoke symptoms is also recommended.(45, 46, 48, 795, 800, 818)

2. Recommendation: Surgical Repair for "Hip Impingement" or Labral Tears Arthroscopic surgery or open repair is recommended for "hip impingement" or labral tear cases that fail conservative management.

Strength of Evidence – Recommended, Insufficient Evidence (I)

### Rationale for Recommendation

Surgical repairs have been attempted with reportedly successful results in case series.(182, 193, 779, 821) Arthroscopic surgery(69, 151, 156, 158, 160, 166, 802, 809, 818, 822-827) or open repair(800, 801, 809, 828, 829) are recommended for cases that fail conservative management.(45, 818, 830)

There are many different surgical procedures that have been utilized to attempt to address the hip pathology that is thought to be producing symptoms,(800) including debridement(801, 818) and or osteoplasty of the femoral head(800) acetabular osteoplasty,(800) resection or repair of labral tears,(165, 166, 791, 809, 820) labral debridement(795) limbectomy,(162) trochanteric flip osteotomy; peri-acetabular osteotomy,(831) triple osteotomy.(162, 165, 166, 791, 795, 800, 801, 809, 818, 820, 831) Surgical procedures for hip dysplasia have included shelf osteoplasty, femoral varus osteotomy, and acetabular osteotomy.(46, 69, 831, 832) There are no quality studies to address efficacy of either open or arthroscopic repairs, or comparative studies between these approaches.(45) There is controversy regarding which approach is preferred.(45, 46, 800) A case series reported better results from arthroscopy among patients with mechanical symptoms and without osteoarthrosis.(160) Arthroscopy has been used to diagnose and potentially plan subsequent mini or open surgical repair.(46, 48, 833)

# OSTEONECROSIS

Osteonecrosis or avascular necrosis is a complex pathological process involving increased bone marrow pressure, ischemia with loss of vascular supply to the bone with subsequent bone death initiated by vascular occlusion (see Table 8 for stages).(174, 834, 835) It tends to occur in areas of the body with more tenuous blood supply, including the heads of the femur, humerus, or other ends of long bones, although it can occur in any bone. As the process advances, the bone collapses. Some cases are considered occupational disorders, particularly in the setting of dysbarism (atmospheric compression/decompression) workers including divers and other workers in compressed air atmospheres who experience impaired blood supply to the femur due to nitrogen gas in the blood during excessively rapid decompression. Major trauma is another reported cause.(174) Whether stereotypical, forceful use of the joint as a risk factor is unknown. Other risks appear to include diabetes mellitus, glucocorticosteroid use(124, 836-840) or endogenous excess,(840) arteriovascular disease,(124, 174, 841) hyperlipidemia sickle cell anemia,(838) coagulopathies,(840) Gaucher's disease,(124, 174, 837,

838) HIV,(839, 842) post-irradiation,(124, 174, 838) alcoholism,(124, 174, 838-841) and smoking.(124, 174, 836-842) Many cases are idiopathic.(174, 843) In the quality RCTs, alcoholism is often the predominant cause.(177, 844)

| Stage      | Clinical | X-ray Findings                                                    | Bone Scan |
|------------|----------|-------------------------------------------------------------------|-----------|
| Descriptor | Features |                                                                   |           |
| 0          | 0        | Normal                                                            | Normal    |
| 1          | 0        | Normal                                                            | Abnormal  |
| П          | +        | Sclerosis and/or cyst formation                                   | Abnormal  |
| Ш          | ++       | Subchondral collapse (crescent sign) without flattening           | Abnormal  |
| IV         | ++       | Flattening of femoral head without joint narrowing, or acetabular | Abnormal  |
|            |          | involvement                                                       |           |
| V          | +++      | Flattening of femoral head with joint narrowing and/or acetabular | Abnormal  |
|            |          | involvement                                                       |           |
| VI         | +++      | Advanced degenerative changes                                     | Abnormal  |

### Table 8. Steinberg Stages of Osteonecrosis

Adapted from Ficat RP. Idiopathic bone necrosis of the femoral head. Early diagnosis and treatment. *J Bone Joint Surg* [*Br*]. 1985;67(1):3-9 and Steinberg ME. Chapter 5: Management of Avascular Necrosis of the Femoral Head – An Overview. *Instr Course Lect.* 1988;37:41-50.

There appears to be a clinically silent, pre-clinical state that is most frequently identified in the asymptomatic hip.(174, 845) Patients present with either acute or insidious onset of persistent, hip pain that may radiate to the thigh. Pain is often worse at night and may be somewhat worse with activity. Hip range of motion is typically limited. Pain and range of motion worsen as the degree of impairment progresses. The stages are not inexorable, rather there appears to be potential for recovery at any of the early stages.(174)

The focus on early treatment of a mild to moderate case is to identify and treat reversible risk factors. Reduction or elimination of activities that significantly provoke symptoms including avoidance of dysbaric exposures is recommended. Moderately severe or severe cases generally receive prompt surgical treatment. Multiple surgical procedures have been used to treat osteonecrosis including core decompression,(846-849) rotational or simple varus osteotomy,(846, 850, 851) vascularized and devascularized bone grafting,(849, 852) cementation,(853-856) muscle pedicle grafting,(857) trabecular rod implementation, autologous bone marrow transplantation,(858) femoral head resurfacing,(859, 860) hemiarthroplasty and arthroplasties.(843, 846-867) Electrical stimulation is also used, although there are no quality studies of the procedure.(868)

1. Recommendation: Avoidance of Dysbaric Exposures or Other Symptom-provoking Activities or Other Risk Factors for Treatment of Osteonecrosis

Reduction or elimination of activities that significantly provoke osteonecrotic symptoms, including avoidance of dysbaric exposures, or control of diabetes mellitus, elimination or reductions in glucocorticosteroid use, and/or elimination of alcohol and tobacco products is recommended.

Strength of Evidence – Recommended, Insufficient Evidence (I)

2. Recommendation: Non-weight-bearing Activities for Treatment of Osteonecrosis There is no recommendation for or against the institution of non-weight-bearing activities for patients with osteonecrosis.

Strength of Evidence - No Recommendation, Insufficient Evidence (I)

3. Recommendation: Aggressive Targeting of Coronary Artery Disease Risk Factors for Treatment of Osteonecrosis Aggressive targeting of all coronary artery disease risk factors is recommended for treatment of osteonecrosis.

Strength of Evidence – Recommended, Insufficient Evidence (I)

 Recommendation: Bisphosphonates for Mild to Moderate Cases of Osteonecrosis Bisphosphonates are recommended particularly for mild to moderate cases of osteonecrosis (see dose, frequency, discontinuation information).

Strength of Evidence – **Recommended**, Evidence (C)

 Recommendation: NSAIDs for Treatment of Osteonecrosis NSAIDs are recommended for treatment of osteonecrosis.

Strength of Evidence – Recommended, Insufficient Evidence (I)

 Recommendation: Glucocorticosteroids for Treatment of Osteonecrosis Glucocorticosteroids, including by injection, are not recommended in early disease stages for treatment of osteonecrosis.

Strength of Evidence – Not Recommended, Insufficient Evidence (I)

Recommendation: Hyperbaric Oxygen for Treatment of Osteonecrosis
 There is no recommendation for or against the use of hyperbaric oxygen for treatment of
 osteonecrosis.

Strength of Evidence – No Recommendation, Insufficient Evidence (I)

8. Recommendation: Core Compression Surgery for Treatment of Osteonecrosis Core compression surgery is recommended for treatment of osteonecrosis.

Strength of Evidence – Recommended, Insufficient Evidence (I)

 Recommendation: Arthroplastic Surgery for Treatment of Osteonecrosis Arthroplasty is strongly recommended for treatment of osteonecrosis with collapse or unresponsive to non-operative treatment.

Strength of Evidence – Strongly Recommended, Evidence (A)

### Rationale for Recommendations

There are few quality studies evaluating treatments for osteonecrosis. There is no quality evidence regarding non-weight-bearing status which is sometimes instituted for months(844, 865, 869) and thus, there is no recommendation for or against its use. Control of diabetes mellitus, elimination or reductions in glucocorticosteroid use, and elimination of alcohol and tobacco products are all recommended at the time the diagnosis is considered. As there is evidence statins reduce risk,(836) the composite data suggest aggressive targeting of all coronary artery disease risk factors is needed and recommended.

Bisphosphonates have been evaluated in one quality study. Results suggest large differences between bisphosphonates and no treatment with an approximately 60% difference in need for surgery over 28 months (see Figure 14),(870, 871) thus bisphosphonates are recommended particularly for mild to moderate cases. Other treatments have included nonsteroidal anti-inflammatory medications which are recommended (see NSAIDs for dose, frequency, discontinuation information). Glucocorticosteroids including by injection are not recommended in early disease stages as there is evidence that systemic glucocorticoid exposures increase risk for the disorder, but there may be indications in selected patients with more advanced disease. Hyperbaric oxygen has been used to treat osteonecrosis of the jaw,(872) but a study following osteonecrosis of the hips of children from chemotherapeutics found no improvements with hyperbaric oxygen; thus, there is no recommendation for or against its use. Careful observation of patients for results of treatment with a bisphosphonate is necessary and threshold for prompt surgical intervention is low, particularly among those with failure of bisphosphonate, contraindications, intolerance, progression or development of collapse.

Core decompression with or without bone grafts is the surgical procedure that has been most utilized to attempt to treat osteonecrosis.(174, 847, 873-876) However, the two moderate-quality studies that are applicable to adult populations(177, 876) conflict(847) (see Figures 15 and 16). The primary purpose of the procedure is to relieve the elevated intramedullary pressure that stagnates the microvascular circulation.(174) In a case series, results were good in 94% of Stage I and 82% in Stage II. However, a case series cannot prove superior results with earlier treatment as results may mislead through spectrum and other biases. Though the two quality studies of a coring procedure conflict, core decompression is recommended.

Once the head of the femur collapses, the treatment has often included arthroplasty, although early case series reported high revision rates of up to 37% that have more recently declined to approximately 2 to 9%(855, 877-887) with improvements initially attributed to cementation techniques with subsequent reductions in revisions attributed to cementless techniques.(843) A few of the quality studies regarding arthroplasty were performed for osteonecrosis, although none solely included those patients.(855, 888, 889) The prognosis appears to be reasonably good in more recent studies of these patients and arthroplasty is strongly recommended.

Figure 14. The Kaplan-Meier survivorship curves, with total hip replacement as the end point, show the survival rate of hips with Steinberg stage-II and stage-III osteonecrosis in the alendronate group and the control group versus observation time.



The mean rate of survival of the hips in the alendronate group at 26 months was 93.3% (95% confidence interval, 86.9% to 99.7%). The mean rate of survival of the hips in the control group at 12, 18, and 26 months was 72% (95% confidence interval, 63% to 81%), 51.8% (95% confidence interval, 42.2% to 61.4%), and 35.8% (95% confidence interval, 25.8% to 45.8%), respectively. At 24 months, 29 hips (20 patients) in the study group and nine hips (seven patients) in the control group had survived. Of the five hips (four patients) in the alendronate group that were observed for 28 months, four hips (three patients) had survived. Of the four hips in the control group that were observed for 28 months, two hips had survived.

Lai K-A, Shen W-J, Yang C-Y, Shao C-J, Hsu J-T, Lin R-M. The use of alendronate to prevent early collapse of the femoral head in patients with nontraumatic osteonecrosis. A randomized clinical study. *J Bone Joint Surg Am.* 2005;87:2155-9. Reprinted with permission from the Journal of Bone and Joint Surgery American.

Figure 15. Survival Estimates for Hips with Stage I ON: Core Decompression versus Conservative Therapy (p = 0.14)



Copyright© 2016 Reed Group, Ltd.

Median survival: operative > 27 months; nonoperative = 11 months.

Stulberg BN, Davis AW, Bauer TW, Levine M, Easley K. Osteonecrosis of the femoral head. A prospective randomized treatment protocol. *Clin Orthop Related Res.* 1991;268:140-51. Reprinted with permission from Lippincott Williams & Wilkins.

# Figure 16. Survival Estimates for Hips with Stage II ON: Core Decompression versus Conservative Therapy (p = 0.048)



Median survival: operative > 46 months; non-operative = six months.

Stulberg BN, Davis AW, Bauer TW, Levine M, Easley K. Osteonecrosis of the femoral head. A prospective randomized treatment protocol. *Clin Orthop Related Res.* 1991;268:140-51. Reprinted with permission from Lippincott Williams & Wilkins.

#### Evidence for Hip Osteonecrosis

There are 6 moderate-quality RCTs or randomized crossover trials(177, 870, 876, 890-892) incorporated in this analysis. There are 2 low-quality RCTs(844, 893) in Appendix 2. See also evidence table of studies of arthroplasties.

| Author/Year        | Score  | Sample                                                                                            | Comparison                                                                                                                                                                   | Results                                                                                                                                                                                                                                                                                           | Conclusion                                                                                                                                                                                                                | Comments                                                                                                                                                                                                                      |
|--------------------|--------|---------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Study Type         | (0-11) |                                                                                                   |                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                           |                                                                                                                                                                                                                               |
| Stulberg<br>1991   | 4.5    | N = 36<br>patients with                                                                           | Coring<br>procedure                                                                                                                                                          | Coring procedure superior to conservative                                                                                                                                                                                                                                                         | "Core<br>decompression                                                                                                                                                                                                    | Mean age 39; mean follow-up 27 months.                                                                                                                                                                                        |
| RCT                |        | 55 affected<br>hips<br>Mainly<br>Stages I, II<br>or III<br>osteonecrosi<br>s (2 with<br>stage IV) | (partial weight<br>bearing) vs.<br>conservative<br>treatment<br>(nonweight<br>bearing for 6<br>plus weeks)                                                                   | treatment for stratified<br>analyses of each Stage<br>(I-III). No further<br>intervention in [Core<br>(%)/Conservative (%)]:<br>Stage I<br>[7(70%)/1(20%)], Stage<br>II [5(71.4)/0(0)], Stage<br>III [8(100%)/1(10%)].                                                                            | produced better<br>results than<br>conservative<br>treatment in the<br>early stages of<br>(osteonecrosis)."                                                                                                               | Higher intraosseous<br>pressures in<br>decompression group<br>(52 vs. 44mmHg) may<br>bias against coring.<br>Data suggest core<br>decompression superior<br>to conservative<br>treatment for Stages I, II<br>and III.         |
| Koo<br>1995<br>RCT | 4.5    | N = 33 with<br>37 hips<br>Most Stage I<br>osteonecrosi<br>s                                       | Core<br>decompression<br>(partial weight<br>bearing) vs.<br>conservative<br>treatment<br>(nonweight<br>bearing with<br>crutches until<br>pain resolved<br>and<br>analoesics) | At second assessment,<br>9/10 (90%) symptomatic<br>hips in coring group had<br>pain relief vs. 25%<br>conservatively-treated<br>(p = 0.04). At minimum<br>24 months, 14/18 (78%)<br>core-decompressed<br>hips vs. 15/19 (79%)<br>non-operated hips<br>developed femoral head<br>collapse n = 0.79 | "Core<br>decompression<br>may be effective tin<br>symptomatic relief,<br>but is of no greater<br>value than<br>conservative<br>management in<br>preventing collapse<br>in early<br>osteonecrosis of<br>the femoral head " | Weight bearing status<br>differed between the 2<br>groups. Data suggest<br>core procedure resulted<br>in early symptom<br>reduction, but not more<br>effective than<br>conservative treatment<br>of stage I<br>osteonecrosis. |

| Neumayr<br>2006<br>RCT                                                                | 4.5 | N = 46<br>patients with<br>46 hips<br>Stages I, II,<br>or III osteo-<br>necrosis; all<br>sickle cell<br>anemia | Core<br>decompression<br>plus physical<br>therapy vs<br>physical<br>therapy alone<br>(limited weight<br>bearing,<br>stretching,<br>adductor and<br>other muscle<br>strengthening). | At mean 3 years,<br>survival 82% of<br>decompression vs. 86%<br>PT (NS). Mean<br>improvement in Harris<br>Hip score 18.1 for<br>coring vs. 15.7 PT (NS).<br>No differences in hip<br>survival across stages I-<br>III (92, 82, 82%).                                                                                                                                                                                                                                                                                                                                                        | "[P]hysical therapy<br>alone appeared to<br>be as effective as<br>hip core<br>decompression<br>followed by<br>physical therapy in<br>improving hip<br>function and<br>postponing the<br>need for additional<br>surgical<br>intervention at a<br>mean of three<br>years after<br>treatment." | Less advanced disease<br>PT group (stage III 33%<br>vs. 59%) and non-study<br>hips more disparate at<br>baseline (19% vs. 47%)<br>suggest randomization<br>failure, thus conclusions<br>difficult to draw.<br>Generalizability from<br>sickle cell anemia to<br>working populations or<br>others unclear. |
|---------------------------------------------------------------------------------------|-----|----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Kim                                                                                   | 6.5 | N = 52                                                                                                         | Zirconia                                                                                                                                                                           | Mean polvethylene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | "The mean amount                                                                                                                                                                                                                                                                            | Volumetric wear data                                                                                                                                                                                                                                                                                      |
| J Bone Joint<br>Surg Am<br>2005;87(8):<br>1769-76<br>Randomized<br>Crossover<br>Trial |     | All<br>osteonecrosi<br>s; all<br>bilateral<br>arthroplastie<br>s                                               | femoral head<br>vs. cobalt-<br>chromium<br>head.                                                                                                                                   | wear rate was 0.08<br>mm/year with zirconia<br>vs. 0.17 mm/year with<br>cobalt-chromium (p =<br>0.004). Mean volumetric<br>polyethylene wear was<br>350.8 mm <sup>3</sup> with zirconia<br>heads vs. 744.7 mm <sup>3</sup><br>with cobalt-chromium (p<br>= 0.004). Two zirconia<br>stems revised due to<br>loosening vs. no other<br>stems/cups revised.<br>Roughness Ra values<br>of 2 explanted zirconia<br>heads 15.87 and<br>17.35nm vs.<br>unimplanted zirconia<br>heads of 5.31 and<br>5 48nm                                                                                         | and rate of<br>polyethylene wear<br>were significantly<br>lower in the hips<br>with a zirconia<br>head than they<br>were in the hips<br>with a cobalt-<br>chromium head,<br>presumably<br>because the<br>zirconia heads had<br>a smoother<br>articulating<br>surface."                      | support the zirconia<br>implant vs. the cobalt-<br>chromium, but only<br>revisions were 2<br>zirconia stems.<br>Loosening observed to<br>have occurred in those<br>who were not active vs.<br>others doing farm work<br>or playing tennis<br>(despite advice to avoid<br>high impact).                    |
| Seyler<br>2006<br>RCT                                                                 | 4.0 | N = 210<br>OA or<br>osteonecrosi<br>s                                                                          | Stratified<br>enrollments for<br>OA and<br>osteonecrosis.<br>Compared<br>alumina-on-<br>alumina vs.<br>cobalt-<br>chromium-on-<br>polyethylene<br>surfaces.                        | Seven-year survival<br>probability 95.5% for<br>osteonecrotic hips;<br>89.4% for OA with<br>alumina-on-alumina vs.<br>92.3% for ON and<br>92.9% for OA with<br>cobalt-chromium-on-<br>polyethylene. Harris hip<br>scores (baseline/ 6<br>months/5 years): ON AA<br>( $45.8\pm12.3/93.8\pm8.5/97$ .<br>$5\pm4.0$ ) vs. OA AA ( $49.7\pm$<br>$12.3/95.3\pm8.5/95.4\pm10.2$ )<br>vs. ON CCP<br>( $42.2\pm13.9/$<br>90.4 $\pm11.4/96.5\pm8.0$ ) vs.<br>OA CCP ( $48.81\pm3.3/$<br>95.3 $\pm6.6/97.3\pm4.0$ ), p =<br>0.85 between groups.<br>No differences in<br>complications or<br>revisions | "The resultswere<br>comparable. The<br>low revision rate for<br>the alumina-on-<br>alumina bearing is<br>encouraging and<br>offers a promising<br>option for younger,<br>more active<br>patients who have<br>this challenging<br>disease."                                                  | Long-term study of 7<br>years. Unequal sized<br>groups due to<br>modification of study<br>midway. Data suggest<br>comparable outcomes.                                                                                                                                                                    |
|                                                                                       |     |                                                                                                                | Bisphosp                                                                                                                                                                           | honates for Osteonecrosi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | İS                                                                                                                                                                                                                                                                                          | ·                                                                                                                                                                                                                                                                                                         |
| Lai                                                                                   | 5.0 | N = 40 with                                                                                                    | Alendronate                                                                                                                                                                        | Progression 1+ stage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | "Alendronate                                                                                                                                                                                                                                                                                | Not placebo controlled.                                                                                                                                                                                                                                                                                   |
| 2005                                                                                  |     | 54 nips                                                                                                        | 70mg Q week                                                                                                                                                                        | alendronate 4/29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | appeared to                                                                                                                                                                                                                                                                                 | Results suggest                                                                                                                                                                                                                                                                                           |

| RCT | Stage II or III<br>nontraumatic<br>osteonecrosi<br>s | vs. no<br>treatment for<br>25 weeks. | (13.8%) vs. control<br>20/25 (80.0%), p<br><0.001. Numbers<br>collapsing: 0 vs. 19, p<br><0.001. At least 1<br>surgery for alendronate<br>3/29 (10.3%) patients vs.<br>17/25 (68.0%). Final<br>mean Harris Hip scores | prevent early<br>collapse of the<br>femoral head in the<br>hips with Steinberg<br>stage-II or IIIC<br>nontraumatic<br>osteonecrosis." | treatment prevents<br>collapse of femoral<br>head. |
|-----|------------------------------------------------------|--------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|
|     |                                                      |                                      | 74.4±7.8 vs. 49.2±9.2.                                                                                                                                                                                                |                                                                                                                                       |                                                    |

# HAMSTRING and HIP FLEXOR STRAINS

Hamstring and hip flexor strains are

thought to be true muscular strains (i.e., disrupted myotendinous junctions).(87, 894-896) These problems are usually precipitated by a high force maneuver, including sports injuries in sprinting, football, or soccer,(897-899) with near maximum voluntary contraction capabilities. Prior injury is likely the greatest predictor of future risk. Patients have pain exacerbated by use, stiffness and weakness. The examination findings are tenderness usually at either the muscle origin or insertion (e.g., high versus low hamstring strains) with swelling or large ecchymoses in more severe cases. Some cases involve complete ruptures and require surgical repair. Clinical tests are generally not necessary, although in the more severe cases, evaluation with x-rays and/or MRI are used to evaluate the underlying bony structure as well as the degree of muscle tear as severe, rare cases may require surgery. Treatments may include NSAIDs, heat or cold, ace wraps, work limitations, physical or occupational therapy, and progressive agility, trunk stabilization and icing (PATS).

 Recommendation: X-rays or MRI to Diagnose Hamstring or Hip Flexor Strains X-rays or MRI are recommended to diagnose hamstring or hip flexor strains in more severe cases.

Strength of Evidence – Recommended, Insufficient Evidence (I)

2. Recommendation: NSAIDS for Treatment of Hamstring or Hip Flexor Strains NSAIDS are recommended for treatment of hamstring or hip flexor strains.

Strength of Evidence – Recommended, Insufficient Evidence (I)

Recommendation: Work Limitations for Treatment of Hamstring or Hip Flexor Strains
 Work limitations are recommended for patients with hamstring or hip flexor strains who
 perform high-physical jobs or cannot avoid job tasks thought to have resulted in the strain.
 There is no recommendation for or against work limitations for treatment of most hamstring or
 hip flexor strains.

Strength of Evidence – Recommended, Insufficient Evidence (I) – High-physical demands

Strength of Evidence – No Recommendation, Insufficient Evidence (I) – Most cases

4. Recommendation: Ice or Heat or Wraps for Treatment of Hamstring or Hip Flexor Strains Ice or heat or ace wraps are recommended for treatment of hamstring or hip flexor strains.

Strength of Evidence – Recommended, Insufficient Evidence (I)

5. Recommendation: Bed Rest for Treatment of Hamstring or Hip Flexor Strains Bed rest is not recommended for treatment of hamstring or hip flexor strains.

Strength of Evidence - Not Recommended, Insufficient Evidence (I)

6. Recommendation: Physical or Occupational Therapy for Treatment of Hamstring or Hip Flexor Strains Physical or occupational therapy is recommended for treatment of hamstring or hip flexor strains.

Copyright© 2016 Reed Group, Ltd.

### Strength of Evidence – Recommended, Insufficient Evidence (I)

7. Recommendation: Progressive Agility, Trunk Stabilization and Icing (PATS) for Treatment of Hamstring or Hip Flexor Strains

Progressive agility, trunk stabilization, and icing (PATS) are recommended for treatment of hamstring or hip flexor strains.

### Strength of Evidence – Recommended, Insufficient Evidence (I)

### Rationale for Recommendations

There is one quality study of treatment options for hamstring or hip flexor strains; however, it only addresses exercise; thus nearly all treatment recommendations are empiric. (87, 894) Nonsteroidal antiinflammatory medications are recommended (see NSAIDs for dose, frequency, discontinuation information). Work limitations may be necessary depending on the severity of the condition and the required job demands. Those performing high-physical demand tasks or who have no ability to avoid repeating physically demanding job tasks thought to have resulted in the condition are recommended to have work limitations, but in other cases, there is no recommendation for or against these limitations. Ice and/or heat are recommended as are ace wraps. Bed rest is not recommended due to concern regarding deep venous thrombosis and other adverse effects, although relative rest may be required for many patients. Patients with persisting pain are recommended to have a course of physical or occupational therapy, although compliance long term is a noted problem.(87) Quality evidence suggests stretching and isolated progressive resistance training are not successful compared with progressive agility, trunk stabilization, and icing (PATS),(900) thus PATS is recommended (see exercise for dose, frequency, and discontinuation information).

## Evidence for the Use of PATS for Hamstring Strains

There is 1 moderate-quality RCT incorporated in this analysis. There are 2 low-quality RCTs(87, 901) in Appendix 2.

| Author/Yea<br>r<br>Study Type | Scor<br>e (0-<br>11) | Sample<br>Size                                               | Compariso<br>n Group                                                                                                                                                                  | Results                                                                                                                                                                                                                                                                                                                                                                                                    | Conclusion                                                                                                                                                                                                                                                                                                                                         | Comments                                                                                                                                                                           |
|-------------------------------|----------------------|--------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                               | ,                    |                                                              | I                                                                                                                                                                                     | STST vs. PATS                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                    | <u> </u>                                                                                                                                                                           |
| Sherry<br>2004<br>RCT         | 5.0                  | N = 24<br>Athletes<br>with<br>acute<br>hamstrin<br>g strains | STST (static<br>stretching,<br>isolated<br>progressive<br>hamstring<br>resistance<br>exercise,<br>icing) vs.<br>PATS<br>(progressive<br>agility, trunk<br>stabilization<br>and icing) | Time to return to sports<br>was STST 37.4 $\pm$ 27.6 days<br>vs. PATS 22.2 $\pm$ 8.3 days<br>(p = 0.25). In first 2 weeks<br>after return to sports, re-<br>injury rate significantly<br>greater (p = 0.0034) in<br>STST group [6/11(54.5%)<br>vs. 0/13 (0%)]. After 1<br>year of return to sports,<br>re-injury rate also higher<br>among completers in<br>STST [7/10(70%)] vs.<br>PATS [1/13(7.7%)], p = | "A rehabilitation program<br>consisting of progressive<br>agility and trunk<br>stabilization exercises is<br>more effective than a<br>program emphasizing<br>isolated hamstring<br>stretching and<br>strengthening in<br>promoting return to sports<br>and preventing injury<br>recurrence in athletes<br>suffering an acute<br>hamstring strain." | Small sample<br>size. Data<br>suggest agility<br>and trunk<br>stabilization<br>exercises<br>superior.<br>Reinjury rate<br>also lower in that<br>group both short<br>and long term. |
|                               |                      | acute<br>hamstrin<br>g strains                               | hamstring<br>resistance<br>exercise,<br>icing) vs.<br>PATS<br>(progressive<br>agility, trunk<br>stabilization<br>and icing)                                                           | (p = 0.25). In first 2 weeks<br>after return to sports, re-<br>injury rate significantly<br>greater (p = 0.0034) in<br>STST group [6/11(54.5%)<br>vs. 0/13 (0%)]. After 1<br>year of return to sports,<br>re-injury rate also higher<br>among completers in<br>STST [7/10(70%)] vs.<br>PATS [1/13(7.7%)], p =<br>0.0059.                                                                                   | more effective than a<br>program emphasizing<br>isolated hamstring<br>stretching and<br>strengthening in<br>promoting return to sports<br>and preventing injury<br>recurrence in athletes<br>suffering an acute<br>hamstring strain."                                                                                                              | stabilization<br>exercises<br>superior.<br>Reinjury rate<br>also lower in tha<br>group both short<br>and long term.                                                                |

# **GROIN STRAINS AND ADDUCTOR-RELATED GROIN PAIN**

Groin strains are generally thought to be true strains with disrupted myotendinous junction(s) that involve the adductor muscles in the upper thigh.(87, 894) The problem is precipitated by a high-force maneuver, including sports injuries, that is usually near maximum voluntary contraction capabilities. As with other true strains, prior injury is thought to be predictive of future risk. Patients have pain exacerbated by use, stiffness, and weakness. The examination findings are tenderness at the muscular origin, and there may be swelling in more severe cases. Clinical tests are generally not necessary, although in the more severe

cases, evaluation with x-rays and/or MRI are recommended for evaluation of the underlying bony structure as well as the degree of muscle tear as rare cases may require surgery.

 Recommendation: X-rays or MRI to Diagnose Groin Strains or Adductor-related Groin Pain X-rays or MRI are recommended to diagnose groin strains or adductor-related groin pain in more severe cases.

Strength of Evidence – Recommended, Insufficient Evidence (I)

2. Recommendation: NSAIDS for Treatment of Groin Strains or Adductor-related Groin Pain NSAIDS are recommended for treatment of groin strains or adductor-related groin pain.

### Strength of Evidence – Recommended, Insufficient Evidence (I)

3. Recommendation: Work Limitations for Treatment of Groin Strains or Adductor-related Groin Pain Work limitations are recommended for patients with groin strains or adductor-related groin pain who perform high-physical jobs or cannot avoid job tasks thought to have resulted in the strain. There is no recommendation for or against work limitations for treatment of groin strains or adductor-related groin pain in most cases.

Strength of Evidence – Recommended, Insufficient Evidence (I) – High-physical demands

Strength of Evidence – No Recommendation, Insufficient Evidence (I) – Most cases

4. Recommendation: Ice or Heat or Wraps for Treatment of Groin Strains or Adductor-related Groin Pain Ice or heat or ace wraps are recommended for treatment of groin strains or adductor-related groin pain.

Strength of Evidence – Recommended, Insufficient Evidence (I)

5. Recommendation: Bed Rest for Treatment of Groin Strains or Adductor-related Groin Pain Bed rest is not recommended for treatment of groin strains or adductor-related groin pain.

Strength of Evidence – Not Recommended, Insufficient Evidence (I)

6. Recommendation: Physical or Occupational Therapy for Treatment of Groin Strains or Adductorrelated Groin Pain

### Physical or occupational therapy is recommended for treatment of groin strains or adductorrelated groin pain.

## Strength of Evidence – Recommended, Insufficient Evidence (I)

## Rationale for Recommendations

X-rays aide avulsion fracture diagnosis and MRI aide sprain, strain, and tear diagnoses. There are two quality studies of treatment options for groin strains or adductor-related groin pain; however, they only address exercise, thus nearly all treatment recommendations are empiric. (87, 894) Nonsteroidal antiinflammatory medications are recommended (see NSAIDs for dose, frequency, and discontinuation information). Work limitations may be necessary depending on the severity of the condition and the required job demands. Those performing high-physical demand tasks or who have no ability to avoid repeating physically demanding job tasks thought to have resulted in the condition are recommended to have work limitations, but in other cases, there is no recommendation for or against work limitations. Ice and/or heat are recommended as are Ace wraps which may be helpful. Bed rest is not recommended due to concern regarding deep venous thrombosis and other adverse effects, although relative rest may be required for many patients. Patients with persisting pain are recommended to have a course of physical or occupational therapy, likely to include gentle stretching, but suggested to primarily focus on progressive strengthening exercises and include an aerobic exercise prescription(87, 894) (see exercise dose, frequency, discontinuation information).

Evidence for the Use of Physical or Occupational Therapy for Groin Strains

There is 1 moderate-quality RCT incorporated in this analysis. There is 1 low-quality RCT in Appendix 2.

| Author/Year<br>Study Type | Score<br>(0-11) | Sample<br>Size                                                                                  | Compariso<br>n Group                                                                                                                                                                    | Results                                                                                                                                                                                                                                                                                                                                                                         | Conclusion                                                                                                                                                                                                                                                                                                                                                                                                                           | Comments                                                                                                                                                                                                                                                                                        |
|---------------------------|-----------------|-------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                           |                 |                                                                                                 |                                                                                                                                                                                         | Physical Therapy                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                 |
| Holmich<br>1999<br>RCT    | 7.0             | N = 8<br>Male<br>athletes<br>with long-<br>standing<br>groin<br>pain<br>(median<br>40<br>weeks) | Active<br>training<br>program (12<br>exercises)<br>with physical<br>therapy<br>(laser,<br>friction<br>massage,<br>stretching<br>TENS) vs.<br>no active<br>training for 8<br>to 12 weeks | 23 AT patients vs. 4 in<br>PT returned to sports<br>without groin pain [OR =<br>12.7 (95% CI 3.4-47.2)].<br>Subjective global<br>assessments of effect of<br>treatments favored<br>active training (p =<br>0.006). Treatment<br>outcomes (excellent<br>plus good): AT 25/34<br>(73.5%) vs. 10/34<br>(29.4%), p = 0.001. Per-<br>protocol analysis not<br>appreciably different. | "AT with a programme<br>aimed at improving<br>strength and coordination<br>of the muscles acting on<br>the pelvis, in particular the<br>adductor muscles, is very<br>effective in the treatment<br>of athletes with long-<br>standing adductor-related<br>groin pain. The potential<br>preventive value of a short<br>programme based upon<br>the principles of AT should<br>be assessed in future,<br>randomised, clinical trials." | Variable length of<br>treatment course<br>(8-12 weeks);<br>numbers of<br>treatments<br>reduces ability to<br>conclude efficacy<br>of any one<br>treatment<br>intervention. Data<br>suggest the active<br>training plus<br>physical therapy<br>program superior<br>to physical<br>therapy alone. |

# MERALGIA PARESTHETICA

Meralgia paresthetica is a peripheral entrapment neuropathy of the lateral femoral cutaneous nerve that is a sensory nerve supplying the upper lateral aspects of the thigh. While a nerve entrapment may occur at any point along the nerve, the condition is most commonly from a localized pressure in the area of the inguinal ligament, generally in obese, middle aged adults in whom the obesity is presumed to produce the pressure on the nerve either directly or through tight clothing. The disorder has also occurred among athletes including gymnasts. Onset may be relatively acute, e.g., after one night's sleep or insidious. A tight, heavy tool belt may produce an occupational cause. Other causes include trauma, scarring from prior trauma, and insults from systemic rheumatological disorders. Symptoms involve tingling and numbness in the distribution of the nerve. Pain may be absent, mild or rarely, severe. There is no muscle weakness.

1. Recommendation: Weight Loss/Avoidance of Aggravating Exposures/Loose Clothing for Treatment of Meralgia Paresthetica

Weight loss for patients who are overweight or obese, avoidance of aggravating exposures, and the wearing of loose clothing is recommended for treatment of meralgia paresthetica.

Strength of Evidence – Recommended, Insufficient Evidence (I)

2. Recommendation: NSAIDS for Treatment of Meralgia Paresthetica There is no recommendation for or against the use of NSAIDS to treat meralgia paresthetica.

Strength of Evidence – No Recommendation, Insufficient Evidence (I)

3. Recommendation: Topical Lidocaine Patches for Treatment of Meralgia Paresthetica There is no recommendation for or against the use of topical lidocaine patches to treat meralgia paresthetica.

Strength of Evidence - No Recommendation, Insufficient Evidence (I)

 Recommendation: Glucocorticosteroid Injections for Treatment of Meralgia Paresthetica Glucocorticosteroid injections are recommended for treatment of meralgia paresthetica if more conservative treatments are not efficacious.

Strength of Evidence – Recommended, Insufficient Evidence (I)

5. Recommendation: Nerve Conduction Study to Confirm Diagnosis of Meralgia Paresthetica and Localize Entrapment

A nerve conduction study is recommended to confirm the diagnosis of meralgia paresthetica and localize the entrapment.

*Indications* – Question regarding accuracy of diagnosis or in patients for whom surgery is contemplated.

### Strength of Evidence – Recommended, Insufficient Evidence (I)

6. Recommendation: Surgical Release for Treatment of Meralgia Paresthetica Surgical release is recommended for treatment of select patients with meralgia paresthetica.

*Indications* – Patients who both have continued symptoms unresponsive to the above treatments and in whom symptoms are sufficiently severe to warrant invasive treatment.

### Strength of Evidence – Recommended, Insufficient Evidence (I)

7. Recommendation: Spinal Cord Stimulator for Treatment of Meralgia Paresthetica There is no recommendation for or against the use of spinal cord stimulators for treatment of select patients with meralgia paresthetica.

*Indications* – Patients who both have continued symptoms unresponsive to the above treatments and in whom symptoms are sufficiently severe to warrant invasive treatment.

Strength of Evidence - No Recommendation, Insufficient Evidence (I)

### Rationale for Recommendations

There are no quality studies to evaluate, diagnose, or treat the condition, thus treatments are empiric. The diagnosis is usually made on clinical grounds and imaging is generally not indicated. Weight loss is recommended for those who are overweight or obese. Patients should also avoid aggravating exposures and wear loose clothing. As this is a peripheral neuropathy and NSAIDs appear ineffective for other entrapment neuropathies in quality studies such as for treatment of carpal tunnel syndrome, there is no recommendation for or against the use of NSAIDs for meralgia paresthetica. Topical lidocaine patches have been used;(902) however, for most patients, the pain is insufficient to warrant treatment; there is no recommendation for or against the use of these patches. Glucocorticosteroid injections have been tried and are recommended if the above more conservative treatments do not resolve the condition (see local diagnostic injection for dose, frequency, and discontinuation information).

For patients in whom there is either a considerable question about the accuracy of the diagnosis, or for whom surgery is contemplated, a nerve conduction study is recommended to confirm the diagnosis and localize the entrapment. (903) Particularly among persistent cases, consideration may be given to therapy referral for evaluation of potential movement system impairments that may be contributory. Surgical release is rarely needed, but for those who both have continued symptoms unresponsive to the above and in whom the symptoms are sufficiently severe to warrant invasive treatment, surgical release is recommended. A spinal cord stimulator has been implanted in one case with reported good short- to intermediate-term results;(904) however, the intervention is highly invasive compared with a peripheral entrapment neuropathy; there are no quality studies of efficacy. Therefore, there is no recommendation for or against the use of spinal cord stimulators.

# LOWER ABDOMINAL STRAINS

Lower abdominal strains are frequent occurrences in sports and occupational populations particular that involve heavy lifting.(87) The pathophysiological abnormality is unclear. Pain onset is usually acute and in the context of a heavy lift or sports-related forceful exertion. Pain occurs most typically in the lower abdominal muscles often along the inguinal canal, however, there is no hernia. Whether abdominal strain is either a risk or a precursor to an indirect inguinal hernia is also unknown. Some have thought the disorder represented urine reflux into the vas deferens during heavy lifting or strain (see epididymo-

orchitis below). There are no quality studies to evaluate, diagnose or treat the condition, thus treatments are empiric. Patients should be evaluated for hernias and referred for consideration of surgical repair if found.(30)

1. Recommendation: Culturing Urine to Diagnose Lower Abdominal Strains There is no recommendation for or against culturing urine to diagnose lower abdominal strain unless other symptoms are present.

Strength of Evidence - No Recommendation, Insufficient Evidence (I)

2. Recommendation: NSAIDS for Treatment of Lower Abdominal Strains NSAIDs are recommended for treatment of lower abdominal strains.

Strength of Evidence – Recommended, Insufficient Evidence (I)

3. Recommendation: Work Limitations for Treatment of Lower Abdominal Strains Work limitations are recommended for patients with lower abdominal strains who perform high-physical jobs or cannot avoid job tasks thought to have resulted in the strain. There is no recommendation for or against work limitations for treatment of lower abdominal strains in most cases.

Strength of Evidence – Recommended, Insufficient Evidence (I) – High-physical demands

Strength of Evidence – No Recommendation, Insufficient Evidence (I) – Most cases

Recommendation: Bed Rest for Treatment of Lower Abdominal Strains
 Bed rest is not recommended for treatment of lower abdominal strains.

Strength of Evidence - Not Recommended, Insufficient Evidence (I)

5. Recommendation: Ice or Heat for Treatment of Lower Abdominal Strains Ice or heat is recommended for treatment of lower abdominal strains.

Strength of Evidence - Recommended, Insufficient Evidence (I)

6. Recommendation: Physical or Occupational Therapy for Treatment of Lower Abdominal Strains Physical or occupational therapy is recommended for treatment of lower abdominal strains.

## Strength of Evidence – Recommended, Insufficient Evidence (I)

## Rationale for Recommendations

Unless other symptoms are present, there is no recommendation for or against culturing of urine (evaluation and treatment of epididymo-orchitis follows). Nonsteroidal anti-inflammatory medications are recommended (see NSAIDs for dose, frequency, and discontinuation information). Work limitations may be necessary depending on the severity of the condition. Those performing high physical demand tasks or those who have no ability to avoid repeating physically demanding job tasks thought to have resulted in the condition are recommended to have work limitations, but in other cases, there is no recommendation for or against the use of work limitations. Other treatments have included ice, heat, bed rest and physical or occupational therapy. Bed rest is not recommended due to concern regarding deep venous thrombosis and other adverse effects. Ice and heat are recommended. Those with persisting pain are recommended to have a course of physical or occupational therapy, likely to include gentle stretching, but suggested to primarily focus on progressive strengthening exercises and include an aerobic exercise prescription (see exercise for dose, frequency, and discontinuation information).

# **EPIDIDYMO-ORCHITIS**

Epididymitis is an acute or chronic inflammation of the epididymis – the coiled tube that collects sperm from the testicle and passes it to the vas deferens. Orchitis is an inflammation of the testicle. Epididymoorchitis is an inflammation of both the epididymis and testicle. The vast majority of cases of epididymitis

or combined epididymito-orchitis are infectious in origin.(7-10, 12-18) Those patients under age 35-45 reportedly have Chlamydia trachomatis infections in more than 80% of cases.(8, 19) Older patients tend to have gram-negative rod infections(7, 16) as do those who have had vasectomies, other urological procedures, a history of prostatitis, or have engaged in anal intercourse.(8, 20, 21) A few cases have been attributed to amiodarone.(22, 23)

There is a small but not insignificant minority of patients who report a history of a heavy lift or strain that precipitated the symptoms, (24-27) which gives rise to the possibility that this entity may sometimes be an occupational disease or injury (28-32) outside of the obvious setting of direct work-related trauma. (33) Mechanisms have thought to involve either reflux of urine in the course of the strain (27, 29, 34-36) or eliciting symptoms from a latent infection. (24) One industrial plant survey showed no difference in the frequency of epididymitis between wage and salary workers. (20) A case report noted a history of epididymal pain after lifting heavy lumber which was evaluated with a largely negative workup until on aspiration of the epididymis, Chlamydia trachomatis was isolated. (7) There is no quality study that has documented negative infectious disease work-ups in these patients, thus there is no definitive method to solve this question of work-relatedness.

Patients should be evaluated for testicular torsion, tumor and genitourinary infections.(30) Those with evidence suggesting any of these other conditions should be referred to a primary health care provider or urologist. Criteria have been published for potentially occupational cases:

- 1. Recent history of lifting within 48 hours
- 2. No fever
- 3. Negative urinalysis
- 4. Vague pain in the lower abdomen
- 5. Tenderness of epididymis to palpation(28)
- 1. Recommendation: Culturing Urine to Diagnose Epididymitis or Epididymito-orchitis Urine cultures are recommended for select patients to diagnose epididymitis or epididymitoorchitis.

### Strength of Evidence – Recommended, Insufficient Evidence (I)

2. Recommendation: Needle Aspiration for Treatment of Epididymito-orchitis There is no recommendation for or against the use of needle aspiration to treat epididymitoorchitis.

### Strength of Evidence - No Recommendation, Insufficient Evidence (I)

3. Recommendation: NSAIDS or Age-appropriate Antibiotics for Treatment of Epididymitis or Epididymoorchitis

NSAIDS or age-appropriate antibiotics are recommended for treatment of epididymitis or epididymo-orchitis.

### Strength of Evidence – Recommended, Insufficient Evidence (I)

4. Recommendation: Work Limitations for Treatment of Epididymitis or Epididymo-orchitis There is no recommendation for or against the use of work limitations for patients with epididymitis or epididymo-orchitis, although limitations may be necessary depending on the severity of the condition and the physical job demands.

Strength of Evidence – No Recommendation, Insufficient Evidence (I)

5. Recommendation: Bed Rest for Treatment of Epididymitis or Epididymo-orchitis Bed rest is not recommended for treatment of epididymitis or epididymo-orchitis.

Strength of Evidence – Not Recommended, Insufficient Evidence (I)

6. Recommendation: Ice or Intermittent Elevation for Treatment of Epididymitis or Epididymo-orchitis

Copyright© 2016 Reed Group, Ltd.

There is no recommendation for or against the use of ice or intermittent elevation for treatment of epididymitis or epididymo-orchitis.

Strength of Evidence - No Recommendation, Insufficient Evidence (I)

7. Recommendation: Physical or Occupational Therapy for Treatment of Epididymitis or Epididymoorchitis

Physical or occupational therapy is recommended for treatment of epididymitis or epididymoorchitis.

Strength of Evidence – Recommended, Insufficient Evidence (I)

### Rationale for Recommendations

There are no quality trials that address treatments for epididymitis or epididymo-orchitis. For this subset of patients, urine cultures are recommended, but there is no recommendation for or against the use of needle aspiration. Empiric treatment with age-appropriate and other risk factor appropriate antibiotics (e.g., Chlamydial coverage under 35 years, gram negative over 35 years) is recommended, (24, 28) as is treatment with NSAIDs (see NSAIDs for dose, frequency, and discontinuation information). Work limitations may be necessary depending on the severity of the condition and the physical job demands, but have not been uniformly required, thus there is no recommendation for or against the use of work limitations.(24) Other treatments have included ice, intermittent elevation, and bed rest.(28) Bed rest is not recommended due to concern regarding deep venous thrombosis and other adverse effects. There are no quality studies that address ice or intermittent elevation to treat epididymitis or epididymo-orchitis; therefore, there is no recommendation for or against the does not resolve rapidly should be evaluated by a urologist.

# SURGICAL CONSIDERATIONS

# **HIP FRACTURES**

Hip fractures are the most severe fracture among the elderly.(905-910) Approximately 25% of these patients are deceased 6 months after hip fracture,(911-914) although risk varies widely largely depending on age and pre-morbid conditions. These fractures also occur in working populations, usually as a result of a high-impact injury such as a fall from a height, crush injury, or motor vehicle accident. Approximately half of hip fractures are intracapsular femoral neck fractures;(915) the rest are trochanteric, intertrochanteric, or subtrochanteric for which internal fixation is traditionally recommended.(916) Intracapsular fractures include femoral neck, subcapital and intracapsular fractures. Traction has been used for treatment,(911, 917-919) as have surgical approaches which have included internal fixation, external fixation, and hemiarthroplasty.(920, 921) Various appliances have been utilized for fixation including screws,(911, 922) nails,(923) hook-pins,(924) sliding plates,(912, 922, 925) intramedullary devices (Curtin), external fixation,(926) and percutaneous compression plates.(927, 928) Hip fractures are the third most common reason for arthroplasty.(929-931) The cause of these fractures and work-relatedness is determined based on the mechanism of the fracture.

1. Recommendation: Surgical Treatment for Hip Fractures Surgical treatment for hip fractures is recommended compared with traction for hip fractures. Strength of Evidence – Recommended, Evidence (C)

2. Recommendation: Surgical Treatment for Hip Fractures

Surgical intervention for hip fractures is recommended as soon as the patient is medically stable.

Strength of Evidence – Recommended, Insufficient Evidence (I)

3. Recommendation: Arthroplasty for Hip Fractures Arthroplasty is strongly recommended for older patients with displaced femoral neck and subcapital fractures.

### Strength of Evidence – Strongly Recommended, Evidence (A)

4. Recommendation: Acupressure for Transporting Hip Fracture Patients

# Acupressure is moderately recommended for transporting patients with hip fracture to the hospital.

#### Strength of Evidence - Moderately Recommended, Evidence (B)

#### Rationale for Recommendations

There are reports, including quality studies, of fractures healing conservatively with traction, (911, 917-919) yet death rates are also reportedly higher for that method of treatment. (918) A Cochrane review concluded that quality trials comparing conservative and surgical treatment for hip fractures are needed. (932) However, as one quality study found longer hospital stays and deaths particularly in the elderly, (911) the current quality evidence suggests that surgical results are superior to traction for treatment of these fractures, thus surgery is recommended particularly in the elderly.

The speed with which treatment is considered early or delayed is somewhat controversial with estimates of 6 to 12 hours.(834, 835, 933-935) There are no quality studies, but a retrospective review of cases and a large case series suggest better outcomes for earlier intervention(935) or shorter hospitalizations and fewer complications.(936) Generally, early intervention is recommended once the patient is medically stable. Skin sterilization issues have been studied and are important considerations.(937-941)

There are several quality studies evaluating arthroplasty and hemiarthroplasty results compared with internal fixation for treatment of displaced fractures. Three evaluated displaced intracapsular fractures, (916, 942, 943) one evaluated unstable intertrochanteric fractures, (944) two were of displaced femoral neck fractures, (945, 946) and another two were of displaced subcapital fractures (947, 948) (see Figure 17(942)). Nearly all of these studies suggest arthroplasty or hemiarthroplasty result in superior outcomes including lower complication rates, lower reoperation rates, lower pain ratings, and/or superior ambulatory function at 6 to 24 months (see Figure 18). One of the studies concerned younger patients with displaced intracapsular fractures and found total hip arthroplasty resulted in better outcomes.(943) In contrast, a Cochrane review of arthroplasty for hip fractures concluded there was insufficient evidence of superiority of arthroplasty to internal fixation.(949) Regardless, the quality evidence is in favor of arthroplasty or hemiarthroplasty for treatment of displaced femoral neck, displaced intracapsular and displaced subcapital fractures in the older patient is strongly recommended (see arthroplasties) as a preferred treatment option. In the young patient, it is desirable to save the femoral head, so internal fixation should be strongly considered.



### Figure 17. Time to the First Reoperation or Death in the Three Groups

THR = total hip replacement

Keating JF, Grant A, Masson M, Scott NW, Forbes JF on behalf of the Scottish Orthopaedic Trials Network. Randomized comparison of reduction and fixation, bipolar hemiarthroplasty, and total hip arthroplasty. Treatment of displaced intracapsular hip fractures in healthy older patients. *J Bone Joint Surg Am.* 2006;88:249-60. Reprinted with permission from the Journal of Bone and Joint Surgery American.

Figure 18. Percentage of Patients who were Still Alive and Had Not Undergone a Reoperation (among all 102 patients who had been included in the study) in Relation to Time



THR = total hip replacement, and IF=internal fixation.

Blomfeldt R, Törnkvist H, Ponzer S, Söderqvist A, Tidermark J. Comparison of internal fixation with total hip replacement for displaced femoral neck fractures. Randomized, controlled trial performed at four years. *J Bone Joint Surg Am.* 2005;87:1680-8. Reprinted with permission from the Journal of Bone and Joint Surgery American.

#### Figure 19. Survival Curve for Patients aged 70 to 79 years in Both Groups



Reproduced with permission and Copyright<sup>©</sup> of the British Editorial Society of Bone and Joint Surgery. Parker MJ, Khan RJ, Crawford J, Pryor GA. Hemiarthroplasty versus internal fixation for displaced intracapsular hip fractures in the elderly. A randomised trial of 455 patients. *J Bone Joint Surg Br.* 2002;84(8):1150-5.

### Figure 20. Survival Curve for Patients aged from 80 to 89 years in Both Groups



Reproduced with permission and Copyright<sup>©</sup> of the British Editorial Society of Bone and Joint Surgery. Parker MJ, Khan RJ, Crawford J, Pryor GA. Hemiarthroplasty versus internal fixation for displaced intracapsular hip fractures in the elderly. A randomised trial of 455 patients. *J Bone Joint Surg Br.* 2002;84(8):1150-5.

There are many different surgical approaches and products used for fixation. There also are numerous biomechanical studies on these various approaches; (950-955) however, while yielding sometimes useful information, they are unable to definitively test efficacy or superiority in humans. Pins are sometimes hydroxyapatite-coated, (956) although quality evidence of efficacy or superiority of these products in these patients is lacking.

Fixation failures have been thought to be particularly due to either inadequate reduction or suboptimal fixation.(910, 957, 958) In the elderly, additional factors influencing adverse outcomes include comorbid medical conditions and ability to bear weight.(910, 959-961) These reports suggest technical issues as well as post-operative management are necessary to achieve optimal outcomes.

Two authors have published multiple Cochrane reviews.(962-964) One of these reviews concluded the sliding hip screw was superior to nails for extracapsular hip fractures, but that there is insufficient evidence to ascertain meaningful differences between different intramedullary nails.(963) A sliding hip screw was also thought to be superior to fixed nail plates for extracapsular hip fractures.(964) The sliding hip screw is thought to have a lower complication rate than intramedullary nails for treatment of trochanteric fractures.(962) Another literature review concluded there was a preference for surgical fixation among intertrochanteric hip fracture patients if the patient was medically stable. Stable fractures were felt to be better treated with plate and screw implants and intramedullary devices. Unstable fractures were thought to be better treated with load-sharing intramedullary implants; however, the literature was not felt to have demonstrated this belief.(959)

There are two studies using minimally invasive techniques, but no clear conclusions in favor of these approaches. (965, 966) Osteonecrosis and nonunion rates are high in post-hip fracture patients, and with inadequacy of reduction reportedly a significant factor, (910) successful reduction becomes an important consideration. External fixation devices have been studied in one quality study and suggested external fixation was superior for operative time, blood loss and pain for treatment of pertrochanteric fractures. (956) This study needs replication.

There are many quality RCTs evaluating various products, particularly including dynamic hip screws, dynamic condylar screws, compression hip screws, intramedullary hip screws, gamma nails, gliding nails, proximal femoral nails, Pugh nails, percutaneous compression plates, nail plates, and Medoff sliding plates (see hip fracture evidence table). A majority of the studies failed to find one approach superior to another(912, 913, 922, 927, 967-972) and some provide conflicting results. Additionally, the variability of the types of fractures provides additional uncertainty regarding optimal intervention(s). Thus, there is no recommendation for or against the use of a specific product.

There is quality evidence that acupressure reduced pain for hip fracture patients during transportation (see Figure 21).(973) It is not invasive, has essentially no adverse effects, is low cost and is recommended.

Figure 21. Visual Analog Scale Values for Pain. True Intervention Differs from Sham Intervention Significantly (p<0.001)



Barker R, Kober A, Hoerauf K, Latzke D, Adel S, Kain ZN, Wang S-M. Out-of-hospital auricular acupressure in elder patients with hip fracture: a randomized double-blinded trial. *Acad Emerg Med.* 2006;13(1):19-23. Reprinted with permission from John Wiley and Sons.

#### Evidence for Hip Fractures

There are 4 high(305, 916, 973, 974)- and 64 moderate-quality(911-914, 917, 922, 927, 942-948, 956, 965-972, 975-1015) RCTs incorporated in this analysis. There are 21 low-quality(919, 1016-1035) RCTs in Appendix 2.

| Author/Yea<br>r<br>Study<br>Type              | Scor<br>e (0-<br>11) | Sample<br>Size                                                                                 | Comparison<br>Group                                                                                                                                                                   | Results                                                                                                                                                                                                                                                                                                                                                                                                                  | Conclusion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Comments                                                                                                                            |
|-----------------------------------------------|----------------------|------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|
|                                               |                      |                                                                                                | W                                                                                                                                                                                     | ound Drainage Systems                                                                                                                                                                                                                                                                                                                                                                                                    | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                     |
| Varley<br>1995<br>RCT                         | 6.0                  | N = 177<br>Patients<br>undergoing<br>AO<br>dynamic<br>hip screw<br>or<br>hemiarthro-<br>plasty | Closed<br>suction<br>surgical<br>wound<br>drainage for<br>48 hours (1<br>deep to fascia<br>lata alongside<br>implant, 1<br>superficial to<br>fascia lata)<br>vs. no wound<br>drainage | Infection rates were:<br>drainage 6/86 (7%) vs.<br>12/91 (13.2%) (NS).<br>Asepsis wound scores on<br>day 8: drained, 1.33±3.49<br>vs. no drain 2.05± 4.62, p<br>= 0.018. Drains were<br>found to prevent early<br>wound hematomas but not<br>reformation after drain<br>removal.                                                                                                                                         | "Due to our study size we<br>have failed to show a<br>significant difference in<br>overt wound infection<br>rate, despite the fact that<br>there were twice as<br>many infections in the<br>group without drains.<br>This series shows that<br>drains do significantly<br>improve wound healing,<br>and that the ASEPSIS<br>score is a useful method<br>of assessing wounds in<br>orthopaedics. We<br>therefore recommend the<br>routine use of drains for<br>up to 48 h<br>postoperatively." | Results suggest<br>drainage is<br>effective for<br>improved<br>wound scores,<br>but the study is<br>underpowered<br>for infections. |
|                                               |                      |                                                                                                |                                                                                                                                                                                       | Medications                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                     |
| Huusko<br>Calcif<br>Tissue Int<br>2002<br>RCT | 8.5                  | N = 260<br>Acute hip<br>fracture                                                               | Intranasal<br>salmon<br>calcitonin 200<br>IU daily vs.<br>placebo nasal<br>spray for 3<br>months                                                                                      | At 3-month follow up,<br>median intensity of pain<br>on VAS scale 0mm in<br>calcitonin group vs. 4mm<br>in placebo (p = 0.15).<br>Median change in IADL<br>score from baseline to 3<br>months: -1 calcitonin vs<br>2 placebo (p = 0.74). "The<br>mean change in calcaneal<br>bone mineral density from<br>baseline to 3 months was<br>not statistically significant<br>between the groups -<br>0.004 (95% CI -0.008 to - | "Intranasal calcitonin<br>might be useful for hip<br>fracture patients but the<br>clinical significance of<br>this finding needs to be<br>confirmed by studies with<br>more participants,<br>alonger treatment period,<br>a longer follow-up, and<br>perhaps a higher dose of<br>calcitonin."                                                                                                                                                                                                 | Data trend<br>towards<br>suggesting<br>weak efficacy.                                                                               |

| Wilkinson<br>2001<br>RCT | 5.0 | N = 47<br>THA                                                                                                                                     | Single-dose<br>infusion of<br>90mg of<br>pamidronate<br>vs. placebo                                                                                    | 0.001) in the calcitonin<br>group and -0.007 (95% CI<br>-0.012 to<br>-0.003) in the placebo<br>group (P = 0.28)."<br>Pamidronate reduced<br>bone loss vs. placebo for<br>both the proximal femur<br>and the pelvis (p = 0.001<br>and p = 0.01,<br>respectively).<br>Pamidronate associated<br>with suppression of all<br>biochemical markers of<br>bone turnover compared<br>with placebo (p <0.05),<br>with the exception of<br>urinary free<br>deoxypyridinoline. | "Pamidronate<br>significantly reduces the<br>acute bone loss of<br>proximal femur and<br>pelvis over the first 6<br>months after total hip<br>arthroplasty. The most<br>protective effect of<br>pamidronate was seen in<br>the medial periprosthetic<br>bone of the femur, the<br>site is where femoral<br>bone typically is most<br>severe." | Data support<br>reduction in<br>bone loss and<br>less bone<br>turnover.<br>However, no<br>differences in<br>clinical<br>outcomes.                                                                      |
|--------------------------|-----|---------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                          | I   |                                                                                                                                                   | Surgical App                                                                                                                                           | roach including Minimally Ir                                                                                                                                                                                                                                                                                                                                                                                                                                        | vasive                                                                                                                                                                                                                                                                                                                                        | <u></u>                                                                                                                                                                                                |
| Starr<br>2006<br>RCT     | 6.5 | N = 34<br>Subtro-<br>chanteric,<br>intertro-<br>chanteric or<br>ipsilateral<br>femoral<br>neck/shaft<br>fracture<br>from high<br>energy<br>injury | Russell-<br>Taylor Recon<br>Nail<br>(piriformis<br>fossa starting<br>point) vs.<br>Howmedica<br>Long Gamma<br>Nail<br>(trochanteric<br>starting point) | Estimated blood loss:<br>recon nail group 328 (100-<br>750) vs. long gamma nail<br>282(100-700), $p = 0.15$ .<br>Duration of surgery: recon<br>nail: 106 vs. long gamma<br>nail 88, $p = 0.26$ . Harris<br>Hip Score: recon nail 86,<br>long gamma nail 84, $p =$<br>0.60. Returned to work:<br>recon nail 15, long gamma<br>nail 12, $p = 0.46$ . Same<br>job: recon nail: 12 vs. long<br>gamma nail 12, $p = 1.0$ .                                               | "Both devices yield<br>predictably good results<br>in these difficult<br>fractures. We found no<br>difference between the<br>two devices with regard<br>to incision length,<br>duration of surgery,<br>blood loss, reduction,<br>ease of use, union rate,<br>complication rate, or<br>outcome."                                               | Both groups<br>had high<br>complaints of<br>painful implants<br>after union, with<br>8/17 in recon<br>and 4/17 in long<br>gamma nail<br>undergoing<br>elective implant<br>removal within<br>13 months. |
| Alobaid<br>2004<br>RCT   | 6.0 | N = 48<br>Intertro-<br>chanteric<br>fractures                                                                                                     | Minimally<br>invasive vs.<br>conventional<br>surgical<br>technique for<br>placing<br>dynamic hip<br>screw (DHS)                                        | Operative time<br>significantly less in MIDHS<br>( $p < 0.001$ ). Mean 70<br>minutes control vs. 29<br>minutes MIDHS.<br>Acetaminophen: MIDHS =<br>1.9g PO vs. Control =<br>5.4g, $p = 0.03$ . Morphine:<br>MIDHS = 15.1mg IM vs.<br>control 25.2mg IM, $p =$<br>0.10.                                                                                                                                                                                              | "Minimal invasive<br>technique significantly<br>reduces blood loss and<br>operative time for fixation<br>of intertrochanteric hip<br>fractures without sacrifice<br>of fixation stability or<br>bone healing."                                                                                                                                | Randomization<br>not well<br>described.<br>Results favor<br>MIDHS.                                                                                                                                     |
| Hornby                   | 60  | N = 106                                                                                                                                           |                                                                                                                                                        | Mean hospital stays:                                                                                                                                                                                                                                                                                                                                                                                                                                                | "Operative treatment                                                                                                                                                                                                                                                                                                                          | Suggests                                                                                                                                                                                               |
| 1989<br>RCT              | 0.0 | Trochanteri<br>c fractures                                                                                                                        | hip screw vs.<br>traction                                                                                                                              | operation 53.0±56.5 vs.<br>79.7±62.9 days.<br>Outcomes at 6 months<br>included deaths (<75<br>years/75+years):<br>operation (25%/35.9%) vs.<br>traction (7.7%/51.4%).<br>Complications of traction<br>included track infection<br>(16%), pin loosening<br>(39%), traction sores<br>(10%).                                                                                                                                                                           | gave better anatomical<br>results and a shorter<br>hospital stay, but<br>significantly more of the<br>patients treated by<br>traction showed loss of<br>independence six<br>months after injury."                                                                                                                                             | surgery is<br>superior to<br>traction in<br>elderly. Data<br>suggest worse<br>outcomes<br>particularly for<br>older patients<br>treated with<br>traction.                                              |
|                          |     |                                                                                                                                                   | Hip Scre                                                                                                                                               | ew/Nail vs. Other Approache                                                                                                                                                                                                                                                                                                                                                                                                                                         | es                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                        |
| Hoffman<br>1996          | 7.5 | N = 67<br>Intertro-                                                                                                                               | Gamma nail<br>vs. Ambi hip<br>screw                                                                                                                    | Blood loss 42% greater in<br>Gamma nail group (p =<br>0.006). Mobility ranked                                                                                                                                                                                                                                                                                                                                                                                       | "Gamma nail is not<br>recommended for routine<br>use by inexperienced                                                                                                                                                                                                                                                                         | No advantage<br>of either<br>technique at 6                                                                                                                                                            |
| RCI                      |     | chanteric                                                                                                                                         |                                                                                                                                                        | worse in Gamma nail                                                                                                                                                                                                                                                                                                                                                                                                                                                 | orthopaedics due to                                                                                                                                                                                                                                                                                                                           | months.                                                                                                                                                                                                |

|         |     | fractures    |               | group at 2 weeks (p =          | findings of longer             |                    |
|---------|-----|--------------|---------------|--------------------------------|--------------------------------|--------------------|
|         |     |              |               | 0.038), 6 weeks (p =           | intensifier screening          |                    |
|         |     |              |               | 0.039), and 3 months (p =      | times, greater blood loss,     |                    |
|         |     |              |               | 0.015). No patients            | increased numbers of           |                    |
|         |     |              |               | admitted from home died        | technical complications        |                    |
|         |     |              |               | during study. Time to full     | and perhaps a poorer           |                    |
|         |     |              |               | weight-bearing no              | rehabilitation "               |                    |
|         |     |              |               | different between groups       |                                |                    |
| Adama   | 7.0 | N = 400      | Commo noil    | Moon operation time loss       | "Study confirms ovidonco       | Data suggest       |
| 2001    | 7.0 | N = 400      | Va dynamia    | for Commo poilo 55.4           | that Commo poil should         | Due has fower      |
| 2001    |     | linte stre   | vs. uyriannic |                                | that Gamma han Should          |                    |
| DOT     |     | intertro-    | nip screw and | hip corous 61.2 min (59.2)     | not be adopted for             | complications.     |
| RUI     |     | chanteric    | plate         |                                | intertre als extents for a set |                    |
|         |     | fractures    |               | 64.4) (p = 0.008). 37%         | Intertrochanteric femoral      |                    |
|         |     |              |               | dropout rate. No               | neck fractures.                |                    |
|         |     |              |               | difference in fixation         |                                |                    |
|         |     |              |               | failure between groups in      |                                |                    |
|         |     |              |               | stable or unstable             |                                |                    |
|         |     |              |               | fractures; 1-year mortality    |                                |                    |
|         |     |              |               | 120/400 (30.0%).               |                                | _                  |
| Ekström | 7.0 | N = 203      | Proximal      | Mean operative time for        | "No major differences in       | One year           |
| 2007    |     |              | femoral nail  | subtrochanteric group for      | functional outcome or          | mortality rate     |
|         |     | Unstable     | vs. Medoff    | MSP longer: 82±25 vs.          | major complications            | 33/203 (16%).      |
| RCT     |     | tro-         | sliding plate | 62±29 minutes for              | between proximal               | 40%                |
|         |     | chanteric    |               | trochanteric group (p =        | femoral nail or Medoff         | lost/dropout rate  |
|         |     | and sub-     |               | 0.004). Fluoroscopy time       | sliding plate. Walking         | at 1 year. Data    |
|         |     | tro-         |               | longer in PFN 7±4 min vs.      | ability in early               | suggest            |
|         |     | chanteric    |               | 5±5 min for MSP (p             | rehabilitation period was      | comparable         |
|         |     | fractures    |               | <0.001). Less EBL in           | slightly better for the        | efficacy.          |
|         |     |              |               | PFN: 230±185 mL vs.            | proximal femoral nail          |                    |
|         |     |              |               | 527±565 mL in MSP (p           | group."                        |                    |
|         |     |              |               | <0.001). No difference in      |                                |                    |
|         |     |              |               | number of blood                |                                |                    |
|         |     |              |               | transfusions. Follow up        |                                |                    |
|         |     |              |               | lost to general health         |                                |                    |
|         |     |              |               | problems or death 20% at       |                                |                    |
|         |     |              |               | 6 weeks. 28% at 4              |                                |                    |
|         |     |              |               | months, and 41% a 1            |                                |                    |
|         |     |              |               | vear. No difference in total   |                                |                    |
|         |     |              |               | or major complication          |                                |                    |
|         |     |              |               | rates.                         |                                |                    |
| Moroni  | 70  | N = 40       | Dynamic hin   | Intra-operative time DHS       | "[F]xternal fixation with      | Trial included     |
| 2005    | 7.0 | 11 - 40      | scrow vs      | $64+6 v_{\text{C}}$ EED $34+5$ | the Orthofix                   | only females       |
| 2003    |     | Pertro-      | ovtornal      | minutes $n < 0.005$ All        | nertrochanteric fixator        | with               |
| PCT     |     | chantoria    | fixation      | DHS had postoporativo          | and hydroxyapatito             | ostooporocic       |
| KC1     |     | fractures    | dovico        | blood transfusion with an      | and hydroxyapatile-            | Doto ouggost       |
|         |     | nactures     | device        | biood transitision, with an    | coaled pins should be          |                    |
|         |     |              |               | average of 2.0±0.1 0 vs.       | for the treatment of           | operative times,   |
|         |     |              |               |                                | nor the treatment of           | transfusiona       |
|         |     |              |               | <0.0001. ALD CAYS,             | in alderly patients with       |                    |
|         |     |              |               |                                | in elderly patients with       | and pain ratings   |
|         |     |              |               | moderate or severe pain        | osieoporosis."                 | all favored        |
|         |     |              |               | were: DHS 14/18(77.8%)         |                                | external fixation. |
|         |     |              |               | vs. EFD 6/20 (30%), p          |                                |                    |
|         |     |              |               | <0.05. External fixation       |                                |                    |
|         |     |              |               | aid not impede patient         |                                |                    |
|         |     |              |               | ability to sit or lie down in  |                                |                    |
|         |     |              |               | a supine or prone position.    |                                |                    |
|         |     |              |               | At 6 months, Harris hip        |                                |                    |
|         |     |              |               | score averaged DHS             |                                |                    |
|         |     |              |               | 62±19 vs. EFD 63±17            |                                |                    |
| ļ       |     |              |               | points (NS).                   |                                |                    |
| Miedel  | 7.0 | N = 217      | Gamma nail    | Mean operating times           | "[U]se of the SGN gave         | Combined           |
| 2005    |     |              | vs. Medoff    | SGN 61 (22 to 127) vs.         | good results in both           | mortality rate at  |
|         |     | Unstable     | sliding plate | MSP 65 minutes in the          | trochanteric and               | 1 year=55/217      |
| RCT     |     | trochanteric |               | MSP group. Blood loss          | subtrochanteric fractures.     | (25.3%). Mean      |

|                         |     | and<br>subtrochan-<br>teric<br>fractures                                     |                                                              | was SGN 276ml (50 to<br>1000) vs. 402mL (25 to<br>2400) (p <0.01).<br>Reduction "good" in 63%<br>SGN vs. 40% MSP (p<br><0.005). Mean stays 6<br>days both groups. No<br>post-operative fractures.<br>No differences in ADLs<br>between groups at any of<br>follow-up. Hip function and<br>HRQOL according to EQ-<br>5D did not differ.<br>Reduction in HRQOL<br>between prefracture and<br>both follow-up exams was<br>significant in both groups<br>(p <0.005).                                                                                                                                                                                              | The limited number of<br>intra-operative femoral<br>fractures did not<br>influence the outcome or<br>require further<br>procedures. Moreover,<br>the group with an SGN<br>showed a reduced<br>number of serious<br>general complications<br>and wound infections<br>compared with the NSP<br>group. The negative<br>influence of an unstable<br>trochanteric or<br>subtrochanteric fracture<br>on the quality of life was<br>substantial regardless of<br>the choice of implant."                                                                                                        | age 86. Both<br>intervention<br>groups had<br>lower quality of<br>life after<br>fractures. Author<br>conclusion<br>supports<br>gamma nail<br>based on<br>incidence of<br>severe general<br>complications,<br>although data do<br>not support clear<br>advantage of<br>either technique.<br>Study<br>underpowered<br>for revision rates<br>and failures. |
|-------------------------|-----|------------------------------------------------------------------------------|--------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| O'Brien<br>1995<br>RCT  | 7.0 | N = 102<br>Intertro-<br>chanteric<br>fractures                               | Gamma nail<br>vs. dynamic<br>hip screw                       | No differences between<br>groups. Length of surgical<br>procedure, not including<br>set-up and fracture<br>reduction, longer for GN<br>(mean 59 minutes) vs.<br>DHS group (mean 47<br>minutes). No differences<br>in length of stays.                                                                                                                                                                                                                                                                                                                                                                                                                         | "Effective treatment of<br>intertrochanteric<br>fractures was found for<br>both gamma nail and<br>dynamic hip screw.<br>Dynamic hip screw was<br>associated with lower<br>risk of local<br>complications and<br>recommended to be<br>considered for implant<br>choice for patients with<br>intertrochanteric<br>fractures."                                                                                                                                                                                                                                                              | Comparable<br>efficacy, though<br>duration of<br>operation and<br>use of<br>fluoroscopy<br>shorter for<br>dynamic hip<br>screw.                                                                                                                                                                                                                         |
| Sadowski<br>2002<br>RCT | 7.0 | N = 39<br>Oblique<br>and<br>transverse<br>intertro-<br>chanteric<br>fracture | Dynamic<br>condylar<br>screw vs.<br>proximal<br>femoral nail | Operative time $166\pm48$<br>(Dynamic Condylar<br>Screw) vs. $82\pm53$<br>(Proximal Femoral Nail), p<br><0.001. Blood transfused<br>DCS $2.95\pm1.7$ vs. PFN<br>$1.45\pm1.5$ , p = 0.006. No.<br>of patients receiving blood<br>DCS 18 vs. PFN 11, p =<br>0.008. Type of reduction:<br>Open 19 (Dynamic<br>Condylar Screws, 5<br>(Proximal Femoral Nail).<br>No differences in general<br>complications, p = 0.83.<br>Hospital stay: DCS $18\pm7$<br>vs. PFN $13\pm4$ days, p =<br>0.01. Rehabilitation<br>protocol identical for both<br>groups. Orthopaedic<br>complications 8:1<br>(Dynamic Condylar<br>Screws), p = 0.007.<br>Functional results, p = NS. | "Our results clearly<br>confirm the advantages<br>of intramedullary fixation<br>over fixed-angle screw-<br>plate fixation, including a<br>shorter operating time,<br>easier reduction of the<br>fracture, less blood loss,<br>fewer units of blood<br>transfused, fewer<br>patients needing a blood<br>transfusion, and a<br>shorter hospital stay.<br>More importantly, in this<br>fragile elderly population<br>the intramedullary nail<br>provided significantly<br>lower rates of implant<br>failure and delayed<br>healing, thereby<br>lessening the need for<br>revision surgery." | 7 dynamic<br>condylar screw<br>patients with<br>non-union or<br>device fracture<br>excluded, which<br>may have<br>biased outcome<br>comparisons.<br>Data suggest<br>PFN superior to<br>DCS.                                                                                                                                                             |
| Saudan<br>2002          | 7.0 | N = 206                                                                      | Sliding compression                                          | No differences between treatment groups in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | "There is no advantage to an intramedullary nail                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Both treatments were equally                                                                                                                                                                                                                                                                                                                            |
| RCT                     |     | Peri-<br>trochanteric<br>fractures                                           | hip screw vs.<br>intramedullary<br>nailing.                  | operation duration,<br>fluoroscopy time,<br>requirement of reduction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | versus a sliding<br>compression hip screw<br>for low-energy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | effective.                                                                                                                                                                                                                                                                                                                                              |

|                                  |     |                                                |                                                                    | of fracture before fixation,<br>and technical problems<br>with implants. No<br>difference in post-<br>operative data. At 1 year<br>29/206 (14%) had died.                                                                                                                                                                                                                                                                                                                                                                                                                  | pertrochanteric fractures.<br>AO/OTA 31-A1 and A2,<br>specifically with its<br>increased cost and lack<br>of evidence to show<br>decreased complications<br>or improved patient<br>outcome."                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                            |
|----------------------------------|-----|------------------------------------------------|--------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Vossinakis<br>2002<br>RCT        | 7.0 | N = 100<br>Peri-<br>trochanteric<br>fractures  | Pertrochanteri<br>c fixator vs.<br>sliding hip<br>screw            | Surgery time for<br>pertrochanteric fixator<br>(PF) (21.1±3.9 minutes)<br>vs. sliding hip screw<br>(SHS) (38.8±7.5 minutes),<br>p <0.001. EBL PF (0 ml)<br>vs. SHS (568±174), p<br><0.0001. Haemoglobin<br>post-op PF<br>(10.8±0.9mg/dL), p<br><0.0001. Decreased<br>haemoglobin with PF.<br>Hospitalization for PF<br>(8±1.5 days) vs. SHS<br>(16.7±2.2), p <0.00001.<br>PF began walking on<br>average 1 day earlier than<br>SHS patients, no<br>significant correlation<br>between time walking<br>began post-op and level of<br>walking ability at final<br>follow-up. | "Pertrochanteric fixator is<br>an effective and safe<br>device for treating<br>pertrochanteric fractures.<br>Pertrochanteric fixator<br>had a reduced operating<br>time, surgical trauma,<br>blood loss and length of<br>hospitalisation compared<br>to sliding hip screw"                                                                                                                                                                                                                               | Study suggests<br>percutaneous<br>fixation superior<br>to sliding hip<br>screw.<br>Relationship of<br>advanced age<br>and unstable<br>fracture more<br>prone to<br>shortening, and<br>no correlation<br>between early<br>walking after<br>operation and<br>load of walking<br>ability 6 months<br>later.                   |
| Brandt<br>2002<br>RCT            | 6.5 | N = 71<br>Peri-<br>trochanteric<br>fractures   | Percutaneous<br>compression<br>plating vs.<br>dynamic hip<br>screw | Differences in operation<br>time between treatments<br>(PCCP 46.6 vs. DHS 69.2<br>minutes, $p < 0.001$ ); 6<br>patients in PCCP and 10<br>in DHS experienced post-<br>operative general<br>complications ( $p = 0.13$ ).<br>24 DHS patients required<br>transfusions vs. 6 in<br>PCCP ( $p < 0.001$ ).                                                                                                                                                                                                                                                                     | "PCCP seems similar to<br>DHS regarding bone<br>healing and stability<br>despite relatively small<br>number of patients and<br>short follow up. PCCP<br>device was significantly<br>better than DHS<br>regarding blood loss, soft<br>tissue healing and<br>operation time."                                                                                                                                                                                                                              | Study followed<br>until fracture<br>union. No long-<br>term follow-up.<br>Suggest PCCP<br>technique is as<br>effective as<br>DHS; though<br>trend towards<br>more<br>complications in<br>DHS.                                                                                                                              |
| Baum-<br>gaertner<br>1998<br>RCT | 6.5 | N = 135<br>Inter-<br>trochanteric<br>fractures | Intramedullar<br>y hip screw<br>vs.<br>compression<br>hip screw    | Less EBL with<br>intramedullary hip screw<br>(HIS) (245 vs. 340 mL, p =<br>0.02). No difference in<br>operating room charges,<br>quality of reduction<br>achieved or implant<br>position. Surgical time<br>greater with CHS. Greater<br>operation time for CHS<br>with unstable fractures (67<br>vs. 94 minutes, p <0.01),<br>higher EBL (275 vs.<br>410mL, p <0.01), and<br>operating room charges<br>(\$2105 vs. \$2520, p<br><0.01). No difference<br>between stable and<br>unstable fracture patterns<br>with intramedullary hip                                       | "Sliding hip screw and<br>side plate should remain<br>the preferred device for<br>stable intertrochanteric<br>fractures until the<br>design/technique<br>modifications of<br>intramedullary hip screw<br>can substantially reduce<br>the rate of postoperative<br>femoral shaft fractures.<br>Results are applicable to<br>a community orthopaedic<br>surgeon's first<br>experience with the<br>device, and do not<br>necessarily reflect the<br>true potential of this<br>intramedullary hip<br>screw." | More higher<br>functioning<br>patients at<br>baseline with<br>SHS patients<br>(74%) vs IHS<br>(54%), biasing<br>in favor of SHS.<br>Noted use of<br>new technique<br>(new<br>intramedullary<br>nail) that<br>surgeons were<br>less familiar<br>with, providing<br>possible bias<br>against new<br>implant if<br>experience |

|                           |     |                                                            |                                                                                                      | screw. Intramedullary hip<br>screw patients had intra-<br>operative complications<br>exclusively.                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                         | would mitigate complications.                                                                                                                                                         |
|---------------------------|-----|------------------------------------------------------------|------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Harrington<br>2002<br>RCT | 6.5 | N = 102<br>Unstable<br>inter-<br>trochanteric<br>fractures | Compression<br>hip screw vs.<br>intramedullary<br>fixation with<br>an<br>intramedullary<br>hip screw | Mean operative times<br>CHS (88) vs. IMHS (108<br>minutes), p = 0.001.<br>Recovery of living status<br>at 12 months in 19/30<br>(63.3%) IMHS vs. 22/33<br>(66.7%) CHS. No<br>differences in transfusions<br>(15 vs. 12 receiving 2 U)<br>or time to mobilise after<br>surgery. Post-operative<br>stays 16.3 days CHS vs.<br>16.5 days IMHS (NS). No<br>differences in radiological<br>or functional outcome at<br>12 months. | "We have not shown that<br>the theoretical<br>advantages of<br>intramedullary fixation<br>devices have a<br>significant effect on<br>clinical outcome."                                                                                                                                                                                                                 | Twenty-five<br>percent (25%)<br>mortality rate at<br>6 months in the<br>elderly<br>population.<br>Surgical<br>procedures<br>were performed<br>by resident<br>physicians.              |
| Olsson<br>2001<br>RCT     | 6.5 | N = 114<br>Inter-<br>trochanteric<br>fractures             | Medoff sliding<br>plate vs.<br>compression<br>hip screw                                              | Operating time: MSP=58<br>vs. CHS=55 minutes, $p = 0.23$ . Hospital stay: MSP<br>= 11 vs. CHS=12 days, $p = 0.07$ . Intraoperative<br>bleed: MSP = 225 vs.<br>CHS = 200mL, $p = 0.07$ .<br>Femoral shortening:<br>MSP=15 vs. CHS =<br>11mm, $p = 0.03$ . Lag<br>screw sliding: MSP = 7 vs.<br>CHS=14mm, $p = 0.0004$ .<br>Number of post-operative<br>fixation failures: MSP = 0<br>vs. CHS = 5, $p = 0.03$ .                | "The marginally greater<br>femoral shortening seen<br>with the MSP compared<br>with the CHS appeared<br>to be justified by the<br>improved control of<br>impaction of the fracture.<br>Biaxial dynamisation in<br>unstable intertrochanteric<br>fractures is a safe<br>principle of treatment,<br>which minimizes the rate<br>of postoperative failure of<br>fixation." | Greater failure<br>rate of<br>compression hip<br>screw. Failures<br>occurred in<br>unstable<br>fractures.                                                                             |
| Pajarinen<br>2005<br>RCT  | 6.5 | N = 108<br>Peri-<br>trochanteric<br>fracture               | Dynamic hip<br>screw vs.<br>proximal<br>femoral nail                                                 | Median operation time in<br>minutes: $45(20 \text{ to } 105)$<br>DHS, $55(35 \text{ to } 200)$ PFN,<br>p = 0.011. Restoration of<br>walking ability was<br>achieved more often in the<br>patients treated with a<br>PFN (76.2%) compared<br>with those treated with a<br>DHS (53.7%; p = 0.040).                                                                                                                             | "[T]he use of a PFN in<br>the treatment of<br>trochanteric femoral<br>fracture may have a<br>positive effect on the<br>speed of restoration of<br>walking, when compared<br>with patients treated with<br>a DHS."                                                                                                                                                       | Lack of blinding<br>did not likely<br>have a strong<br>influence on<br>outcome as it<br>was simple<br>classification of<br>walking status.<br>Data favor<br>proximal<br>femoral nail. |
| Kosygan<br>2002<br>RCT    | 6.5 | N = 111<br>Inter-<br>trochanteric<br>fractures             | Percutaneous<br>compression<br>plate vs.<br>classic hip<br>screw                                     | Durations of operative<br>time were: PCCP $58\pm15.3$<br>vs. CHS $49\pm13.1$ , p =<br>0.001. Transfusions were:<br>$1.2\pm1.3$ vs. $1.7\pm1.4$ U, p =<br>0.05. Hospital stays did<br>not differ. Mortality rates<br>did not differ.                                                                                                                                                                                          | "The PCCP gives results<br>which are similar to those<br>obtained with a<br>conventional device. Its<br>suggested advantages<br>seem to be theoretical<br>rather than practical and,<br>being a fixed-angle<br>implant, it is not<br>universally applicable."                                                                                                           | Data suggest<br>overall<br>comparable<br>efficacy.                                                                                                                                    |
| Ahrengart<br>2002<br>RCT  | 6.0 | N = 426<br>Inter-<br>trochanteric<br>fractures             | Compression<br>hip screw vs.<br>gamma nail                                                           | Compression hip screw<br>operation time for fracture<br>type 1 50 (20-100)<br>minutes, p <0.01; type 2<br>45 (23-135), p <0.01; type<br>3 55 (25-115) minutes, p<br><0.05; type 4 59 (22-240)<br>min, p <0.05. CHS EBL                                                                                                                                                                                                       | "Surgical treatment<br>should be chosen<br>according to the type of<br>intertrochanteric fracture.<br>Compression hip screw<br>method may be faster<br>and safer for less<br>comminuted fractures.                                                                                                                                                                      | 23% drop out<br>(mortality,<br>complication).<br>Study used two<br>types of<br>compression hip<br>screws<br>(dynamic hip                                                              |

|                        |     |                                                            |                                                                                                         | for type 1 fractures 175 (0-<br>600) mL, p <0.05. Overall<br>GN operations 60 vs. 50<br>minutes for CHS, (p =<br>0.0001). Overall wound<br>infections 9%. Lag screw<br>in lower 1/3 of femoral<br>head 17% of GN vs. 24%<br>CHS, p <0.05. Distal<br>locking in 14% GN. Death<br>rate 18% within 6 months;<br>6 month findings Gamma<br>nail/compression hip<br>screw: fracture healed in<br>peri-operative position<br>72%/55%; sliding of lag<br>screw 3mm (0-25mm)/<br>5mm (0-27 mm), p <0.01;<br>Cut-out of lag screw 14/4<br>patients, p <0.05; pain at<br>top of greater trochanter<br>20%/6%, p <0.001;<br>External hip rotation of<br>fractured leg 20°(0°-70°)/<br>30°(0°-70°), p <0.001. | Comminuted fractures<br>may experience more<br>surgical difficulties<br>parallel to the fracture<br>complexity. Care must be<br>taken to put the femoral<br>head screw centrally in<br>the femoral head to avoid<br>cut-out."                                                                                                                                | screw and<br>Richards<br>classic) without<br>details of how<br>many or related<br>outcome<br>measures.                                       |
|------------------------|-----|------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|
| Bridle<br>1991<br>RCT  | 6.0 | N = 100<br>Inter-<br>trochanteric<br>fractures             | Dynamic hip<br>screw vs.<br>gamma nail                                                                  | Operative times not<br>different (DHS 33.5 vs.<br>GN 36 minutes). Gamma<br>nail obtains a more central<br>position of screw,<br>otherwise no difference<br>between groups.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | "Routine use of the<br>Gamma nail device is not<br>recommended until the<br>secondary femoral<br>fractures problem has<br>been resolved; however,<br>in the case of difficult<br>fractures where other<br>forms of fixation are less<br>satisfactory, such as<br>subtrochanteric<br>extension or reversed<br>obliquity, the Gamma nail<br>may prove useful." | High mortality<br>rate (36%) at 6<br>months                                                                                                  |
| Janzing<br>2002<br>RCT | 6.0 | N = 115<br>Inter-<br>trochanteric<br>fractures             | Percutaneous<br>compression<br>plate vs.<br>dynamic hip<br>screw                                        | Surgical times: PCCP 49<br>minutes vs. DHS 65<br>minutes, $p = 0.005$ . Intra-<br>operative problems: DHS<br>0% vs. PCCP 6%, $p =$<br>0.18. Unplanned<br>operations: 3% vs. 8%, $p$<br>= 0.53. One-year mortality<br>19% vs. 21%, $p = 0.96$ .<br>Mean VAS pain scores<br>first week: PCCP 3.2±1.2<br>vs. DHS 4.2±1.3.                                                                                                                                                                                                                                                                                                                                                                            | "Minimal invasive<br>treatment of<br>pertrochanteric fractures<br>with the PCCP reduces<br>operation time and<br>postoperative pain."                                                                                                                                                                                                                        | Operative time<br>was less with<br>PCCP, but<br>efficacy appears<br>comparable.                                                              |
| Lunsjö<br>2001<br>RCT  | 6.0 | N = 569<br>Unstable<br>inter-<br>trochanteric<br>fractures | Medoff sliding<br>plate vs. DHS<br>vs.<br>DHS/stabilizin<br>g plate vs.<br>dynamic<br>condylar<br>screw | DHS/stabilizing plate,<br>dynamic condylar screw<br>and Medoff sliding plates<br>had longer median<br>operation time (DHS 45<br>vs. DHS/TSP 70 vs. DCS<br>70 vs. MSP 60) and EBL<br>compared to dynamic hip<br>screw. Dynamic condylar<br>screw had longer median<br>hospital stay (14 vs. DHS<br>9 vs DHS/TSP 11 vs.<br>MSP 9 days).                                                                                                                                                                                                                                                                                                                                                             | "No superiority for Medoff<br>sliding plate over the<br>other 3 techniques.<br>However, it may be a<br>suitable method for<br>treatment of unstable<br>intertrochanteric<br>fractures due to low<br>fracture rate and biaxial<br>dynamization principle."                                                                                                    | Study found<br>some<br>comparison<br>data, but<br>authors'<br>purpose was to<br>utilize Medoff<br>vs. the other 3<br>groups as one<br>group. |

| Leung<br>1992<br>RCT      | 6.0 | N = 225<br>Peri-<br>trochanteric<br>fractures    | Dynamic hip<br>screw vs.<br>gamma nail                                                         | Mean duration of<br>operation lower with GN, p<br>>0.05. Mean EBL lower<br>with GN for unstable<br>fractures 837.85 (497.17)<br>vs. 1012.29 (477.18) ml, p<br>= 0.047. Mean duration of<br>hospital stay not different.<br>Mean time to full weight<br>bearing for stable<br>fractures GN 1.3 (0.88)<br>weeks vs. 1.9 (0.89) for<br>dynamic hip screw p =<br>0.453; for unstable<br>fractures 1.2 (0.64) weeks<br>GN vs.1.7 (0.76) p =<br>0.0009. Post-op mobility<br>not different. Hip ROM for<br>unstable fractures, hip<br>pain, thigh pain, not<br>different. Similar functional<br>results in both groups. | "Gamma nail<br>demonstrated similar<br>final outcomes to<br>dynamic hip screw but<br>occurs with less surgical<br>time, less screening time,<br>less blood loss and<br>earlier rehabilitation."                                                                                                                                                                                                                                                                                                           | Gamma nail<br>showed modest<br>advantages<br>over dynamic<br>hip screw in<br>reduced<br>fluoroscopy<br>time, shorter<br>incision, and<br>less intra-<br>operative blood<br>loss for unstable<br>fractures.<br>Gamma nail<br>had higher<br>operative<br>complications<br>(14% vs. 10%, p<br><0.05). |
|---------------------------|-----|--------------------------------------------------|------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Schipper<br>2004<br>RCT   | 6.0 | N = 424<br>Unstable<br>trochanteric<br>fractures | Gamma nail<br>vs. proximal<br>femoral nail                                                     | No significant differences<br>between quality of<br>reduction for both types of<br>implant and types of<br>fracture. Peri-operative<br>data for both groups:<br>Mean (SEM) blood loss<br>(mL): PFN = 220(13); GN<br>= 287(18). General<br>complications were<br>comparable for both<br>groups. No differences in<br>symptoms or limitations at<br>1 year (None: 77.6 vs.<br>76.5%, NS).                                                                                                                                                                                                                          | "[N]o important<br>differences between the<br>results of treatment with<br>either the GN or the<br>PFN. The general<br>complications and<br>mortality rates did not<br>reveal any surprising<br>results and are in range<br>with the results of other<br>studiesA skilled<br>surgeon may treat the<br>demanding unstable<br>trochanteric fractures<br>with any type of fixation<br>device, as long as he or<br>she remembers that the<br>fixation device will never<br>make up for surgical<br>failures." | Study suggests<br>interventions<br>have<br>comparable<br>efficacy<br>regarding major<br>outcomes.                                                                                                                                                                                                  |
| Vidyadhara<br>2007<br>RCT | 6.0 | N = 73<br>Unstable<br>trochanteric<br>fractures  | Single<br>femoral neck<br>screw vs 2<br>femoral neck<br>screws<br>(gamma nail<br>vs. ace nail) | Good fracture reductions<br>in 57% Gamma nail vs.<br>89% Ace. Delay in walking<br>Gamma 1.6±0.9 vs. Ace<br>2.5±1.3 days. Hip pain at<br>1 month GN 10% vs. Ace<br>6%. Fifty-three patients<br>had anatomical reduction;<br>13 acceptable, 7 poor<br>reductions on post-op<br>radiographs. All patients<br>walked weight bearing<br>from 2.3+/-1.2 days; good<br>post-op recovery without<br>pain at 4 weeks.                                                                                                                                                                                                     | "This study shows that<br>the osteoporosis of the<br>proximal femur does not<br>have a bearing on the<br>choice of single or two-<br>femoral neck screws<br>along intra-medullary<br>nails in the management<br>of trochanteric fractures<br>with respect to clinical<br>outcome."                                                                                                                                                                                                                        | No long term<br>functional<br>differences<br>although<br>improved<br>radiologic<br>healing and<br>some short term<br>outcomes<br>favored 2<br>screws.                                                                                                                                              |
| Mattsson<br>2004<br>RCT   | 5.5 | N = 26<br>Unstable<br>trochanteric<br>fracture   | Sliding screw<br>augmented<br>with calcium<br>phosphate<br>cement                              | No re-operations or post-<br>operative wound infection<br>during the study period.<br>Augmented group had a<br>smaller movement vs.<br>controls. Rotation at<br>fracture most pronounced                                                                                                                                                                                                                                                                                                                                                                                                                         | "Augmentation with<br>calcium phosphate<br>cement significantly<br>improved the stability of<br>unstable trochanteric<br>fractures fixed with a<br>sliding screw device. In                                                                                                                                                                                                                                                                                                                               | Study had no<br>clinical<br>outcomes<br>measures to<br>determine if<br>treatment was<br>of benefit to                                                                                                                                                                                              |

| Hardy<br>1999<br>RCT     | 5.5 | N = 160<br>Inter-<br>trochanteric<br>fractures | Intramedullar<br>y hip screw<br>(IMIS) vs.<br>compression<br>hip screw<br>plate (CHSP) | around sagittal axis as<br>varus angulation. Average<br>varus angulation for<br>controls was larger when<br>compared with augmented<br>fractures at all time points.<br>IMIS group significantly<br>better functional outcome,<br>particularly mobility score<br>at 1 and 3 months.<br>Significantly better ability<br>to walk outside observed<br>for IMIS group at 1 year.<br>CHSP patients had<br>significantly higher sliding<br>of lag screw (10.2mm±<br>11.76) compared to IMHS<br>(5.6 mm ± 4.32).                                                                                                                                                                | addition, it could be<br>shown that rotation at the<br>fracture was limited not<br>only in augmented<br>fractures but also in<br>fractures fixed with the<br>sliding screw device<br>alone."<br>"Use of intramedullary<br>hip-screws cannot be<br>recommended for the<br>treatment of<br>intertrochanteric femoral<br>fractures. However, this<br>device is a promising<br>alternative for<br>comminuted fracture with<br>subtrochanteric extension<br>or a reverse oblique<br>pattern because of the<br>decreased shortening of<br>the limb and the<br>possibility of early weight-<br>bearing." | patients. Small<br>sample size.<br>Follow-up with<br>increased<br>sample size to<br>1998 study.<br>Conclusion<br>appears<br>inconsistent<br>with presented<br>findings.                             |
|--------------------------|-----|------------------------------------------------|----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Goldhagen<br>1994<br>RCT | 5.5 | N = 75<br>Peri-<br>trochanteric<br>fractures   | Compression<br>hip screw vs.<br>Gamma nail                                             | No significant differences<br>for operative time<br>(intertrochanteric GN 72<br>vs. CHS 47);<br>(subtrochanteric GN 82<br>vs. CHS 99), EBL,<br>fluoroscopy time or<br>transfusions. No<br>differences for follow-up<br>ambulatory status, range<br>of motion, pain or return to<br>preinjury functional level.                                                                                                                                                                                                                                                                                                                                                           | " Clinical results can be<br>produced by GN equal to<br>CHS for the fixation of<br>intertrochanteric<br>fractures. Gamma nail<br>may be superior to CHS<br>for certain<br>subtrochanteric fracture<br>fixation; although,<br>gamma nail is more<br>technically demanding."                                                                                                                                                                                                                                                                                                                        | Study suggests<br>Gamma Nail is<br>more technically<br>demanding and<br>requires<br>significant<br>learning curve<br>to reduce per-<br>operative<br>complications.                                  |
| Fornander<br>1994<br>RCT | 5.5 | N = 209<br>Trochanteri<br>c fractures          | Gamma nail<br>vs. sliding hip<br>screw                                                 | Gamma nails mean<br>(median) blood loss 300<br>(250) vs. 440 (300) ml (p<br><0.01) for sliding hip<br>screw. Subtrochanteric<br>bleeding GN 480 (500) vs.<br>1,090 (880) ml (p <0.05)<br>SHS. Pertrochanteric<br>bleeding for GN 285 (240)<br>vs. 365 (280) ml (p <0.01)<br>SHS. Pertrochanteric<br>fractures mean (median)<br>operating time for GN 68<br>(65) vs. 56 (45) minutes (p<br><0.01) SHS.<br>Subtrochanteric fractures<br>operating times 70 (70) GN<br>vs. 109 (107) minutes (p<br><0.05) SHS. No<br>differences in complication<br>rate between 2 treatments.<br>Radiological fracture<br>positions, healing,<br>ambulation and returning<br>home similar. | "Gamma nail may be<br>useful for unstable,<br>especially<br>subtrochanteric, fractures<br>in fragile subjects."                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Study is early<br>report of<br>Gamma nail<br>usage. Data<br>suggest<br>technique may<br>be most<br>beneficial for<br>subtrochanteric<br>fractures<br>(reduced<br>operating time<br>and blood loss). |
| 2001                     | 5.5 | Trochanteri                                    | screw vs.<br>experimental                                                              | had longer procedure time<br>46±9 vs. 24±7 minutes for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | had shown advantages<br>but not all possible                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Experimental<br>nail group had<br>disproportionate                                                                                                                                                  |

| RCT                      |     | c fractures                                                  | intramedullary<br>nail with 2<br>non-parallel<br>cervicocephal<br>ic screws                      | experimental nail (p<br>< $0.001$ ). Total EBL higher<br>in trochanteric hip screws<br>( $329\pm161$ ) vs.<br>experimental nail ( $90\pm75$ )<br>(p < $0.001$ ); 6 weeks, pain<br>better with nails Salvati<br>and Wilson score (p<br>< $0.01$ ). Painless<br>mobilization in<br>trochanteric hip screw<br>$8.2\pm3.7$ vs. $4.3\pm1.3$ weeks<br>for nail group (p < $0.001$ ).<br>Effective weight-bearing<br>$8.3\pm4$ trochanteric hip<br>screw vs. $5.8\pm2.1$ weeks<br>nail group (p < $0.02$ ). Final<br>telescoping trochanteric<br>hip group 10mm vs. 0mm<br>for nail group (p < $0.001$ ). | disadvantages were able<br>to be evaluated."                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | number of<br>unstable<br>fracture<br>compared to the<br>hip screw (p<br><0.01), which<br>further<br>strengthened<br>data suggesting<br>strengthens that<br>experimental<br>nail superior.                                                                   |
|--------------------------|-----|--------------------------------------------------------------|--------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Papasimos<br>2005<br>RCT | 5.0 | N = 129<br>Unstable<br>trochanteric<br>fractures             | AMBI<br>dynamic hip<br>screw vs.<br>gamma nail<br>(TGN) vs.<br>proximal<br>femoral nail<br>(PFN) | Operative times favored<br>TGN (AMBI 59.2 vs. TGN<br>51.3 vs. PFN 71.2, p<br><0.05). Anatomical<br>reductions were achieved<br>in AMBI 92.5%, TGN 90%<br>and PFN 85%, p <0.05.<br>Estimated blood loss<br>282.4 vs. 250 vs. 265mL,<br>p >0.05. Hospitalization<br>9.9 vs. 8.6 vs. 8.8days, p<br>>0.05. Technical<br>complications 1 vs. 5 vs.<br>10 (mostly locking<br>difficulties).                                                                                                                                                                                                              | "The three methods are<br>comparable in the<br>treatment of unstable<br>trochanteric fractures.<br>The AMBI remains the<br>gold standard for the<br>fractures of trochanteric<br>region. We consider that<br>the PFN is a highly<br>accepted minimally<br>invasive implant for<br>unstable proximal<br>femoral fractures but<br>future modification of the<br>implant to avoid Z-effect<br>phenomenon, careful<br>surgical technique and<br>selection of the patients<br>should reduce its high<br>complication rate." | Data suggest<br>proximal<br>femoral nail<br>may be inferior<br>to dynamic hip<br>screw.                                                                                                                                                                     |
| McLaren<br>1991<br>RCT   | 5.0 | N = 100<br>Inter-<br>trochanteric<br>fractures               | Pugh nail vs.<br>dynamic hip<br>screw                                                            | No differences between<br>number of early deaths<br>(Pugh 10 vs. DHS 6),<br>operation time (53 vs. 57<br>minutes), and the number<br>of unsatisfactory fixations<br>(7 vs. 4). Length of stay in<br>ward was similar in each<br>group. No difference in<br>walking ability at 6<br>months.                                                                                                                                                                                                                                                                                                         | "[W]ith both the Pugh<br>and the DHS devices,<br>there is a low incidence<br>of long-term problems<br>even if the fracture has<br>been quite grossly<br>malreduced. Because we<br>found no specific<br>disadvantages for the<br>Pugh nail and because of<br>the price difference<br>between it and the DHS,<br>we have elected to use<br>the Pugh device for fixing<br>future intertrochanteric<br>fractures in our unit."                                                                                             | No clear<br>differences. By<br>chance, slightly<br>more unstable<br>fractures in the<br>DHS group<br>(27/50 vs.<br>22/50), yet that<br>group tended to<br>have fewer<br>unsatisfactory<br>fixations (4 vs.<br>7). Statistically,<br>no preference<br>shown. |
| Watson<br>1998           | 5.0 | N = 160                                                      | Compression<br>hip screw with                                                                    | All stable fractures with no<br>differences in union (mean<br>3 months) or loss of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | "Based on the results of<br>this study, the authors                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Pseudo-<br>randomization                                                                                                                                                                                                                                    |
| RCT                      |     | trochanteric<br>fractures of<br>which 114<br>are<br>unstable | plate<br>(Dynamic Hip<br>Screw) vs.<br>Medoff sliding<br>plate                                   | fixation. Time to union for<br>114 unstable fractures not<br>different. No differences in<br>hospitalization (mean 9<br>days), return to                                                                                                                                                                                                                                                                                                                                                                                                                                                           | compression hip screw<br>device remains the<br>implant of choice of<br>stabilization of stable<br>intertrochanteric                                                                                                                                                                                                                                                                                                                                                                                                    | record number.<br>Substantial<br>difference in<br>group sizes<br>apparently a                                                                                                                                                                               |
|                        |     | fractures                                     |                                                                                                                                                         | ambulatory status, or<br>post-op pain. Medoff plate<br>had higher blood loss (350<br>vs. 213mL, $p = 0.0001$ )<br>and operating time (135<br>vs. 90 minutes, $p =$<br>0.0001); 10 (5.6%)<br>patients died during<br>hospitalization. Overall<br>failure rate for unstable<br>fracture 9.6%; failure rate<br>with use of compression<br>hip screw 14%, ( $p = 0.01$ )<br>than with Medoff plate<br>(2%, 2 patients).                                                                                                                                                                                                                                                                                        | fractures."                                                                                                                                                                                                                                                                                                                                                                                                                           | consequence.<br>Some data<br>support each<br>approach.                                                                                                                                          |
|------------------------|-----|-----------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Hardy<br>2003<br>RCT   | 5.0 | N = 80<br>Inter-<br>trochanteric<br>fractures | Two screws<br>transfixing the<br>nail in 2<br>separate<br>holes (Group<br>A) vs. nail<br>locked with 1<br>screw<br>passing<br>through slot<br>(Group B) | No differences in intra-<br>hospital mortality (2 vs. 3).<br>Statistical significance (p<br>= 0.029) found for<br>tolerance to dynamically<br>locked nails with 1 patient<br>in Group B having cortical<br>hypertrophy of femur at<br>level of tip of nail when<br>compared to 6 patients in<br>Group A.                                                                                                                                                                                                                                                                                                                                                                                                   | "The use of two static<br>locking screws is<br>correlated with a<br>relatively high rate of<br>cortical hypertrophy and<br>that the use of a<br>dynamically locked nail<br>significantly reduces the<br>prevalence of this<br>complication."                                                                                                                                                                                          | High mortality<br>rate reduced<br>power of<br>study(20% at 1<br>year follow up)                                                                                                                 |
| Utrilla<br>2005<br>RCT | 4.5 | N = 210<br>Trochan-<br>teric<br>fractures     | Trochanteric<br>gamma nail<br>vs.<br>compression<br>hip screw                                                                                           | Post-operative mortality<br>over 12 months TGN 19<br>vs. CHS 21, NS. No<br>differences in medical<br>complications or local<br>wound complications. No<br>intra-operative or post-<br>operative femoral shaft<br>fractures. A lag screw<br>cutting through femoral<br>head occurred in 1 TGN<br>vs. 2 CHS. In all cases,<br>original hip screw placed<br>superiorly in femoral head.<br>No differences in intra-<br>operative complications or<br>rate of fixation failure.<br>Fluoroscopy time (minutes)<br>TGN = $2.2\pm1.2$ ; CHS =<br>$2.7\pm1.2$ , p = 0.006.<br>Transfused (no.) TGN =<br>28; CHS = 44; p = 0.029.<br>Transfusion (unit) TGN =<br>$0.6\pm1.0$ ; CHS = $0.9\pm1.2$ ; p<br>= $0.046$ . | "[T]he new Gamma nail<br>appears to offer some<br>advantages over the<br>CHS, namely less blood<br>loss, less fluoroscopy<br>time, and similar<br>intraoperative<br>complication rate we<br>found a better walking<br>ability score with the<br>TGN. We believe that the<br>indication for either TGN<br>or CHS is similar in<br>stable fractures, but we<br>recommend the use of<br>the TGN for unstable<br>trochanteric fractures." | Data suggest<br>comparable<br>efficacy and no<br>major<br>differences in<br>major<br>complication<br>rates. The<br>better walking<br>ability in the<br>TGN group<br>requires<br>repeating.      |
| Esser<br>1986<br>RCT   | 4.5 | N = 98<br>Trochanteri<br>c fractures          | Jewett nail-<br>plate (JNP)<br>vs. Dynamic<br>hip screw<br>(DHS) (both<br>135°)                                                                         | Operative difficulties<br>occurred more frequently<br>with DHS vs. JNP (10 %<br>vs. 1%, p <0.01). DHS<br>better radiographic results<br>at 6 months (p = 0.02).<br>More with DHS mobile 6<br>months (73% vs. 57%); by<br>chance more in DHS less<br>mobile before fracture.<br>With initial mobility taken<br>into account, corrected                                                                                                                                                                                                                                                                                                                                                                      | Over the years the<br>Jewett fixed-angle nail-<br>plate has served both our<br>patients and surgeons<br>well and we see no<br>reason why it should be<br>rejected completely; it<br>has also allowed our<br>trainee surgeons and<br>theatre nurses to<br>become adept in one<br>technique of trochanteric                                                                                                                             | Allocation not<br>described and<br>baseline<br>comparison<br>missing, with<br>note that DHS<br>group were less<br>mobile than<br>JNP before<br>surgery. Data<br>suggest DHS<br>superior to JNP. |

| Davis<br>1988<br>RCT | 4.5 | N = 230<br>Inter-<br>trochanteric<br>fractures             | Küntscher-Y<br>nail vs. sliding<br>hip screw                                                                  | percent of mobile patients<br>61% JNP vs. 88% DHS, p<br><0.05. Technical<br>complications at fixation<br>more with DHS (24%) vs.<br>JNP (2%), p <0.05.<br>After control for age and<br>mental status, expected 1-<br>year mortality rate slightly<br>lower for K-Y subgroup<br>(11%) than for sliding hip<br>screw subgroup (13%) in<br>those with good walking<br>ability (NS). Total 1-year<br>mortality rates 40% vs.<br>35% (NS). High<br>complication rates both | fixation rather than less<br>skilled in several.<br>However, on the basis of<br>this study we feel that we<br>should now bias our<br>training and equipment<br>towards the DHS<br>system."<br>"Study suggests that<br>sliding hip screw is a<br>better for the fixation of<br>intertrochanteric fractures<br>of the femur compared to<br>Küntscher-Y nail. Sliding<br>hip screw was associated<br>with a significantly lower<br>mortality for patients with<br>good preoperative<br>walking ability compared | High mortality at<br>1 year (40% vs.<br>35% SHS), p<br>>0.05. Study did<br>not exclude<br>severely<br>debilitated or<br>demented<br>patients<br>(frequently<br>excluded in other             |
|----------------------|-----|------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| _                    |     |                                                            |                                                                                                               | groups.                                                                                                                                                                                                                                                                                                                                                                                                                                                               | to Küntscher-Y nail."                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | comparison<br>studies).                                                                                                                                                                      |
| Bong<br>1981<br>RCT  | 4.0 | N = 150<br>Unstable<br>inter-<br>trochanteric<br>fractures | Skeletal<br>traction with<br>tibial pin vs.<br>medial<br>displacement<br>osteotomy vs.<br>valgus<br>osteotomy | Percentages of cases with<br>poor results: conservative<br>26.1% vs. medial<br>displacement osteotomy<br>14.6% vs. valgus<br>osteotomy 20.5%. 1 non-<br>union in conservative<br>group. 1 AVN in valgus<br>osteotomy.27.2% of<br>operative groups had<br>mechanical failure.                                                                                                                                                                                          | "[S]howed no significant<br>difference between those<br>treated with the Dimon<br>and Hughston osteotomy<br>and those treated by the<br>Sarmiento osteotomy.<br>Conservative treatment<br>of skeletal traction for<br>unstable fracture was<br>found to be well<br>tolerated."                                                                                                                                                                                                                               | Data suggest<br>superior results<br>with surgery.                                                                                                                                            |
| Park<br>1998<br>RCT  | 4.0 | N = 60<br>Inter-<br>trochanteric<br>fracture               | Gamma AP<br>nail vs.<br>compression<br>hip screw                                                              | No mechanical<br>complications. Time to<br>union similar with 1 non-<br>union in CHS. Greater<br>decrease in femoral neck<br>shaft angle in CHS group.<br>Mean operative time: GN<br>79 minutes vs. CHS 94<br>minutes, $p = 0.03$ . Mean<br>blood loss (mL): Gamma<br>nail EBL 462mL vs. CHS<br>622 mL, $p = 0.01$ .<br>Average Ceder post-op<br>mobility scores: 5.10 GN<br>vs. 4.73 CHS (NS). Post-<br>op complications similar,<br>but patterns different.         | "[T]he Gamma AP<br>locking nail is more<br>efficient than the CHS in<br>the treatment of<br>intertrochanteric<br>fractures in geriatric<br>patients."                                                                                                                                                                                                                                                                                                                                                        | No details on<br>mortality or<br>drop-outs.<br>Study used<br>Gamma (AP)<br>Nail designed<br>for Asian-Pacific<br>population with<br>smaller<br>dimensions than<br>traditional<br>Gamma Nail. |
| Fritz<br>1999<br>RCT | 4.0 | N = 80<br>Unstable<br>trochanteric<br>fractures            | Gliding nail<br>vs. gamma<br>nail                                                                             | No differences in<br>operative time, EBL or<br>hospital stay (9.2 vs. 10.4<br>days, NS). Intraoperative<br>complications in GLN<br>2.5% vs. 17.5%. Deaths<br>were (before<br>discharge/during first 6<br>mo.): GLN (0/15%) vs.<br>GAN (7.5/5%).                                                                                                                                                                                                                       | "We found no differences<br>concerning the operation<br>time, blood loss, period<br>of stationary treatment or<br>social situation. Also, the<br>anatomic reconstruction<br>and the long-term<br>function according to the<br>Merle d'Aubigne score<br>were comparable."                                                                                                                                                                                                                                     | Most data<br>comparable.                                                                                                                                                                     |
| Butt<br>1995         | 4.0 | N = 95                                                     | Dynamic hip<br>screw vs                                                                                       | Operative times: GN<br>mean 53 minutes vs. 62                                                                                                                                                                                                                                                                                                                                                                                                                         | "We do not recommend the gamma nail for the                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Sparse details<br>of statistical                                                                                                                                                             |
| RCT                  |     | Peri-<br>trochanteric<br>fractures                         | gamma nail                                                                                                    | minutes DHS. Hospital<br>stays averaged 22 vs. 23<br>days. Times to union                                                                                                                                                                                                                                                                                                                                                                                             | treatment of peri-<br>trochanteric femoral<br>fractures."                                                                                                                                                                                                                                                                                                                                                                                                                                                    | analysis<br>weakens<br>conclusion                                                                                                                                                            |

|                          |     |                                                                                                           |                                                                                                                                                                                                        | averaged 150 vs. 142.<br>Overall total number of<br>complications GN 17/47<br>(36.2%) vs. DHS 26/48<br>(54.2%). Fractured<br>femoral shafts in 8 GN vs.                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                 | regarding<br>complications.<br>Study suggests<br>DHS is superior<br>to Gamma nail.                                                                                                                     |
|--------------------------|-----|-----------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                          |     |                                                                                                           |                                                                                                                                                                                                        | 0 DHS.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                        |
| Fribagen                 | 80  | N - 222                                                                                                   | Hemi/Artr                                                                                                                                                                                              | Mean Eq.5d index score                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | nes<br>"Hemiarthronlasty is                                                                                                                                                                                                                                                                     | Trends favored                                                                                                                                                                                         |
| RCT                      | 0.0 | All<br>displaced<br>intracapsul<br>ar femoral<br>neck<br>fractures<br>with<br>angular<br>displaceme<br>nt | reduction and<br>two parallel<br>screws vs.<br>bipolar<br>cemented<br>hemiarthropla<br>sty. Charnley-<br>Hastings<br>bipolar,<br>cemented vs.<br>Olmed,<br>DePuy/Johns<br>on and<br>Johnson<br>screws. | at 24 months 0.13 higher<br>in hemiarthroplasty group<br>(0.01 to 0.25, $p = 0.03$ );<br>20 (18%) in internal<br>fixation group experienced<br>intra-operative problems;<br>9 changed to<br>hemiarthroplasty because<br>of irreducible fractures (8)<br>or poor screw purchase<br>(1). Hemiarthroplasty<br>better functional results,<br>but not all statistically<br>significant. Harris hip<br>scores at 24 months<br>favored hemiarthroplasty<br>(67.3±15.5 vs. 70.6±19.1,<br>p = 0.26). Death rates<br>same (34.8% vs. 35.5%). | associated with better<br>functional outcome than<br>internal fixation in<br>treatment of displaced<br>fractures of the femoral<br>neck in elderly patients."                                                                                                                                   | hemiarthroplast<br>y in functional<br>measures. More<br>transfusions<br>with<br>hemiarthroplast<br>y. More<br>mechanical<br>failure of<br>internal fixation<br>or nonunion<br>among fixation<br>group. |
| Cornell<br>1998<br>RCT   | 7.5 | N = 48<br>Displaced<br>femoral<br>neck<br>fractures<br>over 65<br>years                                   | Unipolar vs.<br>bipolar<br>arthroplasties                                                                                                                                                              | Data at 6 months include<br>one dislocation each<br>group. Total rotation 36.6<br>uni vs. 50 bi. Abduction 22<br>vs. 38. Get up and go test<br>27.3±21 vs. 33.1±30 s. 6<br>minute walk test 1.93 ft/s<br>vs. 2.67 (p <0.03).                                                                                                                                                                                                                                                                                                       | "These early results<br>suggest that use of the<br>less expensive unipOolar<br>prosthesis for<br>hemiarthroplasty after<br>femoral neck fracture<br>may be justified in the<br>elderly."                                                                                                        | Unclear as to<br>subjects<br>enrolled; states<br>48 enrolled and<br>completed 6<br>month follow-<br>up. Data<br>suggest better<br>outcomes with<br>bipolar group at<br>6 month follow-<br>up.          |
| Blomfeldt<br>2005<br>RCT | 7.5 | N = 102<br>Displaced<br>femoral<br>neck<br>fractures                                                      | Total hip<br>replacement<br>(Exeter<br>modular stem<br>and Ogee<br>cup) vs<br>internal<br>fixation with<br>two<br>cannulated<br>screws<br>(Olmed)                                                      | Complication rates over<br>48 months 4% THR vs.<br>47% (p <0.001). Less pain<br>24 months THR group (p<br><0.005), borderline 48<br>months (p = 0.088).<br>Walking rating favored<br>THR 1st 24 months (p<br><0.05). 97% of THR vs.<br>57% fixation at 48 months<br>had no hip complications<br>(p <0.001). Reoperation<br>rates 48 months 4% vs.<br>47% (p < 0.001). Death<br>rates both 25%.                                                                                                                                     | "Compared with internal<br>fixation, primary hip<br>replacement provides a<br>better outcomethe<br>complication and<br>reoperation rates were<br>significantly lower and<br>hip function and health-<br>related quality of life<br>were at least as good as<br>at four years after<br>surgery." | Arthroplasty<br>outcomes<br>appear better.<br>Re-operative<br>rates<br>substantially<br>lower in THR<br>group.                                                                                         |
| Macaulay<br>2008<br>RCT  | 7.0 | N = 40<br>Displaced<br>femoral<br>neck<br>fracture                                                        | Total hip<br>arthroplasty<br>(≥28mm<br>femoral head<br>implant) vs.<br>hemi-<br>arthroplasty<br>(uni- or bi-<br>polar)                                                                                 | No differences at 6<br>months. Less pain THA<br>group at 12 months ( $p =$<br>0.02). At 24 months, pain<br>on SF-36 subscale for<br>THA (54.8±7.9) vs.<br>hemiarthroplasty (44.7±<br>10.5), $p = 0.04$ . WOMAC<br>and Harris hip scores                                                                                                                                                                                                                                                                                            | "Significant differences in<br>outcomes, without a<br>significantly greater<br>incidence of<br>complications, suggest<br>THA is a valuable<br>treatment option for the<br>active elderly hip fracture<br>population."                                                                           | Data suggest<br>superiority of<br>THA for active<br>elderly with hip<br>fractures at 2<br>years follow-up.                                                                                             |

|                        |     |                                                         |                                                                                                | favored THA at 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                |                                                                                                                                        |
|------------------------|-----|---------------------------------------------------------|------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|
| Keating<br>2006<br>RCT | 7.0 | N = 299<br>Displaced<br>intra-<br>capsular<br>fractures | Bipolar hemi-<br>arthroplasty<br>vs. total hip<br>arthroplasty                                 | Over 24 months follow-up<br>44/118 (37.3%) fixation<br>failed, additional hip<br>surgery needed for 46/118<br>(39.0%) fixation vs. 6/111<br>(5.4%) for<br>hemiarthroplasty (p<br><0.001). Patient-assessed<br>outcomes 4 month EQ-5D<br>assessed for worse<br>general level of health<br>37/110 (33.6%) for fixation<br>vs. 19/102 (18.6%) hemi-<br>arthroplasty; OR = 0.45<br>(95% CI 0.23-0.86), p =<br>0.02. At 12 months hip<br>rating questionnaire for<br>patient-assessed<br>outcomes for all patients<br>70.6 fixation vs. 77.1<br>hemiarthroplasty, adjusted<br>difference -5.82, p = 0.01.                                                                                                                                                                     | "Arthroplasty is more<br>clinically effective and<br>cost-effective than<br>reduction and fixation in<br>healthy older patients<br>with a displaced<br>intracapsular fracture of<br>the hip. The long-term<br>results of total hip<br>replacement may be<br>better than those of<br>bipolar hemiarthroplasty." | Multiple arms<br>with loose<br>randomization<br>schemes<br>inducing<br>addition of<br>fixation as<br>another<br>treatment<br>variable. |
| Parker<br>2002<br>RCT  | 6.5 | N = 455<br>Intra-<br>capsular<br>fractures              | Hemiarthroplas<br>ty (Austin<br>Moore) vs.<br>internal<br>fixation (3 AO<br>Stratec<br>screws) | Trends towards worse<br>survival for internal<br>fixation for those 70-79,<br>but better for internal<br>fixation for those 80-89 or<br>>90 years. Pain scores at<br>1 year hemi 2.41 vs. IF<br>2.22 (p = 0.91) and 3<br>years 1.79 vs. 1.92, p =<br>0.93.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | "We recommend that<br>displaced intracapsular<br>fractures in the elderly<br>should generally be<br>treated by arthroplasty<br>but that internal fixation<br>may be appropriate for<br>those who are very frail."                                                                                              | Large sample<br>size.                                                                                                                  |
| Baker<br>2006<br>RCT   | 6.5 | N = 81<br>Displaced<br>intra-<br>capsular<br>fractures  | THR vs.<br>hemiarthroplas<br>ty                                                                | Patients reported<br>significant decrease in<br>walking distance (p<br><0.001) after hemi-<br>arthroplasty vs. increase (p<br>= 0.023) after total hip<br>arthroplasty. No wear<br>evidence in cemented<br>polyethylene cup any hip.<br>21/32 (66%) acetabular<br>erosion for<br>hemiarthroplasty. Total hip<br>arthroplasty group had<br>significantly superior<br>cementing technique (p =<br>0.028). Mean oxford hip<br>score (points) at time of<br>final follow up: 22.3 (12 to<br>48) hemiarthroplasty<br>compared to 18.8 (12 to<br>47) total hip arthroplasty, p<br>= 0.033. Mean walking<br>distance (mi, km) at final<br>follow-up 1.17 (0 to 4), 1.9<br>(0 to 6.4) hemiarthro-<br>plasty, p = 0.039.<br>Borderline for overall rate<br>of revision or planned | "Findings suggest that<br>total hip arthroplasty is<br>superior to<br>hemiarthroplasty. Total<br>hip arthroplasty was<br>associated with better<br>functional outcomes,<br>fewer complications,<br>fewer revisions after<br>three years of follow-up."                                                         | Study suggests<br>THR had more<br>advantages in<br>this healthy<br>younger<br>population.                                              |

|                                                                 |     |                                                                  |                                                                                                                                                   | revision with 14.6% (6/41)<br>hemiarthroplasty vs. 2.5%<br>(1/40) total hip<br>arthroplasty, $p = 0.058$ .                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                       |
|-----------------------------------------------------------------|-----|------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Kim<br>J Bone<br>Joint Surg<br>Am<br>2005;87(10):2186-92<br>RCT | 6.5 | N = 58<br>Unstable<br>inter-<br>trochanteric<br>fractures        | Cementless<br>Calcar-<br>replacement<br>prosthesis vs.<br>proximal<br>femoral nail                                                                | Final mortality rate at 3<br>years 55% cementless vs.<br>17% proximal femoral nail<br>( $p = 0.006$ ). Ability to walk<br>with a walker 7.8±1.6 days<br>post-operative for<br>cementless vs. 8.8 ± 2.9<br>days for proximal femoral<br>nail ( $p = 0.069$ ). No<br>difference in functional<br>scores between<br>treatments at last follow-<br>up. Cementless patients<br>mean hospital cost<br>\$11,048±\$1216 vs.<br>\$5,150±\$821 proximal<br>femoral nail. | "No significant<br>differences regarding<br>functional outcomes,<br>hospital stay, and<br>general complications<br>was found between the<br>two groups. However,<br>results showed no<br>functional benefit of the<br>arthroplasty at a<br>minimum of two years<br>postoperatively."                                                      | Lower mortality<br>rate with PFN.<br>Lower costs and<br>trend towards<br>earlier activity<br>with PFN.                                                                |
| Lamadé<br>1995<br>RCT                                           | 6.5 | N = 30<br>Cemented<br>hip arthro-<br>plasty                      | Antihistamine<br>s (H1 and H2)<br>vs. placebo                                                                                                     | No significant difference<br>for drop in blood pressure<br>between the groups at<br>time of prosthesis<br>insertion.                                                                                                                                                                                                                                                                                                                                           | "There does not seem to<br>be any prophylactic<br>indication for histamine-<br>receptor-blocking agents<br>in cemented hip<br>arthroplasty. Thus<br>recommended means to<br>prevent BCIS should still<br>focus on operative<br>technique."                                                                                                | Time from<br>antihistamine<br>blockers to<br>prosthesis<br>implant not<br>defined. Data<br>suggest lack of<br>efficacy.                                               |
| Calder<br>1996<br>RCT                                           | 6.0 | N = 250<br>Displaced<br>intracapsul<br>ar fractures              | Unipolar<br>uncemented<br>vs. cemented<br>bipolar<br>prothesis                                                                                    | No difference in length of<br>hospital stay. No<br>difference in 1-year<br>survival time. Cemented<br>bipolar prothesis group<br>appeared to enjoy higher<br>levels of function although<br>findings were not<br>statistically significant<br>(return to pre-injury level<br>39.8% vs. 28.8%, p =<br>0.07).                                                                                                                                                    | "Unipolar prosthesis may<br>give better short-term<br>results in octogenarians.<br>Younger patients may<br>benefit more from a<br>bipolar implant due to<br>more mobility. Regardless<br>of mental state or mobility,<br>we see no justification for<br>the use of expensive<br>bipolar hip prosthesis in<br>patients 80 years or older." | Study lacked<br>power due to<br>high mortality<br>rate at 1-year of<br>30%. Results<br>showed trend to<br>better functional<br>results with<br>bipolar<br>prosthesis. |
| Raia<br>2003<br>RCT                                             | 5.5 | N = 115<br>Displaced<br>femoral<br>neck<br>fractures<br>ages 65+ | Uni- (Unitrax)<br>vs. bi-polar<br>(Centrax)<br>hemi-<br>arthroplasties                                                                            | EBL comparable (252 vs.<br>237mL). SF36 scores for<br>physical function<br>(baseline/3 months/1<br>year): uni (48.5/54.2/51.6)<br>vs. bipolar (52.1/51/54.2)<br>(NS). General health<br>scores: uni (63.3/65.9/<br>72.7) vs. bipolar<br>(66.4/69.1/74.3) (NS).                                                                                                                                                                                                 | "[T]he bipolar<br>endoprosthesis provides<br>no advantage in the<br>treatment of displaced<br>femoral neck fractures in<br>elderly patients regarding<br>quality of life and<br>functional outcomes."                                                                                                                                     | Data suggest<br>unipolar<br>prosthesis as<br>bipolar not<br>shown superior.<br>High dropout<br>rate; 24 known<br>deceased at 1<br>year.                               |
| Field<br>2005<br>RCT                                            | 5.0 | N = 50<br>Displaced<br>subcapital<br>fractures                   | All used<br>Cambridge<br>cup vs.<br>Cambridge<br>cup with<br>hydroxyapatit<br>e coating<br>removed. All<br>Thompson<br>hemiarthropla<br>sties and | Mortality at 1, 2, 5 years<br>was 16%, 28%, and 46%.<br>Barthel index score<br>recovered to pre-fracture<br>levels at 2 years, then<br>declined at 5 years to 17.8<br>in the HA-coated group<br>vs. 17 in the non-coated<br>group ( $p = 0.177$ ).<br>Charnley modified Merle<br>d'Aubigne scores not                                                                                                                                                          | "This trial shows good<br>early results using a<br>novel, hydroxyapatite-<br>coated, physiological<br>acetabular component<br>Although our retrieval<br>data suggest that the<br>HA-coated components<br>remain well fixed to bone<br>after resorption of the<br>HA, a surface finish                                                     | Experimental<br>study. Data<br>suggest<br>hydroxyapatite<br>coated<br>acetabular cups<br>may have less<br>migration and<br>require fewer<br>revisions.<br>However,    |

|                                                |     |                                                                     | Palacos-R<br>cement.                                                                                                                                                                                | different (p = 0.48).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | known to provide long-<br>term osseointegration<br>may be advantageous."                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | functional<br>scores not<br>different.                                                                                       |
|------------------------------------------------|-----|---------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|
| Sikorski<br>1981<br>RCT                        | 5.0 | N = 218<br>Displaced<br>subcapital<br>fracture                      | Internal<br>fixation vs.<br>Thompson<br>hemi-<br>arthroplasty<br>through a<br>McKee<br>anterolateral<br>approach vs<br>Thompson<br>hemiarthropla<br>sty through a<br>Moore<br>internal<br>fixation. | Patients in irreducible<br>group had highest<br>mortality (21% vs. 1%<br>internal fixation and 4%<br>hemiarthroplasty, p<br><0.001). Crude mortality<br>at 2 years also worse in<br>these patients (70%), p<br><0.05. Pain after 1 month<br>in 28% internal fixation vs.<br>11% anterior Thompson<br>vs. 4% posterior<br>Thompson. Revisions<br>between 3-24 months in<br>32% vs. 7% vs. 1%.<br>Technically unsatisfactory<br>in 4. Pain after 1 month in<br>28% internal fixation vs.<br>11% anterior Thompson<br>vs. 4% posterior<br>Thompson. Revisions<br>between 3-24 months in<br>32% vs. 7% vs. 1%.<br>Thompson. Revisions<br>between 3-24 months in<br>32% vs. 7% vs. 1%.<br>Technically unsatisfactory<br>in 46% vs. 36% vs. 33%. | "Thompson<br>hemiarthroplasty, using<br>an anterolateral<br>approach, is the safest<br>operation in this group of<br>patients."                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Data support<br>Thompson<br>hemiarthroplast<br>y for these<br>fractures.                                                     |
| Dorr<br>1986<br>RCT                            | 5.0 | N = 89<br>Femoral<br>neck<br>fractures                              | THR vs.<br>noncemented<br>bipolar<br>hemiarthroplas<br>ty vs.<br>cemented<br>hemiarthroplas<br>ty                                                                                                   | More pain, progressive<br>pain with time and activity,<br>decreased ambulation,<br>increased need for<br>assistive devices in<br>uncemented<br>hemiarthroplasty. Use of<br>uncemented stem stopped<br>after 13 complained of<br>disabling pain and<br>severely limited function.<br>No difference in pain or<br>aids required between<br>cemented<br>hemiarthroplasty and<br>THR. THR had<br>progressively improving<br>ambulation and peak<br>ambulation at 6 months<br>vs. cemented<br>hemiarthroplasty. No<br>difference in gain velocity<br>or single-limb stance<br>between cemented<br>hemiarthroplasty and<br>THR.                                                                                                                  | "Consideration of patients'<br>medical diseases must be<br>a part of the decision of<br>the surgical treatment to<br>achieve optimal mortality<br>rate. No deaths were<br>recorded for patients<br>younger than 60, even<br>those with significant<br>medical diseases.<br>Fixation is a strong<br>consideration for patients<br>60-70. Patients 70-90<br>years with medical<br>diseases are optimal<br>candidates for index<br>replacement arthroplasty;<br>rapid rehabilitation, low<br>immediate mortality rate,<br>and good pain relief with<br>good functional status<br>benefits these patients<br>physically and mentally." | Study had lack<br>of statistical<br>data.<br>Uncemented<br>hemiarthroplast<br>y arm was<br>stopped due to<br>disabling pain. |
| El-Abed<br>2005<br>Quasi-<br>randomized<br>RCT | 4.5 | N = 122<br>Displaced<br>subcapital<br>hip<br>fractures<br>>70 years | Uncemented<br>hemiarthroplas<br>ty (Austin<br>Moore) vs.<br>dynamic hip<br>screw (AO<br>Synthes)                                                                                                    | Hemiarthroplasty results<br>42% excellent/good vs.<br>70% DHS (p <0.001). SF-<br>36 hemi 50 percentile vs.<br>74, p = 0.002. Greater<br>mortality with<br>hemiarthroplasty (p <0.05).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | "Both physician based<br>and patient based<br>outcome scores favour<br>retention and internal<br>fixation of the femoral<br>head in this cohort of<br>patients at a short term                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Mortality, overall<br>results, SF-36<br>data support<br>dynamic hip<br>screw over<br>hemiarthroplasty<br>for these           |
| Emery                                          | 4.5 | N = 53                                                              | Cemented vs.                                                                                                                                                                                        | No pain present in 13/19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | follow-up."<br>"After a mean follow-up                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | fractures.<br>Details sparse.                                                                                                |
| 1991                                           | 1   |                                                                     | uncemented                                                                                                                                                                                          | (08.4%) cemented VS.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | of 17 months,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Data suggest                                                                                                                 |

| RCT                    |     | Subcapital<br>fracture                           | Moore stems                                                                                         | 4/20 (25%) uncemented, p<br>= 0.002. More<br>dependency on walking<br>aids after injury in 16<br>uncemented vs. 8<br>cemented, p = 0.015.                                                                                                                                                                                                                                                                           | significantly more of the<br>uncemented group were<br>experiencing pain in the<br>hip and using more<br>walking aids than the<br>patients in the cemented<br>group."                                                                                                                                                                                                  | cemented stem<br>outperformed<br>uncemented.                                                                                                                                                |
|------------------------|-----|--------------------------------------------------|-----------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Skinner<br>1989<br>RCT | 4.5 | N =278<br>Displaced<br>subcapital<br>fractures   | Internal<br>fixation vs.<br>Moore hemi-<br>arthroplasty<br>vs. Howse II<br>total hip<br>replacement | No differences between<br>treatments for general<br>medical complications or<br>mortality 2 months or 1<br>year; 25% internally fixed<br>fractures revised vs. 13%<br>hemiarthro-plasties. Unfit<br>patients more at risk for<br>dislocation (p <0.05).<br>Infections different (p<br><0.01). Total hip<br>replacement patients had<br>significantly less pain than<br>other 2 groups.                              | "Internal fixation and<br>particularly primary total<br>hip replacement should<br>be given serious<br>consideration in the<br>management of the<br>elderly patient with a<br>displaced subcapital<br>fracture."                                                                                                                                                       | Hemiarthroplast<br>y had lower<br>revision but<br>comparable<br>mortality rates<br>for displaced<br>subcapital<br>fractures. No<br>control for<br>physician<br>experience was<br>mentioned. |
| Santini<br>2005<br>RCT | 4.5 | N = 106<br>Femoral<br>neck<br>fractures          | Cemented vs.<br>uncemented<br>hemiarthroplas<br>ty                                                  | Significantly difference<br>between the two groups<br>for postoperative<br>haemoglobin level, p =<br>0.018, though there was<br>no difference in number of<br>blood transfusions.<br>Average hospital stay was<br>17.23 in cemented group<br>and 17.46 in cementless<br>group, NS. One year<br>mortality rates were<br>similar between groups.                                                                      | "Delay of admission to<br>operation, by 3 or more<br>calendar days, almost<br>doubled the risk of<br>mortality within the first<br>year after fractures. This<br>association was not<br>conditional on the number<br>or severity of the medical<br>conditions. Functional<br>results of surviving<br>patients: no significant<br>difference 1 year after<br>surgery." | Cost benefits<br>analysis may<br>not translate to<br>U.S. health<br>system.<br>Treatment<br>delays unlikely<br>to apply to U.S.                                                             |
|                        |     |                                                  | F                                                                                                   | emoral Shaft Fractures                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                             |
| Cameron<br>1992<br>RCT | 7.0 | N = 88<br>Femoral<br>shaft<br>fractures          | Grosse-<br>Kempf vs.<br>Russell-<br>Taylor vs.<br>Synthes<br>(intermedullary<br>)                   | Grosse-Kempf nail<br>insertion faster (88 vs. 97<br>105 vs 97min). At first<br>follow up, no difference<br>found among techniques<br>in terms of pain, limp,<br>range of motion, or time to<br>union.                                                                                                                                                                                                               | "No nail showed<br>significant advantage<br>over the others. All nails<br>have similar indication for<br>use; however, Synthes<br>nail were less<br>satisfactory for proximal<br>fractures. Factors other<br>than performance claims<br>should be considered<br>when deciding which<br>system to use."                                                                | No clinical<br>difference in<br>outcomes.<br>Somewhat<br>sparse data.                                                                                                                       |
| <b>NA</b>              | 7.0 | NI 440                                           | <b>(</b>                                                                                            | Other Surgical Studies                                                                                                                                                                                                                                                                                                                                                                                              | A ( () 10                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                             |
| RCT                    | 7.0 | N = 112<br>Unstable<br>trochanteric<br>fractures | Dynamic hip<br>screw with vs.<br>without<br>cement<br>augmentation                                  | Niean nospital stays 10.5<br>days with cement vs. 10.0<br>days without (NS). No re-<br>operations. Two loosened<br>plates at 6 months<br>cemented group vs. 0. At<br>6 weeks, global pain<br>scores 14±11 vs. 28±12 (p<br><0.003). Lower pain<br>scores walking 10 or 50<br>feet at 6 weeks (p <0.01).<br>No differences at 6<br>months in pain or walking<br>scores. SF-36 scores also<br>superior at 6 months for | Augmentation with<br>calcium phosphate<br>cement in unstable<br>trochanteric fractures<br>provides a modest<br>reduction in pain and a<br>slight improvement in the<br>quality of life during the<br>course of healing when<br>compared with<br>conventional fixation with<br>a sliding screw device<br>alone.                                                        | Results suggest<br>cement<br>augmentation<br>superior<br>especially at 6<br>weeks, but also<br>at 6 months in<br>some<br>measures.                                                          |

|                          |     |                                               |                                                                                                                                      | cemented.                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                     |
|--------------------------|-----|-----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                          |     |                                               |                                                                                                                                      | Surgical Drapos                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                     |
| Lilly 1970<br>RCT        | 4.5 | N = 22<br>Nail plating<br>of neck of<br>femur | Adhesive<br>drape<br>covering<br>wound<br>(Steridrape)<br>vs. no<br>adhesive<br>drape                                                | No differences in bacterial<br>counts. Mean viable<br>counts per 100ml<br>washings (beginning of<br>operation/end): adhesive<br>drapes<br>(28.1±9.2/20.4±6.2) vs. no<br>drape<br>(25.3±9.6/19.6±4.4).                                                 | "no evidence of an<br>increase in bacteria on<br>normal skin covered by<br>steridrape for up to four<br>hours[A]dhesive<br>drapes probably give no<br>protection against<br>bacterial contamination<br>of operation wounds."                               | Data suggest no<br>differences in<br>outcomes.                                                                                                                                                                                      |
|                          |     |                                               | Acupres                                                                                                                              | sure for Transporting Patie                                                                                                                                                                                                                           | nts                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                     |
| Barker<br>2006<br>RCT    | 8.5 | N = 38<br>Acute hip<br>fractures              | Acupressure<br>vs. sham<br>acupressure<br>(3 locations<br>each) during<br>transport                                                  | Heart rate (baseline/post):<br>acupressure<br>95.4±8.3/72.5±9.4 vs.<br>sham 92.3±11.7/90±8. (p<br>= 0.0001 for true<br>intervention). VAS pain<br>ratings. VAS pain ratings<br>reduced in true<br>acupuncture group.                                  | "The authors encourage<br>physicians, health care<br>providers, and<br>emergency rescuers to<br>learn this easy,<br>noninvasive, and<br>inexpensive technique<br>for its effects in<br>decreasing anxiety and<br>pain during emergency<br>transportation." | Study suggests<br>acupressure<br>may reduce<br>pain in hip<br>fracture patients<br>during transport<br>to hospital.                                                                                                                 |
| Usichenko<br>2005<br>RCT | 8.0 | N = 61<br>THA                                 | Auricular<br>acupuncture<br>(hip joint,<br>shenmen,<br>lung,<br>thalamus) vs.<br>sham (4 helix<br>points) up to<br>3 post-op<br>days | Auricular acupuncture<br>32% less piritramide vs.<br>control 1st 36 post-op<br>hours (37 vs. 54mg, $p =$<br>0.004). Total dose 36%<br>lower (0.54 vs. 0.84<br>mg/kg, $p = 0.002$ ). Time to<br>1st request lower (40 vs.<br>25 minutes, $p = 0.04$ ). | "(Auricular acupuncture)<br>could be used to reduce<br>postoperative analgesic<br>requirement."                                                                                                                                                            | No differences<br>in rates of belief<br>of receipt of real<br>acupuncture.                                                                                                                                                          |
| Usichenko<br>2006<br>RCT | 7.5 | N = 64<br>THA                                 | Auricular<br>acupuncture<br>(lung,<br>shenmen,<br>forehead, hip)<br>vs. sham (4<br>helix points)                                     | 21% less fentanyl $(3.9\pm1.4$<br>vs. $4.9\pm1.2$ , p = 0.005) in<br>acupuncture group vs.<br>sham. 6 in acupuncture<br>group required<br>intraoperative atropine vs.<br>3 (NS).                                                                      | "Auricular acupuncture<br>reduced fentanyl<br>requirement compared to<br>sham procedure during<br>hip arthroplasty."                                                                                                                                       | Data suggest<br>mild reduction in<br>fentanyl. No<br>other<br>differences.<br>Considering<br>quality<br>evidence,<br>traditional<br>acupuncture not<br>superior to<br>sham for LBP,<br>arthritis. Study<br>requires<br>replication. |

#### **HIP ARTHROPLASTY**

Hip arthroplasty has been used for several decades for treatment of hip degenerative joint disease and osteonecrosis.(105, 1036-1053) Many if not most patients who were active pre-operatively are able to return to work or restart sports activities(1054-1060) and cardiovascular fitness improves postoperatively.(1053) Twenty-five-year arthroplasty survival rates of 80% have been reported,(1046, 1047) although the survival data are based on approximately 10 to 25% of the originally replaced joints due to intervening deaths. Quality evidence from controlled trials directly comparing arthroplasty with other treatments is absent likely due to the many decades the procedure has been successfully performed. More recently, hip resurfacing has been used particularly in younger patients with osteoarthrosis or osteonecrosis primarily to attempt to hopefully preserve more bone for subsequent, successful arthroplasty at an older age.(1061-1067)

The most common reasons for hip arthroplasty vary from one report to the next, but include idiopathic coxarthrosis (70.6%), rheumatoid arthritis (3.1%), sequela after fracture (12.2%), and sequela after dysplasia (6.8%). Women undergo these procedures approximately 70% more frequently than men.(929) Surgical incidence peaks in a population-based registry from Norway among those 70 to 79 years old(1040) (see Figure 22), although the overall risk for hip arthritis continues rising beyond age 80. Arthroplasty rates have been projected to increase sharply over the coming decades due to aging populations (see Figure 23).(5, 929, 930)

# Figure 22. Incidence of primary total hip replacement, by age and gender in Norway in 1997. Calculations are based on data from the Norwegian Arthroplasty Register and the Norwegian Population Register.



Reproduced from Havelin LI, Engesaeter LB, Espehaug B, Furnes O, Lie SA, Vollset SE. The Norwegian Arthroplasty Register: 11 years and 73,000 arthroplasties. Acta Orthopaedica. 2000;71(4): 337-53 with permission.

## Figure 23. Prevalence of Primary Coxarthrosis as seen on Radiographs in 12,051 Subjects who have had a Normal Radiographic Examination of the Colon. Data from 1966, 1984, and the Current Study were Pooled.



Reprinted with permission from Lippincott Williams & Wilkins. Danielsson L, Lindberg H. Prevalence of coxarthrosis in an urban population during four decades. *Clin Orthop Relate Res.* 1997;342:106-10.

Pain has been shown to be a predictor of total hip arthroplasty (p <0.0001), as have visual analog scale (VAS) handicap ratings, and degree of joint space narrowing.(1068) The primary reason for failure of prosthesis is loosening. Infections occurred in large case registries in 6.1%,(1040) although more recent estimates are under 1% with improved antibiotic prophylaxis. Improvements in cement technique have been incorporated (see below) as well as development of cementless systems. Prosthetic surfaces have also been modified to improve prosthetic survival.(1069) Predictors of complications and poorer functional status at 1 year include female gender, single marital status, less than high school education, nonwhite ethnicity, and the Index of Co-Existent Disease (which measures asymptomatic controlled, uncontrolled and life-threatening diseases).(1070) Some studies have suggested higher rates of osteolytic loosening among younger patients.(1049)

Analyzing this literature is particularly challenging as the technologies have evolved rapidly, often without any accompanying moderate- or high-quality studies. Further, literature reports are often incomplete, without a comprehensive description that includes the population treated, surgical approach, prostheses utilized, operative site preparation, instrumentation, medications or other treatments utilized (see hip arthroplasty evidence table). At times, this requires reasonable assumptions to be made regarding the predominant techniques in use at the time of the report. Still, provided there is only one variable being tested in a given study, assumptions regarding the generalizability of the results between those two sets of assumptions would appear to remain solid.

The vast majority of patients described in quality studies who undergo hip arthroplasty have been diagnosed with osteoarthrosis. Another large group has rheumatoid arthritis. Other sizable groups have had fractures, osteonecrosis, dysplasia, and ankylosing spondylitis(931) (see hip arthroplasty evidence table). Some studies have included simultaneous, bilateral arthroplasties as crossover trials.(855, 889, 1071)

Recommendations in this guideline are derived from careful review of available high- or moderate-quality studies(1072) (see evidence table below). Alternative procedures that are not recommended may result in superior patient outcomes in experienced surgical hands. Thus, rather than immediately changing surgical technique to implement these recommendations without adequate training and practice, caution is suggested.

1. Recommendation: Hip Arthroplasty for Moderate to Severe Arthritides, Osteonecrosis, or Substantially Symptomatic Hip Dysplasia

Hip arthroplasty is strongly recommended for severe arthritides, osteonecrosis with collapse or unresponsive to non-operative treatment or substantially symptomatic hip dysplasia.

Strength of Evidence – Strongly Recommended, Evidence (A)

2. Recommendation: Hip Arthroplasty for Bilateral Disease For bilateral disease, carefully selected patients may safely undergo simultaneous bilateral hip replacement.

Strength of Evidence – Recommended, Evidence (C)

3. Recommendation: Total Hip Arthroplasty

Total hip arthroplasty is strongly recommended as an effective operation to speed improvements in patient's symptoms and functional status in those with moderate to severe hip disease.

*Indications* – All of the following present: 1) severe hip degenerative joint disease, osteonecrosis with collapse or unresponsive to non-operative treatment, or hip dysplasia (x-rays may indicate moderately severe, but function may be severely impaired); 2) sufficient symptoms and functional limitations such as impairments of activities of daily living or occupational tasks, and 3) failure to successfully manage symptoms after a prolonged period of a conservative management plan that included NSAIDs, exercise, physical or occupational therapy, and where appropriate, weight reduction.(1072) (Altman 04) Also consider intraarticular corticosteroids. Carefully selected patients may be candidates for bilateral arthroplastic procedures.(855, 889, 1071) However, particular attention should be paid to pre-operative medical fitness and psychological fortitude.

Strength of Evidence – Strongly Recommended, Evidence (A)

 Recommendation: Metal on Metal Hip Resurfacing Arthroplasty Metal-on-metal hip resurfacing arthroplasty is recommended for select patients. Strength of Evidence – Recommended, Evidence (C)

5. Recommendation: Acupuncture for Hip Arthroplasty Patients Acupuncture is moderately recommended for hip arthroplasty procedures.

#### Indication – Hip arthroplasty patients. Frequency/Duration – Up to 3 post-operative days.(974, 1015) Strength of Evidence – Moderately Recommended, Evidence (B)

#### Rationale for Recommendations

There is quality evidence of long-term benefits of total hip arthroplasty among patients with moderate to severe hip degenerative joint disease (osteoarthrosis or inflammatory), osteonecrosis of the hip or hip dysplasia (see hip arthroplasty evidence table).(1036, 1038-1053, 1073) Long-term outcomes have included resumption of occupational activities. Since there are operative failures, it is important even with a highly successful operation to assure that non-operative means have failed to sufficiently control symptoms. The primary consideration for operative candidacy should be symptoms and functional status, rather than severity of x-ray findings. There is some evidence from moderate quality studies suggesting bilateral arthroplasties may be safe in carefully selected patients.(855, 889, 1071) There has been enthusiasm for hip resurfacing particularly in younger patients,(1061-1063, 1074, 1075) and 3-year survival rates have been reportedly 99.1%;(1076) however, while there is quality evidence of radiological superiority in the immediate post-operative period,(1077) there is no quality evidence of superiority of the metal-on-metal hip resurfacing arthroplasty procedure over intermediate or longer timeframes(1063, 1067, 1078) (see hip arthroplasty evidence table). Nevertheless, survival rates over the near term suggest the procedure is successful; it is recommended as an option particularly for younger patients(1061-1063, 1067, 1077, 1079) or those with osteonecrosis.(1065, 1066)

Anterior, direct lateral, modified direct lateral, and posterior approaches to hip arthroplasty have been attempted.(127, 931, 1080-1094) There is a quality study comparing different approaches,(1095) (Widman 01) and one study evaluated surgical drapes.(939) There are multiple uncontrolled studies regarding minimal incisional techniques;(1087-1093) one is moderate-quality study.(1096)

Femoral and acetabular components differ by composition, coatings and design. The various surfaces that are used on femoral and acetabular components, "stems," are often described as smooth, porous and hydroxyapatite coatings.(1042, 1097) Some arthroplasties are inserted with cement, some uncemented and some "hybrid" or combinations of typically uncemented cups and cemented stems.(1051)

Cement or medullary restrictors (or "plugs") are prosthetic devices inserted into the distal femoral shaft after reaming out the canal prior to placement of the cement and prosthesis.(1098-1109) The purpose of the plug is to seal off the distal canal which allows for higher pressurization of cement,(1098, 1100, 1105, 1110-1113) thus facilitating a thicker and more uniform layer of cement between the prosthesis and the bone.(1111) This is thought to result in better survival of the prosthesis(1100, 1105, 1106) (see hip arthroplasty evidence table).

Complications of hip arthroplasty include bone cement implantation syndrome (BCIS), fat emboli, introperative fractures, infected prostheses, dislocations and prothesis failure. BCIS is a constellation of hypotension, hypoxemia, cardiac dysrhythmias, and/or cardiac arrest with a mortality rate of up to 1%.(1114-1117) Intraoperative fractures are a source of morbidity during hip arthroplasties.

Two quality trials demonstrated efficacy of acupuncture for hip arthroplasty patients, including reducing opioid needs.(974, 1015) Acupuncture is minimally invasive, has essentially no adverse effects, is low cost, and thus is recommended.

#### Evidence for the Use of Hip Arthroplasty

There are 6 high-(974, 1036, 1037, 1039, 1074, 1096, 1118-1120) (one with four reports) and 51 moderate-quality(855, 888, 889, 891, 892, 939, 1015, 1038, 1067, 1071, 1075, 1077, 1095, 1097, 1100, 1104-1106, 1121-1153) RCTs and randomized crossover trials incorporated in this analysis. There are 2 low-quality RCTs(1079, 1154) in Appendix 2.

| Author/Yea<br>r Study<br>Type                                  | Score<br>(0-11) | Sample<br>Size                                                 | Comparison<br>Group                                                                                                                                                           | Results                                                                                                                                                                                                                                                                                                                                                                      | Conclusion                                                                                                                                                                                                                                                                                                                                            | Comments                                                                                                                                                                                                                                                |
|----------------------------------------------------------------|-----------------|----------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                |                 | I                                                              | Sur                                                                                                                                                                           | gical Approaches                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                         |
| Widman<br>2001<br>RCT                                          | 6.5             | N = 74<br>OA                                                   | Lateral position<br>vs. supine<br>position for<br>surgery                                                                                                                     | Intraoperative blood<br>loss (ml) mean/SD<br>Supine: $723\pm316$ .<br>Lateral: $508\pm316$ , p =<br>0.005. Adjusted value<br>supine/lateral: $775$ vs.<br>509, p <0.001.<br>Adjusted value after<br>24 hour accumulated<br>blood loss<br>supine/lateral: $1472$<br>vs. $1273$ , p = 0.043.                                                                                   | Lateral position in hip<br>replacement surgery is<br>advantageous over<br>supine position in<br>regards to reducing<br>perioperative blood<br>loss.                                                                                                                                                                                                   | Suggests lateral<br>position results in<br>lower blood loss.                                                                                                                                                                                            |
| Kim<br>2002<br>RCT and<br>crossover<br>for<br>simultaneou<br>s | 6.5             | N = 156<br>50 bilateral<br>simultaneou<br>s; 106<br>unilateral | Cemented<br>(Elite Plus,<br>Simplex-P<br>cement) vs.<br>uncemented<br>(Profile) hip<br>arthroplasty.<br>All cups<br>Duraloc<br>cementless.                                    | Number of fat<br>globules per high-<br>power field from right<br>atrium total/mean (%<br>affected): cementless<br>stem: 220/2.2.<br>Cementless stem:<br>331/3.1 (NS). 49%<br>unilateral vs. 54%<br>bilateral with fat<br>globules in right atrial<br>blood samples (NS).<br>No hemodynamic<br>differences (p = 0.14).                                                        | Bilateral simultaneous<br>and unilateral total hip<br>arthroplasty and<br>cemented and<br>cementless stems<br>showed similar fat and<br>bone-marrow-cell<br>embolization.                                                                                                                                                                             | Majority had<br>osteonecrosis.<br>Korean study;<br>authors question<br>generalizability to<br>U.S. Crossover<br>trial for<br>simultaneous<br>arthroplasties is<br>study strength.<br>Suggests<br>simultaneous<br>arthroplasties are<br>reasonably safe. |
| RCT                                                            | 4.5             | N = 120<br>Acute hip<br>fractures                              | Drape group<br>(operative site<br>was covered<br>with plastic<br>adhesive<br>drape after<br>operation) vs.<br>no-drape<br>group<br>(operation site<br>was left<br>uncovered). | No difference in post-<br>op wound infection<br>rates. Five swaps<br>(4.2%) taken at<br>wound closure<br>positive for bacterial<br>growth; 4 drape<br>group, 1 no-drape<br>group. Difference not<br>statistically significant<br>( $X^2 = 0.53$ , p >0.25).                                                                                                                  | adhesive drapes did<br>not affect the wound<br>infection rate after<br>acute hip fracture<br>operations.                                                                                                                                                                                                                                              | Study suggests<br>adhesive drapes<br>do not provide<br>advantage over<br>no-drape at<br>incision site.                                                                                                                                                  |
|                                                                |                 |                                                                | M                                                                                                                                                                             | inimal Incisions                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                         |
| Ogonda<br>2005<br>RCT                                          | 8.0             | N = 219<br>Unilateral<br>THA                                   | Surgery<br>through a short<br>incision of<br>≤10cm vs.<br>standard<br>incision of<br>16cm                                                                                     | Estimated intra-<br>operative blood loss<br>(ml) mini-incision vs.<br>standard-incision<br>group (mean $\pm$ SD):<br>314 $\pm$ 162 vs. 366 $\pm$ 190<br>(p = 0.03). Morphine<br>usage (mg) 42.9 $\pm$ 97.4<br>vs. 45.0 $\pm$ 96.8 (p =<br>0.89); pain scores not<br>significantly different.<br>Harris hip score<br>84.15 $\pm$ 10.56 vs.<br>83.36 $\pm$ 8.33 (p =<br>0.54). | "Minimally invasive total<br>hip arthroplasty<br>performed through a<br>single-incision posterior<br>approach by a high-<br>volume hip surgeon<br>with extensive<br>experience in less<br>invasive approaches to<br>the hipoffers no<br>significant benefit in the<br>early postoperative<br>period compared with a<br>standard incision of<br>16cm." | Modestly reduced<br>EBL, otherwise no<br>apparent benefit<br>of minimal<br>incision. Patients<br>not well described.<br>Presumably<br>mostly<br>osteoarthrosis.                                                                                         |
|                                                                | 0.5             |                                                                | Hip Resul                                                                                                                                                                     | racing vs. Arthroplasty                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                       | Nous a di                                                                                                                                                                                                                                               |
| Lavigne<br>2010<br>RCT                                         | 8.5             | N = 48<br>All with OA<br>and <65yrs,<br>included 14            | Hip resurfacing<br>(Durom) vs.<br>large-head<br>total hip<br>arthroplasty                                                                                                     | Fast walking speed<br>(m/s) (baseline/3/6/12<br>months): HR (1.58/<br>1.62/1.71/1.82) vs.<br>THA (1.50/1.65/1.68/                                                                                                                                                                                                                                                            | (HIP Resurfacing) did<br>not provide better<br>clinical function over<br>large-head THA."                                                                                                                                                                                                                                                             | Younger, active<br>population. Data<br>suggest<br>comparable<br>efficacy.                                                                                                                                                                               |

| Garbuz<br>2010<br>RCT    | 6.5 | healthy<br>controls<br>N = 104<br>Patients<br>required to<br>be suitable<br>for hip<br>resurfac-ing | (CLS stem).<br>Durom<br>acetabula both<br>groups; 1 year<br>follow-up.<br>Hip resurfacing<br>(Durom) vs.<br>large-head<br>arthroplasty<br>(Metasul).<br>Durom<br>acetabula both<br>groups; 2<br>years follow-<br>up.                                                                                                          | 1.73) (NS). No<br>difference in walking<br>speed, step length,<br>cadence, postural<br>balance. Functional<br>reach favored HR.<br>WOMAC pain<br>(pre/mean 1 year):<br>Resurface (48.9/91.5)<br>vs. large head THA<br>(52.4/90.0), NS.<br>Serum cobalt levels<br>rose 46-fold with THA<br>vs. 3.9-fold with<br>resurfacing THA (5.09<br>vs. 0.51µg/L, p<br><0.001).                                                                                                                                            | "Due to these<br>excessive high metal<br>ion levels, the authors<br>recommend against<br>further use of this<br>particular large-head<br>total hip arthroplasty."             | lons measured in<br>subset. Data<br>suggest greater<br>wear with large<br>head arthroplasty.                                                                       |
|--------------------------|-----|-----------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                          |     |                                                                                                     | Fem                                                                                                                                                                                                                                                                                                                           | oral Components                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                               |                                                                                                                                                                    |
| Rasquinha<br>2004<br>RCT | 8.0 | N = 237<br>88.2% OA                                                                                 | Ranawat-<br>Burstein<br>prosthesis with<br>smooth vs.<br>rough finish for<br>cemented<br>femoral stems.<br>Over 60 years,<br>cemented and<br>under age 60<br>hybridized<br>prostheses<br>(more criteria<br>in article).<br>Single<br>surgeon. Post-<br>erolateral<br>approach; 3rd<br>generation<br>cement.                   | Mean lateral<br>inclination $p > 0.05$ .<br>Heterotopic<br>ossification $p > 0.05$ . 5<br>hips with smooth<br>femoral stems and 6<br>hips with rough<br>femoral stems with<br>cemented acetabular<br>components<br>demonstrated zone<br>1A interface lucency<br>with 1 in each cohort<br>showing interface<br>lucency in entire zone<br>1 ( $p > 0.05$ ). Cement<br>mantle A<br>smooth/rough:<br>50.9%/49.5%, $p =0.18.$                                                                                       | "As an isolated<br>variable, surface finish<br>does not appear to<br>significantly influence<br>results at mean follow-<br>up of 6.5 years."                                  | Results suggest<br>no significant<br>differences<br>between rough<br>and smooth<br>prostheses.                                                                     |
| MacDonald<br>2010<br>RCT | 7.5 | N = 388<br>OA                                                                                       | Proximally<br>porous-coated<br>tapered<br>cementless<br>femoral<br>component<br>(Synergy) vs.<br>fully porous-<br>coated<br>cementless<br>femoral<br>component<br>(Prodigy). All<br>28mm head.<br>Acetabulum<br>usually<br>Reflection and<br>Duraloc<br>respectively.<br>Minimum 2<br>years follow-up<br>(mean 6.7<br>years). | Harris hip scores<br>(baseline/1/2 years):<br>synergy (43.2/85.6/<br>86.4) vs. prodigy<br>(43.1/84.5/86.7), NS.<br>No differences in<br>WOMAC, SF-12<br>mental or physical,<br>UCLA scores and<br>contralateral hip bone<br>density. Prevalence<br>of thigh pain and<br>severity measures<br>also not different over<br>2 years. Net average<br>bone densities all<br>Gruen zones (0.5, 1,<br>2 years): Synergy<br>(1.5/1.48/1.48) vs.<br>Prodigy<br>(1.3/1.31/1.31), p<br><0.001, p = 0.002 and<br>p = 0.002. | "Both fully and<br>proximally coated<br>stems performed well,<br>with no clinical<br>differences at 2 years'<br>follow-up, except in<br>bone mineral density<br>evaluations." | Data mostly<br>suggest<br>comparable<br>efficacy. Greater<br>bone density<br>measures in<br>several Gruen<br>zones, at 0.5, 1, 2<br>years in the<br>Synergy group. |
| Ostgaard<br>2001         | 7.0 | N = 123<br>OA                                                                                       | Original vs.<br>new Charnley<br>stem                                                                                                                                                                                                                                                                                          | Original<br>instrumentation with<br>AP x-ray views                                                                                                                                                                                                                                                                                                                                                                                                                                                             | " I he temoral stems<br>were less often in the<br>varus position with the                                                                                                     | Authors suggest<br>manufacturer<br>should respond to                                                                                                               |

| RCT                                                                                              |     |                                                                          | instrumentatio<br>n                                                                                                                                                       | showed 23% of stems<br>in varus and 7%<br>valgus position. New<br>instrumentation 10%<br>varus ( $p = 0.03$ ) and<br>24% valgus ( $p =$<br>0.03). Posterior<br>angling on lateral<br>views 43% vs. 37%.<br>Cement mantle<br>quality not different ( $p =$<br>0.6).                                                                                                                                                                                                                                                              | new instrumentation.<br>However, the worst<br>malposition, with<br>implant-inner cortex<br>contact, especially<br>seen on the lateral<br>radiograph, was not<br>addressed at all."                                                                                            | the problem.<br>Long-term<br>implications vis-à-<br>vis clinical<br>outcome are<br>unclear, but<br>suggest<br>suboptimal results<br>with new<br>instrumentation.                                                                                                                                                       |
|--------------------------------------------------------------------------------------------------|-----|--------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Kim<br>J Bone<br>Joint Surg<br>Am<br>2005;87(8):<br>1769-76<br>Randomize<br>d Crossover<br>Trial | 6.5 | N = 52<br>All osteo-<br>necrosis, all<br>bilateral<br>arthroplastie<br>s | Zirconia<br>femoral head<br>vs. cobalt-<br>chromium<br>head                                                                                                               | Mean polyethylene<br>wear rate was 0.08<br>mm/year with zirconia<br>vs. 0.17 mm/year with<br>cobalt-chromium (p =<br>0.004). Mean<br>volumetric<br>polyethylene wear<br>was 350.8 mm <sup>3</sup> with<br>zirconia heads vs.<br>744.7 mm <sup>3</sup> with<br>cobalt-chromium (p =<br>0.004). Two zirconia<br>stems revised due to<br>loosening vs. no other<br>stems/cups revised.<br>Roughness Ra values<br>of 2 explanted<br>zirconia heads 15.87<br>and 17.35nm vs.<br>unimplanted zirconia<br>heads of 5.31 and<br>5.48nm. | "The mean amount<br>and rate of<br>polyethylene wear<br>were significantly lower<br>in the hips with a<br>zirconia head than<br>they were in the hips<br>with a cobalt-chromium<br>head, presumably<br>because the zirconia<br>heads had a smoother<br>articulating surface." | Volumetric wear<br>data support the<br>zirconia implant<br>vs. cobalt-<br>chromium, but<br>only revisions<br>were 2 zirconia<br>stems. Loosening<br>observed to have<br>occurred in those<br>who were not<br>active vs. others<br>doing farm work or<br>playing tennis<br>(despite advice to<br>avoid high<br>impact). |
| Lachiewicz<br>2008<br>RCT                                                                        | 5.5 | N = 201<br>THA                                                           | Polished (Ra,<br>0.18 to 0.3<br>nanometer) vs.<br>precoated<br>roughened (Ra,<br>1.8 to 2.3<br>nanometer)<br>cemented<br>femoral<br>component<br>with similar<br>geometry | No significant<br>differences (log rank<br>p = 0.66) in survival.<br>Three hips with<br>polished component<br>had periprosthetic<br>fractures; 2 precoated<br>roughened<br>components revised<br>due to loosening. No<br>significant differences<br>in Harris hip scores.                                                                                                                                                                                                                                                       | "Kaplan-Meier survival<br>analysis showed no<br>significant difference<br>between two types of<br>cemented femoral<br>components with<br>similar geometry but<br>substantially different<br>surface finished at<br>seven years."                                              | No evidence<br>favoring smooth<br>vs. rough finishes.                                                                                                                                                                                                                                                                  |
| Garellick<br>1999<br>RCT                                                                         | 5.5 | N = 372<br>THA                                                           | Charnley vs.<br>Spectron<br>prosthesis                                                                                                                                    | 17% of Charnley<br>stems in varus<br>positions. On lateral<br>view, 73% angled<br>posteriorly, resulting<br>in high frequencies of<br>implant-bone contact<br>in zones 3, 8; 12.<br>45% of Spectron<br>stems angled<br>posteriorly. At every<br>follow-up, significantly<br>(p <0.001) increased<br>calcar resorption for<br>Spectron vs.<br>Charnley. 23<br>Spectron Metal-<br>Backed cups                                                                                                                                     | "[U]se of a cemented<br>metal-backed cup<br>should be avoided, at<br>least when combined<br>with larger femoral<br>heads. We found a<br>decreased failure rate<br>for the longer and<br>collared Spectron stem<br>compared with the<br>uncollared and shorter<br>Chanley."    | High dropouts with<br>154 patients<br>deceased at 10<br>year follow-up.<br>Suggests<br>Charnley inferior.                                                                                                                                                                                                              |

| Nichment                | 5.0 |                   | Comonical                                                                                                                                                                | considered<br>radiographically<br>loose. 10 Charnley<br>stems classified as<br>mechanical failures<br>and four cups<br>radiographically<br>loose. Cement mantle<br>quality only variable<br>associated with stem<br>loosening (p = 0.007).                                                                                                                                                                                                                                                                                                                 | "The cube idease of the                                                                                                                                                                                                                                                                                                                                                                       | Our manada kubimur                                                                                                                          |
|-------------------------|-----|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|
| RCT                     | 5.0 | N = 40<br>OA      | Cemented<br>Scientific Hip<br>Prosthesis<br>(SHP) vs.<br>Lubinus SP2<br>prosthesis                                                                                       | Three-dimensional<br>wear at 2-year follow-<br>up (mean, 95%CL):<br>SP2: 0.3, 0.1 vs SHP:<br>0.4, 0.1 ( $p = 0.05$ ).<br>Results of<br>radiographic<br>evaluation, median<br>(range) for<br>radiolucent lines stem<br>post-op: SP2: 5 (0-<br>16) vs. SHP: 6 (0-27)<br>( $p = 0.02$ ).                                                                                                                                                                                                                                                                      | SHP stem is the most<br>pronounced so far<br>recorded with<br>radiostereometry in<br>stems without a<br>completely polished<br>surface. This<br>subsidence and the<br>rotational instability<br>imply a substantial risk<br>of abrasive wear and<br>increased stresses in<br>the cement mantle."                                                                                              | suggests lubinus<br>prosthesis<br>superior.                                                                                                 |
| Kärrholm<br>1994<br>RCT | 4.5 | N = 60<br>OA      | Cemented vs<br>hydroxyapatite<br>coated vs.<br>porous coated.<br>All titanium<br>(Tifit)                                                                                 | Migration of shoulder<br>(mm) medial-lateral:<br>cemented 0.1 (0.0-<br>0.4); Hydroxyapatite-<br>Coated 0.1(0.0-0.6);<br>Porous-coated 0.2<br>(0.0-1.8) p-value<br><0.05. Migration of tip<br>(mm) medial-lateral:<br>cemented 0.2 (0.0-<br>1.2); hydroxyapatite-<br>coated 0.4 (0.0-4.6);<br>porous-coated 0.5<br>(0.1-5.4). Post-op<br>roentgenograms<br>varus-valgus position<br>(degrees): cemented<br>0.2 (-1.5-3.0);<br>hydroxyapatite-Coated<br>-0.2 (-1.7-3.6); Porous-<br>coated -0.33 (-2.7-1.7).<br>P-value cemented vs.<br>porous-coated <0.05. | "No definite<br>conclusions can be<br>drawn from the present<br>study with regard to<br>the method of fixation<br>that will lead to<br>optimum long-term<br>results." Even though<br>the differences<br>between the three<br>fixation types were<br>small, the low<br>frequency of<br>subsidence of the<br>hydroxyapatite-coated<br>implants suggests<br>possibly long-term<br>favorability." | Some baseline<br>difference (e.g.,<br>genders) of<br>uncertain<br>significance. Use<br>of titanium may<br>have confounded<br>results.       |
| Pabinger<br>2004<br>RCT | 4.5 | N = 22<br>THR     | CPS stem<br>cemented<br>conventionally<br>using 3rd<br>generation<br>cementation<br>technique vs.<br>TRIOS<br>cemented<br>using<br>transprosthetic<br>drainage<br>system | Radiolucencies<br>TRIOS/CPS: 2 years<br>75%/40%. Mean<br>subsidence at 5 years<br>(range) TRIOS/CPS:<br>4 years 2.29(0.1-<br>8)/1.38 (0.4-2.9).                                                                                                                                                                                                                                                                                                                                                                                                            | "Cementing titanium<br>stems of this design<br>cannot be<br>recommended."                                                                                                                                                                                                                                                                                                                     | No benefit of the<br>transprosthetic<br>drainage system<br>for cementation.<br>However, high<br>rates of<br>subsidence with<br>TRIOS stems. |
| Incavo<br>1998          | 4.0 | N = 91<br>81% OA, | Surface<br>coating in<br>profile femoral                                                                                                                                 | Good/excellent results<br>19/26 (73%) vs. 20/28<br>(71%) vs. 22/25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | "Clinical differences<br>exist and are<br>attributable to the type                                                                                                                                                                                                                                                                                                                            | HA coated had<br>superior Harris<br>Hip Scores and                                                                                          |

| RCT                     |     | 9.9% ON,<br>5.5% trauma               | prostheses: 1)<br>smooth; 2)<br>porous coated<br>vs. 3)<br>hydroxyapatite<br>(HA) coated.<br>Multi-center.<br>Full weight-<br>bearing<br>allowed<br>immediately<br>post-op. | (88%). Harris hip<br>scores favored HA<br>coated (85.1 vs. 89.8<br>vs. 96.0, p = 0.004 HA<br>vs. smooth) as did<br>functional scores.<br>Pain, ROM, activity<br>scores NS; 3 of 4 with<br>painful femoral<br>loosening had smooth<br>stems. Radiolucent<br>lines 14% vs. 0% vs.<br>8%. Spot welds 28%<br>vs. 65% vs. 54%.                                                                                                                                                                                                                    | of surface coating<br>used for the<br>cementless femoral<br>components in THA."                                                                                                                                                                                                                               | function. More<br>loosening in<br>smooth stems and<br>poorer results for<br>function suggest<br>smooth stems are<br>inferior.                                                                                                                                               |
|-------------------------|-----|---------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Kärrholm<br>2002<br>RCT | 4.0 | N = 65<br>OA                          | Epoch reduced<br>stiffness stem<br>vs. anatomic<br>stem, both<br>porous coated                                                                                              | Epoch stem loss of<br>bone mineral<br>significantly reduced<br>at 2 years in Gruen<br>regions 1, 2, 6, 7 (p<br>< $0.0005$ to 0.04).<br>Significantly more<br>endocortical contact<br>on anteroposterior (p<br>< $0.0005$ ) and lateral<br>radiograph (p = 0.02)<br>for Epoch stems.<br>Epoch stems fewer<br>sclerotic lines<br>surrounding stem (p ≤<br>0.002) at 2 years post-<br>operatively. No<br>difference for Harris<br>hip score evaluated at<br>same hospital.                                                                      | "Contrary to previous<br>studies of other<br>designs with reduced<br>stiffness, the Epoch<br>stem achieved<br>excellent primary<br>fixation. Despite this<br>rigid fixation, the<br>proximal loss of bone-<br>mineral density was<br>less than that<br>associated with the<br>stem with a stiffer<br>design." | Several significant<br>baseline<br>differences<br>present. States<br>stratification on<br>gender, however,<br>genders not equal<br>(p = 0.03). This<br>suggests either<br>protocol violations<br>or randomization<br>failure. Two<br>different surgical<br>approaches used. |
| Seyler<br>2006<br>RCT   | 4.0 | N = 210<br>OA or<br>osteonecrosi<br>s | Stratified<br>enrollments for<br>OA and<br>osteonecrosis.<br>Compared<br>alumina-on-<br>alumina vs.<br>cobalt-<br>chromium-on-<br>polyethylene<br>surfaces.                 | Seven-year survival;<br>probability 95.5% for<br>osteonecrotic hips;<br>89.4% OA with<br>alumina-on-alumina<br>vs. 92.3% ON, 92.9%<br>OA for cobalt-<br>chromium-on-<br>polyethylene. Harris<br>hip scores (baseline/6<br>months/5 years): ON<br>AA (45.8±12.3/93.8±<br>$8.5/97.5\pm4.0$ ) vs. OA<br>AA (49.7±12.3/95.3±<br>$8.5/95.4\pm10.2$ ) vs. ON<br>CCP<br>(42.2±13.9/90.4±<br>11.4/96.5±8.0) vs. OA<br>CCP<br>(48.81±3.3/95.3±<br>$6.6/97.3\pm4.0$ ), p =<br>0.85 between groups.<br>No differences<br>complications or<br>revisions. | "The resultswere<br>comparable. The low<br>revision rate for the<br>alumina-on-alumina<br>bearing is encouraging<br>and offers a promising<br>option for younger,<br>more active patients<br>who have this<br>challenging disease."                                                                           | Long-term study<br>of 7 years.<br>Unequal sized<br>groups due to<br>modification of<br>study midway.<br>Data suggest<br>comparable<br>outcomes.                                                                                                                             |
|                         | L   |                                       | Femor                                                                                                                                                                       | al Canal Preparation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                             |
| Christie                | 5.0 | N = 24                                | Minimal                                                                                                                                                                     | Grade 3 or 4 maximal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | "We consider that                                                                                                                                                                                                                                                                                             | Thorough lavage                                                                                                                                                                                                                                                             |
| 1995<br>RCT             |     | All femoral                           | washout of the<br>medullary<br>canal before                                                                                                                                 | embolic responses of<br>50% in lavage group<br>vs. 91.7% in control                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | thorough lavage<br>should be an essential<br>part of the preparation                                                                                                                                                                                                                                          | appears<br>important.                                                                                                                                                                                                                                                       |
|                         | 1   | noon                                  |                                                                                                                                                                             | vo. 01.770 in control,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | part of the preparation                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                             |

|                        |     | fractures                       | cement<br>insertion vs.<br>extensive<br>washout by<br>allocation of<br>alternate cases<br>to groups                                                                                                                          | p <0.05. Mean<br>duration embolic<br>response 270.4 vs.<br>421.9 sec, p <0.05.<br>Mean number large<br>emboli 2.3 vs. 7.1, p<br><0.05. Mean fall end-<br>tidal CO2 1 vs.<br>5.5mmHg, p <0.05.                                                                          | of the proximal femur<br>before cement<br>insertion."                                                                                                                                                                                                                                                                                              |                                                                                                                                |
|------------------------|-----|---------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|
|                        |     |                                 | Aceta                                                                                                                                                                                                                        | abular Components                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                |
| Faris<br>2006<br>RCT   | 6.0 | N = 407<br>Unclear<br>diagnoses | Acetabular<br>cups (Biomet)<br>with cement<br>spacers made<br>from<br>polyethylene<br>vs acetabular<br>without<br>polyethylene<br>spacers                                                                                    | Radiographic failures<br>with 12.6% vs.<br>without spacers 7.2%<br>(p<0.038). Cup<br>revisions in 2 (1%)<br>versus 1 (0.5%) (NS).<br>Radiolucency in any<br>zone in 48 vs. 35.                                                                                         | "Acetabular cups with<br>polyethylene spacers<br>were found to have a<br>significantly higher<br>initial rate of failure<br>(p<0.038) when<br>compared with cups<br>without cement<br>spacers. Yet,<br>polyethylene spacers<br>resulted in a<br>significantly thicker<br>and more uniform<br>cement mantle in<br>zones 1, 2, and 3<br>(p<0.0001)." | Unclear whether<br>spacers result in<br>superior outcomes<br>as results conflict<br>within this study.                         |
| Röhrl<br>2004<br>RCT   | 6.0 | N = 81<br>OA                    | Press-fit only<br>(PF) vs. press-<br>fit and HA<br>coating<br>(PF+HA) vs.<br>press-fit and 3<br>screws<br>(PF+screws)<br>vs. press-fit<br>and 3 pegs<br>placed similar<br>to screws<br>(PF+pegs). All<br>Reflection<br>cups. | HA-coated cups had<br>fewer radiolucent<br>lines (p <0.003) than<br>other groups. Most<br>lines were in zones II<br>and III. Cups<br>augmented with<br>screws and pegs had<br>lines in 19% of the<br>interfaces versus 9%<br>in cups with no holes<br>(PF and PF +HA). | "Screws or pegs did<br>not improve the<br>fixation of press-fit<br>hemispherical cups.<br>Sealed cups and HA<br>coating resulted in<br>fewer radiolucencies<br>and better interface<br>without any tradeoffs."                                                                                                                                     | Suggests<br>hydroxyapatite-<br>coated cups<br>superior than<br>others for<br>cementless<br>fixation with 5<br>years follow-up. |
| Thanner<br>2000<br>RCT | 5.5 | N = 62<br>Hip<br>replacement    | Trilogy cup<br>with 3 cluster<br>holes vs.<br>Trilogy cup<br>without 3<br>cluster holes                                                                                                                                      | Cups without screw<br>fixation had fewer<br>radiolucent lines on<br>the AP radiographs (p<br>= 0.04) at 1-2 years.<br>There were no<br>differences at 2<br>years.                                                                                                      | "Our results confirm<br>earlier reports that<br>screws are not<br>necessary for<br>additional cup fixation.<br>Additional screw<br>fixation may be<br>considered in cases<br>with poor bone stock."                                                                                                                                                | Screws for<br>acetabular fixation<br>appear<br>unnecessary.                                                                    |
| Flivik                 | 65  | N - 50                          | Removal of at                                                                                                                                                                                                                | Polyethylene woor                                                                                                                                                                                                                                                      | "Removing the                                                                                                                                                                                                                                                                                                                                      | Suggests                                                                                                                       |
| 2006<br>RCT            |     | OA                              | least 75% of<br>subchondral<br>bone plate vs.<br>retained other<br>than ream to<br>slight bleeding<br>surface. All<br>Opticup,<br>Palacos with<br>gentamicin<br>cement,<br>Optivac                                           | proximal penetration<br>0.33±0.14 vs.<br>0.36±0.18mm (p =<br>0.42). Cups rotated<br>more horizontally in<br>the retention group.                                                                                                                                       | subchondral bone<br>plate, where possible,<br>improves the cement-<br>bone interface without<br>jeopardizing the<br>stability, implying<br>better long-term cup<br>survival. However, it is<br>a more demanding<br>surgical technique."                                                                                                            | subchondral bone<br>removal may be<br>superior, but long<br>term outcomes<br>lacking.                                          |

|                                                                                     |     |                        | vacuum mixing<br>system, and<br>cement gun.                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                 |
|-------------------------------------------------------------------------------------|-----|------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                     |     | 1                      |                                                                                                                                                                                                                                                                            | Cement                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                 |
| Nayak<br>1996;<br>Rorabeck<br>1994;<br>Rorabeck<br>1996;<br>Laupacis<br>1993<br>RCT | 8.5 | N = 250<br>1º or 2º OA | Femoral<br>Mallory-Head<br>plasma spray-<br>coated titanium<br>or cobalt-<br>chromium<br>implants vs.<br>smooth<br>implants for<br>cement<br>fixation. 28mm<br>modular<br>titanium cobalt-<br>chrome heads<br>used. Used<br>canal lavage,<br>restrictor and<br>cement gun. | Progressive<br>acetabular osteolysis<br>evidence in 9% (n =<br>10) cementless<br>group. None received<br>revision surgery for<br>acetabular osteolysis;<br>no evidence of<br>acetabular<br>component migration<br>or shift. Acetabular<br>osteolysis evident in<br>5% (n = 6) of<br>cemented group. No<br>significant difference<br>between groups for<br>prevalence of<br>acetabular osteolysis<br>p = 0.46.         | "This study found no<br>difference in the<br>prevalence of<br>acetabular osteolysis<br>between the two<br>groups."                                                                                                                                                                  | Study mixed<br>titanium and<br>cobalt-chrome<br>heads, limiting<br>interpretation of<br>results. Acetabular<br>osteolysis higher<br>9% vs. 5%, for<br>cementless, but<br>not stat. significant<br>and apparently<br>nearly all had<br>titanium. |
| Devane<br>1997<br>RCT                                                               | 7.5 | N = 250<br>1º or 2º OA | Same<br>population and<br>study as<br>above, but only<br>148 available                                                                                                                                                                                                     | Rate of linear wear<br>0.152 with cement vs.<br>0.246mm a year (p =<br>0.0002). Rate of 3-<br>dimensional<br>displacement<br>significant (p =<br>0.0000008). Rate of<br>volumetric wear also<br>lower at 98.5 vs.<br>155.1mm <sup>3</sup> a year p =<br>0.000008).                                                                                                                                                    | "Osteolysis was<br>associated with an<br>increased rate of<br>polyethylene wear only<br>in the hips in which the<br>prosthesis had been<br>inserted without<br>cement."                                                                                                             | Suggests<br>cemented<br>prostheses wear<br>less rapidly.                                                                                                                                                                                        |
| Laupacis<br>2002<br>RCT                                                             | 6.5 | N = 250<br>Hip OA      | Same<br>population and<br>study as above                                                                                                                                                                                                                                   | Thirteen revisions if<br>cemented; 6 if<br>uncemented (p =<br>0.11). More femoral<br>components revised if<br>cemented (12 vs. 1, p<br>= 0.0002). Post-op<br>scores 6-minute-walk<br>test (m): 3 months:<br>327; 6 months: 363; 1<br>year: 386; 2 years:<br>408. Western Ontario<br>and McMaster<br>University<br>Osteoarthritis Index<br>(points): 3 months:<br>0.9; 6 months: 0.8; 1<br>year: 0.6; 2 years:<br>0.7. | "[T]he group that had<br>the cemented Mallory-<br>Head hip prostheses<br>required more<br>revisions of the<br>femoral component<br>than did the group with<br>the cementless<br>Mallory-Head<br>prostheses, which was<br>perhaps related to the<br>titanium-alloy femoral<br>stem." | Results may be<br>confounded by<br>titanium stems<br>that may have<br>produced failures.                                                                                                                                                        |
| Onsten<br>1994<br>Crossover<br>trial                                                | 6.5 | N = 21<br>OA           | Charnley<br>acetabular<br>components<br>inserted with<br>cement vs.<br>porous Harris-<br>Galante<br>acetabular<br>components                                                                                                                                               | No significant<br>difference between<br>two designs in<br>regards to migration;<br>0.2mm for both (p =<br>0.98) along<br>transverse avis,<br>0.3mm for both (p =<br>0.75) along                                                                                                                                                                                                                                       | "After short to medium-<br>term follow up, there<br>no major difference<br>between the two<br>designs for skeletal<br>fixation."                                                                                                                                                    | No differences,<br>but small sample<br>size.                                                                                                                                                                                                    |

| Kim                                                     | 6.5 | N = 156                                                                                                               | inserted<br>without<br>cement, one in<br>each hip<br>Cemented                                                                                                                                                                 | longitudinal axis,<br>0.3mm for Harris-<br>Galante and 0.2mm<br>for Charnley (p =<br>0.06) along sagittal<br>axis.<br>Number of fat                                                                                                                                                                                                          | Bilateral simultaneous                                                                                                                                                                                                                                                                                                                                                                                                         | Majority of                                                                                                                                                                                              |
|---------------------------------------------------------|-----|-----------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2002<br>RCT and<br>crossover<br>for<br>simultaneou<br>s |     | n = 50<br>bilateral<br>simultaneou<br>s<br>n = 106<br>unilateral                                                      | (Elite Plus,<br>Simplex-P<br>cement) vs.<br>uncemented<br>(Profile) hip<br>arthroplasty.<br>All cups<br>Duraloc<br>cementless.                                                                                                | globules per high-<br>power field from right<br>atrium total/mean (%<br>affected): cementless<br>stem: 220/2.2.<br>Cementless stem:<br>331/3.1 (NS). 49%<br>unilateral vs. 54%<br>bilateral with fat<br>globules in right atrial<br>blood samples (NS).<br>No hemodynamic<br>differences (p = 0.14).                                         | and unilateral total hip<br>arthroplasty and<br>cemented and<br>cementless stems<br>showed similar fat and<br>bone-marrow-cell<br>embolization.                                                                                                                                                                                                                                                                                | patients had<br>osteonecrosis.<br>Study in Korea<br>with authors<br>questioning<br>generalizability to<br>U.S. Crossover<br>trial for<br>simultaneous is a<br>study strength.                            |
| Kim<br>J Bone<br>Joint Surg<br>Am<br>2003<br>RCT        | 6.5 | N = 98<br>Osteonecros<br>is of the<br>femoral<br>head; simul-<br>taneous<br>bilateral THA<br>and<br>unilateral<br>THA | Simultaneous<br>bilateral total<br>hip<br>arthroplasty<br>with cemented<br>stem in 1 hip<br>and<br>cementless<br>stem in other<br>vs. unilateral<br>total hip<br>arthroplasty<br>with<br>cementless<br>stem                   | Linear wear<br>cemented $1.15\pm0.6$<br>vs. cementless<br>$0.69\pm0.57$ mm.<br>Volumetric wear<br>$438.77\pm228.08$ vs.<br>$262.98\pm218.17$ mm <sup>3</sup> .<br>Wear per year<br>$0.22\pm0.12$ vs.<br>$0.14\pm0.12$ mm (p =<br>0.23). Radiolucent<br>lines <1mm in 14%<br>vs. 5%.                                                          | "Although there was no<br>aseptic loosening of<br>the components, a<br>high rate of linear wear<br>of the polyethylene<br>liner and a high rate of<br>osteolysis in these<br>high-risk young<br>patients remain<br>challenging problems."                                                                                                                                                                                      | Appears to be<br>subset of Kim<br>2002 population.<br>Suggests long<br>term outcomes<br>may be poorer<br>than other studies,<br>possibly young<br>age and/or other<br>osteonecrosis-<br>related factors. |
| Pitto<br>1999<br>RCT                                    | 5.5 | N = 60<br>OA                                                                                                          | Arthroplasty<br>without cement<br>(Group 1) vs.<br>conventional<br>cementing<br>(plus bone<br>plug) (Group 2)<br>vs. bone<br>vacuum<br>cementing<br>(methyl-<br>methacrylate<br>plug) (Group<br>3). Palacos R<br>cement used. | Shorter duration of<br>surgery in<br>uncemented (58±12<br>vs. 71±22 vs. 77±16<br>minutes, p <0.05).<br>Embolic events in<br>15% vs. 10% in group<br>2 had grade 2<br>embolic events.<br>Duration of embolic<br>events also shorter in<br>uncemented (Grade<br>1: 4±3 vs. 8±6.5 vs.<br>7±3 sec, p <0.05.<br>Grade 2: None vs.<br>11±4 vs. 4). | "[S]evere embolic<br>events and<br>intraoperative<br>pulmonary impairment<br>are common when a<br>femoral component is<br>fixed with use of a<br>conventional<br>cementing technique.<br>The results clearly<br>demonstrated a low<br>risk of embolism during<br>total hip arthroplasty<br>when the femoral<br>component was fixed<br>without cement and<br>when it was fixed with<br>the bone-vacuum<br>cementing technique." | More embolic<br>events with<br>conventional<br>cementation<br>versus bone-<br>vacuum or no<br>cementing. Used<br>different plugs.                                                                        |
| Wykman<br>1991<br>RCT                                   | 5.0 | N = 150<br>76.6%OA,<br>10% RA                                                                                         | Cemented<br>(Charnley) vs.<br>uncemented<br>(Honnart Patel-<br>Garches) total<br>hip<br>arthroplasty                                                                                                                          | At 50 months,<br>durability of prosthetic<br>success 78%<br>Charnley vs. 73%<br>HP-Garches (NS).<br>Probability of<br>prosthesis survival<br>88% for Charnley vs.<br>82% (NS). Harris hip<br>score (median)                                                                                                                                  | "There was no<br>significant difference<br>between the groups at<br>the most recent<br>evaluation. Our<br>findings are not<br>consistent with earlier<br>optimistic expectations<br>on press-fit<br>noncemented total hip                                                                                                                                                                                                      | No clear<br>advantage to<br>cementation.                                                                                                                                                                 |

|                         |     |                                    |                                                                                                                                                                                                                                                      | Charnley vs. HP-<br>Garches: pre-op 37.3<br>vs. 38.1; at 6 months<br>89.4 vs. 74.3 (p<br><0.001); most recent<br>evaluation 95.3 vs.<br>88.7.                                                                                                                                                                                                                                                                                                                                                                                                       | arthroplasties."                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                 |
|-------------------------|-----|------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Digas<br>2004<br>RCT    | 5.0 | N = 90<br>95.6% OA                 | Cemex fluoride<br>vs. palacos<br>gentamicin<br>cement vs.<br>hybrid group<br>(femoral<br>component<br>separately<br>randomized to<br>either cement).<br>All Spectron<br>stems. Whole<br>polyethylene<br>Reflection and<br>press-fit<br>Trilogy cups. | Harris hip score after<br>2 years 0.24. Pain<br>after 2 years 0.15.<br>Cup translation (mm)<br>medial (+)/lateral (-)<br>mean value: Cemex-<br>F -0.01; Uncemented<br>0.12; Palacos -0.09 p-<br>value=0.05. Proximal<br>(+)/(-) p-value = 0.79.<br>Anterior (+)/ (-) p-<br>value = 0.72. Cup<br>rotations anterior (+)<br>posterior<br>(-) tilt p-value = 0.56.<br>Ante- (-)/retroversion<br>(+) p-value 0.66.<br>Increase (+)/decrease<br>(-) of the inclination<br>mean value: Cemex-<br>F -0.09; Uncemented<br>0.23; Palacos -0.21, p<br>= 0.14. | "Appearance of<br>radiolucent lines was<br>almost equal in the two<br>cemented groups.<br>Uncemented cups had<br>less radiolucent lines<br>at 2 years. Fluoride<br>containing cement or<br>uncemented fixation<br>did not improve the<br>early postoperative<br>stability of the socket." | Although more<br>migration of<br>uncemented and<br>less radiolucent<br>lines, no clear<br>advantage of<br>cementing<br>regarding<br>outcomes such as<br>Hip Scores or<br>pain.<br>Fluoride issues<br>addressed in<br>"Miscellaneous"<br>section below.          |
| Reigstad<br>1993<br>RCT | 5.0 | N = 120<br>OA                      | Cemented<br>Landos Titane<br>vs.<br>uncemented<br>Zweymüller/<br>Endler                                                                                                                                                                              | Frequency of ectopic<br>bone formation<br>around 2 types of<br>prostheses varied<br>insignificantly after 5<br>years. Woman with<br>uncemented<br>protheses developed<br>more bone atrophy (p<br>= 0.03) and cortical<br>hypertrophy (p =<br>0.04). Cemented vs.<br>uncemented cases<br>that did not develop<br>bone atrophy: after 1<br>year 19 vs. 25; after 5<br>years 12 vs. 18.<br>Cortical hypertrophy<br>free cases: after 1<br>year 58 vs. 37; after 5<br>years 52 vs. 22 (p<br><0.05).                                                     | "The age and body<br>weight of the patients<br>and the stem size did<br>not affect the bone<br>changes, but woman<br>with uncemented<br>stems developed more<br>bone atrophy than did<br>men."                                                                                            | Two major<br>variables different<br>between groups<br>(type and<br>cement), which<br>limits strength of<br>conclusions.                                                                                                                                         |
| Carlsson<br>1993<br>RCT | 4.0 | N = 226<br>Hip arthro-<br>plasties | Low vs. high<br>viscosity<br>cement                                                                                                                                                                                                                  | Low viscosity cement<br>with $9/112$ (8.0%) vs.<br>high viscosity 13/114<br>(11.4%) with definite<br>or probable<br>loosening.<br>Differences in<br>outcomes with<br>younger more likely to<br>have loosening (p =<br>0.03) and with<br>posterior approach (p<br>= 0.02).                                                                                                                                                                                                                                                                           | "No difference was<br>found between cement<br>of high and low<br>viscosity with regard to<br>prosthetic fixation."                                                                                                                                                                        | High dropouts<br>(126/352 = 35.8%)<br>from original RCT.<br>No control for<br>prostheses types.<br>Variable follow-up<br>length. Surgical<br>procedures and<br>prostheses differed<br>and not controlled.<br>Post-hoc excluded<br>non-OA.<br>Gentamicin both in |

|                         |     |                                                           |                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                               | and not in cement<br>and not<br>randomized. Study<br>flaws limit potential<br>conclusions.                                                                           |
|-------------------------|-----|-----------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                         | 1   | Ce                                                        | ementation Types                                                                                                                                                   | , Techniques, and Pres                                                                                                                                                                                                                                                                                                     | surization                                                                                                                                                                                                                                                                    | Τ                                                                                                                                                                    |
| Flivik<br>2004<br>RCT   | 6.5 | N = 14<br>Primary<br>coxarthrosis                         | Pressurized<br>cement with<br>conventional<br>pressurizer vs.<br>sequential<br>method<br>including<br>individual<br>pressurization<br>of each<br>anchorage<br>hole | An average peak<br>pressure of 858mm<br>Hg for sequential<br>technique, while<br>478mm Hg for<br>subsequent<br>compressor. Cement<br>tap penetration wider<br>with sequential (14.6<br>vs. 10.3mm, $p =$<br>0.03). Penetration<br>depth superior as well<br>(2.8 vs. 0.65mm, p<br><0.001).                                 | "Conventional methods<br>for cement<br>pressurization in the<br>acetabulum may not<br>be optimal."                                                                                                                                                                            | Suggests<br>pressurizing each<br>anchorage hole is<br>superior. Only an<br>immediate post-<br>operative study<br>and no short of<br>long term clinical<br>follow-up. |
| RCT                     | 0.0 | N = 37<br>64.9% OA,<br>21.1% post-<br>trauma,<br>15.8% RA | Palacos R<br>cements; all<br>Charnley<br>prostheses                                                                                                                | Palamed G 0.18mm<br>vs. Palacos R<br>0.21mm and mean<br>internal rotation 1.7°<br>vs. 2.0° at 2 years.<br>No statistically<br>significant<br>differences.                                                                                                                                                                  | provided good initial<br>fixation of the femoral<br>component and good<br>clinical results at two<br>years."                                                                                                                                                                  | between the 2<br>cements.                                                                                                                                            |
| Nelissen<br>2005<br>RCT | 5.5 | N = 39<br>THA                                             | Simplex P<br>cement vs.<br>Simplex AF<br>cement; all<br>Exeter<br>prostheses                                                                                       | No differences in<br>translation or rotation<br>migration.<br>Subsidence of stem<br>at 2-year follow-up<br>was 1.1 +/<br>- 0.56 mm for Simplex<br>AF cement vs. 1.5 +/-<br>1.00 mm for Simplex<br>P (NS). No significant<br>correlation between<br>minimum and<br>maximum cement<br>mantle thickness<br>around components. | "2 acetabular cups in<br>the Simplex AF group<br>(almost 10%) were<br>revised because of<br>mechanical loosening.<br>Because of these<br>findings, we suggest<br>caution before using<br>this new high-viscosity<br>bone cement for<br>fixation of acetabular<br>components." | Methods details<br>sparse. Suggests<br>very high viscosity<br>may result in<br>loosening, though<br>results are not<br>significant.                                  |
| McCaskie<br>1997<br>RCT | 5.5 | N = 31<br>THR                                             | Finger-packing<br>vs. cement-<br>gun technique<br>femoral canal<br>before<br>cementing                                                                             | Maximum pressure in<br>cement insertion<br>mean $\pm$ SD: Finger<br>96.4 $\pm$ 15.9; gun<br>118.3 $\pm$ 48.7. Oxygen<br>saturation -4.5 $\pm$ 4.9%<br>vs. 0.78 $\pm$ 0.97 (p =<br>0.006).                                                                                                                                  | "Gun technique<br>produced the highest<br>pressure peaks and<br>mean pressure. These<br>results support that<br>gun method promotes<br>better interlock."                                                                                                                     | Higher pressures<br>associated with<br>gun use, but both<br>better cement and<br>less hypoxemia<br>with gun use.                                                     |
| Berger<br>1997<br>RCT   | 5.5 | N = 60<br>THA                                             | Femoral<br>component<br>inserted with<br>vs. without<br>distal<br>centralizing<br>device<br>(PMMA) for<br>primary hybrid<br>total hip<br>arthroplasty              | Prostheses of<br>centralizer group<br>valgus mean of<br>0.2°±1.2°. Range of<br>angles 2.7° for<br>valgus, 2.7° varus.<br>Prostheses of<br>uncentralizer group<br>varus mean of 1.5°±<br>1.7°. Range of 2.6° of<br>valgus to 5.6° of<br>varus. 21% of                                                                       | "Decreased incidence<br>of cement mantle<br>deficiencies and a<br>more neutral prosthetic<br>alignment four with<br>distal centralizing<br>device."                                                                                                                           | Centralizing<br>device use<br>improved overall<br>cementing quality,<br>but did not reduce<br>voids.                                                                 |

|                         |     |                                                                   |                                                                                                                                                                         | centralizers vs. 16%<br>of uncentralizers<br>showed voids. Fewer<br>cement mantle<br>deficiencies with vs.<br>without centralizer (p<br><0.001).                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                        |                                                                                                                                             |
|-------------------------|-----|-------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|
| Pabinger<br>2004<br>RCT | 4.5 | N = 22<br>THR                                                     | CPS stem<br>cemented<br>conventionally<br>using 3rd<br>generation<br>cementation<br>technique vs<br>TRIOS<br>cemented<br>using<br>transprosthetic<br>drainage<br>system | Radiolucencies<br>TRIOS/CPS: 2 years<br>75%/40%. Mean<br>subsidence at 5 years<br>(range) TRIOS/CPS:<br>4 years 2.29(0.1-8)/<br>1.38 (0.4-2.9)                                                                                                                                                                                                                                                                                                                                   | "Cementing titanium<br>stems of this design<br>cannot be<br>recommended."                                                                              | No benefit of the<br>transprosthetic<br>drainage system<br>for cementation.<br>However, high<br>rates of<br>subsidence with<br>TRIOS stems. |
| Wykman<br>1992<br>RCT   | 4.5 | N = 19<br>Cemented<br>THA                                         | Continuous<br>irrigation with<br>Ringer solution<br>during cement<br>curing vs. no<br>irrigation                                                                        | Among those without<br>irrigation, 9/11<br>(81.8%) exceeded<br>$44^{\circ}$ C during 2.7 min.<br>With irrigation, 2/8<br>(25%) exceeded $44^{\circ}$ C<br>for 18s and 46s.<br>Median maximum<br>temperatures:<br>irrigation 40.9 vs. no<br>irrigation 48.8°C, p =<br>0.007.                                                                                                                                                                                                      | "Continuous water<br>irrigation reduced the<br>amount of heat at the<br>bone-cement interface;<br>median maximum<br>temperature was 41<br>(37-48) °C." | No long-term<br>outcomes.                                                                                                                   |
| Thanner<br>1995<br>RCT  | 4.5 | N = 30<br>THA                                                     | Fixation of the<br>prosthesis,<br>using Boneloc<br>vs. Palacos<br>with<br>gentamicin                                                                                    | Cups fixed with<br>Palacos displayed<br>small lateral<br>migration; cups<br>fixated with Boneloc<br>migrated medially (6<br>weeks, 6 and 12<br>months; $p = 0.03$ ). In<br>group fixed with<br>standard cement,<br>mean proximal-distal<br>migration of stem<br>close to 0 throughout<br>observation period.<br>With Boneloc<br>increasing<br>subsidence recorded<br>especially after 6<br>months (6 months vs.<br>12 months; $p = 0.03$ ,<br>6 weeks vs. 1 year; $p = 0.002$ ). | The cold-curing<br>cement provided an<br>inferior fixation of both<br>the acetabular and<br>femoral components<br>compared to standard<br>cement.      | Boneloc cement<br>appeared inferior.                                                                                                        |
| Nivbrant<br>2001<br>RCT | 4.0 | N = 44<br>Primary<br>arthrosis of<br>the hip<br>undergoing<br>THR | Fixation with<br>Cemex Rx vs.<br>Palacos R<br>cement of both<br>components                                                                                              | Harris hip score<br>Cemex/Palacos: total<br>5 years 94/97; pain 5<br>years 44/44.<br>"Measurements of<br>postoperative bone<br>turnover, metal<br>release and implant<br>migration up to 5<br>years after the                                                                                                                                                                                                                                                                    | "The stems migrated<br>similarly inside the<br>cement mantle<br>regardless of the type<br>of cement used."                                             | Suggests low<br>proportion<br>monomer is not<br>superior.                                                                                   |

|                        |     |                                                     |                                                                                                                                                                              | operation showed no<br>significant<br>differences."                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                      |                                                                                                          |
|------------------------|-----|-----------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|
|                        |     | Co                                                  | omparisons betw                                                                                                                                                              | een Different Cement R                                                                                                                                                                                                                                                                                                                                        | estrictors                                                                                                                                                                                                                                                                                                                           |                                                                                                          |
| Schauss<br>2006<br>RCT | 6.5 | N = 130<br>THA due to<br>hip OA                     | Degradable<br>cement<br>restrictor<br>(Biostop G) vs.<br>non-<br>degradable<br>cement<br>restrictor<br>(Allopro)                                                             | Median cement plug<br>length 27mm in<br>biodegradable<br>restrictor group vs.<br>15mm non-<br>degradable restrictor<br>group. 53% non-<br>degradable restrictors<br>and 64% degradable<br>restrictors graded<br>normal sized. 26% of<br>non-degradable<br>restrictors classified<br>as undersized vs.<br>15% of degradable<br>restrictors.                    | "The results indicate<br>insufficient<br>intramedullary plug<br>fixation of the<br>degradable restrictor<br>probably due to the<br>elastic material<br>properties which also<br>may lead to inferior<br>precision in restrictor<br>size choice."                                                                                     | Pressurizing is<br>important to<br>cement quality<br>and migration of<br>restrictors reduces<br>quality. |
| Freund<br>2003<br>RCT  | 6.5 | N = 70<br>Primary<br>cemented<br>hip<br>replacement | Polyethylene<br>vs. Shuttle<br>Stop<br>(degradable)                                                                                                                          | At 3 months, Shuttle<br>Stop with 8 distortions<br>or plug displacements<br>and 13 cement<br>leakages vs. 0<br>distortions/plug<br>displacements and 3<br>with cement leakage<br>in polyethylene group<br>(p <0.01). At 3 years,<br>2 failures and 1<br>probable loosening in<br>Shuttle stop vs. no<br>failures and 1<br>loosening in<br>polyethylene group. | "We cannot<br>recommend the<br>Shuttle Stop for<br>femoral canal sealing<br>in total hip<br>replacement."                                                                                                                                                                                                                            | Suggests<br>biodegradable<br>inferior.                                                                   |
| Thomsen<br>1992<br>RCT | 4.5 | N = 77<br>THA                                       | Comparison of<br>3 plugs in<br>THA: 1) bone<br>plug made<br>from femoral<br>head; 2)<br>Richards<br>polyethylene<br>plug; 3)<br>Thackray<br>polyethylene<br>plug was<br>38mm | The quality of cement<br>packing with<br>Thackray<br>polyethylene plug<br>was significantly<br>better compared to<br>other 2 options (p =<br>0.02, p = 0.03).                                                                                                                                                                                                 | "The Thackray<br>polyethylene plug (38<br>mm, disc-shaped), with<br>its large and flexible<br>diameter, was best<br>able to seal the femoral<br>canal and produced<br>significantly better<br>cement packing<br>compared to both the<br>autologous bone plug<br>and the Richard<br>polyethylene plug."                               | Unclear if this is<br>an RCT.                                                                            |
| Visser<br>2002<br>RCT  | 4.0 | N = 93<br>THA                                       | Biosem II plug<br>vs. Cemlock<br>plug vs.<br>Thackray plug;<br>all Stanmore<br>prostheses                                                                                    | 40/93 (43%) plugs<br>migrated >1cm.<br>Difference in<br>migration between 3<br>plugs significant (p =<br>0.001). Biosem plug<br>unstable in 78%<br>(25/32); Cemlock in<br>32% (9/28); and<br>Thackray 18% (6/33).<br>Leakage of cement<br>below plug most<br>frequent in Thackray<br>group (20 hips).<br>Quantity of cement                                   | "Comparing the<br>results, the most stable<br>plug in our study was<br>the Thackray plug;<br>however, the<br>difference with the<br>resorbable Cemlock<br>plug was not<br>significant, with failure<br>in 18% of cases. The<br>Biosem plug was not<br>able to resist the<br>pressure during<br>cementing and was<br>abandoned in our | Polyethylene plug<br>superior to 2<br>different<br>biodegradable<br>plugs.                               |

|                          |     |                                                                                                                          |                                                                                                                                                               | below plug varied<br>between 0.5 and<br>4cm.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | clinic."                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                       |
|--------------------------|-----|--------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Wembridge<br>2006<br>RCT | 4.0 | N = 32<br>THA                                                                                                            | Ultra-high-<br>molecular-<br>weight<br>polyethylene<br>(Hardinge) vs.<br>biodegradable<br>(Amberflex<br>Summit<br>Medical)<br>femoral<br>cement<br>restrictor | Mean migration of<br>Hardinge was 6 times<br>lower (0.5 vs. 3.0cm,<br>p <0.002) than that of<br>the biodegradable<br>restrictor.                                                                                                                                                                                                                                                                                                                                                                                                         | "Although there are<br>theoretical advantages<br>in avoiding UHMWPE<br>restrictors, the current<br>biodegradable<br>alternative is actually<br>inferior and its use<br>cannot be endorsed."                                                                                                                                                   | Ultra-short term<br>follow-up period of<br>5 days only.                                                                                                                               |
| Kroon<br>2006<br>RCT     | 4.0 | N = 103<br>Total hip<br>surgery                                                                                          | Three<br>intramedullary<br>resorbable<br>cement plugs<br>in vitro and in<br>vivo. (1) SEM<br>II plus, (2) C-<br>plug, (3) REX<br>plug.                        | In vitro: C-plug<br>unstable 4 of 5 times,<br>SEM II once and<br>minimal cement<br>leakage 4 times. REX<br>plug stable without<br>leakage. In vivo:<br>17/37 (45.9%) SEM II<br>migrations within 1cm<br>margin. C plug<br>unstable 23/31<br>(74.2%). REX plug<br>unstable 16/35<br>(54.3%). Mean<br>migrations corrected<br>for size: C-plug                                                                                                                                                                                             | "We do not<br>recommend the use of<br>the C-plug in<br>cemented hip<br>arthroplasty. The REX<br>plug is a promising<br>design; however,<br>insertion problems in<br>vivo lead to<br>disappointing results,<br>so the insertion<br>technique must be<br>improved. The SEM II<br>plug performs well in<br>the case of a short<br>stem and has a | Most significant<br>variables were<br>type of plug (p =<br>0.02) and size of<br>plug (p = 0.02).<br>Medium-sized<br>plugs were best.                                                  |
|                          |     |                                                                                                                          |                                                                                                                                                               | 1.71±0.46 vs. SEMI<br>2.74±0.47.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | technique."                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                       |
|                          |     |                                                                                                                          | Metal-on-                                                                                                                                                     | 1.71±0.46 vs. SEM II<br>1.71±0.46 vs. REX<br>2.74±0.47.<br>-Metal Hip Resurfacing                                                                                                                                                                                                                                                                                                                                                                                                                                                        | technique."                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                       |
| Girard<br>2006<br>RCT    | 6.0 | N = 104<br>Unilateral or<br>mild bilateral<br>OA, also had<br>16 patients<br>with<br>dysplasia or<br>Perthe's<br>disease | Metal-on<br>Total hip<br>arthroplasty<br>(CLS<br>Spotorno,<br>Metasul, Allofit,<br>Zimmer) vs.<br>hip resurfacing<br>(Durom,<br>Zimmer)                       | 3.16 $\pm$ 0.46 vs. SEIM II<br>1.71 $\pm$ 0.46 vs. REX<br>2.74 $\pm$ 0.47.<br><b>Metal Hip Resurfacing</b><br>Horizontal center of<br>rotation reconstructed<br>in 60% THA vs. 84%<br>SRA groups to within<br>$\pm$ 3mm of contralateral<br>side. Mean vertical<br>location not different<br>(p = 0.74). Mean<br>post-op femoral offset<br>increased 5.1mm in<br>TWH vs. decreased<br>3.3mm SRA groups<br>(p = 0.0001). Leg<br>length increased in<br>THA vs. SRA groups<br>with 60% normalized<br>in THA vs. 86% in<br>SRA (p = 0.002). | "The radiological<br>parameters of<br>acetabular<br>reconstruction were<br>similar in both groups.<br>Restoration of the<br>normal proximal<br>femoral anatomy was<br>more precise with SRA<br>(surface replacement<br>arthroplasty)."                                                                                                        | Baseline BMI<br>higher in THA<br>group (p = 0.06).<br>Data suggest<br>comparable<br>immediate post-<br>surgical results,<br>however no<br>intermediate or<br>long term follow-<br>up. |

|                                                   |             |                                                                    |                                                                                                                                                                                                                                     | Medications                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                         |
|---------------------------------------------------|-------------|--------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Karnezis<br>1994<br>RCT<br>Garneti<br>2004<br>RCT | 10.0<br>5.5 | N = 92<br>THR and<br>TKR<br>patients,<br>88% OA<br>N = 50<br>OA    | Desmopressin<br>group vs.<br>placebo<br>Bolus 10mg/kg<br>of intravenous<br>tranexamic<br>acid vs normal<br>saline at                                                                                                                | Higher volume<br>transfused blood in<br>desmopressin group<br>(1944±738 vs.<br>1015±515mL). No<br>significant differences<br>between groups with<br>regard to coagulation.<br>No significant<br>difference in blood<br>loss from femoral<br>canal, peri-operative<br>bleeding, and post-op                                                                                                                                                                   | "[D]esmopressin does<br>not reduce blood loss<br>or transfusion<br>requirements after total<br>joint arthroplasty."<br>"The results of this<br>study do not support<br>the routine use of<br>tranexamic acid in<br>primary total hip                                                                                                                                                                                                                                                                                                                                                                                                                                     | Study suggests<br>Desmopressin<br>does not provide<br>benefit for hip and<br>knee arthroplasty<br>patients.<br>Tranexamic acid<br>appears unhelpful.<br>Blinding not well<br>described. |
|                                                   |             |                                                                    | anestnesia                                                                                                                                                                                                                          | Tranexamic acid<br>group required more<br>transfusions.                                                                                                                                                                                                                                                                                                                                                                                                      | annroplasty.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                         |
|                                                   |             |                                                                    |                                                                                                                                                                                                                                     | Miscellaneous                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                         |
| Motobe<br>2004<br>RCT                             | 6.0         | N = 35<br>OA, RA and<br>femoral neck<br>fracture, all<br><55 years | Femoral<br>component<br>inserted with<br>vs. without<br>cement.<br>Endogenous<br>cannabinoids<br>inserted using<br>a conventional<br>cementing<br>technique vs.<br>insertion<br>without cement                                      | Sixteen patients in<br>cemented group had<br>a sudden decrease in<br>systolic blood<br>pressure of more than<br>20% at 2 minutes<br>after prosthetic<br>insertion vs. none in<br>non-cemented group<br>(p = 0.0015). Sudden<br>decrease in diastolic<br>blood pressure also<br>differed significantly<br>at 2 minute interval (p<br><0.05). Significant<br>difference in<br>anandamide (ANA)<br>and 2-<br>arachidonylglycerol<br>(2-AG) levels (p<br><0.05). | "We have<br>demonstrated for the<br>first time significant<br>increases in levels of<br>ANA and 2AG,<br>members of a newly<br>identified class of<br>neurohumoral vascular<br>mediators, in the<br>course of cemented<br>hip cement<br>arthroplasty. This<br>observation strongly<br>suggests that ANA and<br>2AG are mediators of<br>the hemodynamic<br>variables associated<br>with bone cement<br>implantation shock.<br>Therefore, targeting of<br>the biosynthesis of,<br>specific receptors for<br>and biological<br>degradation systems<br>of endocannabinoids<br>might be useful as new<br>strategies for the<br>prevention and clinical<br>management of BCIS." | Study suggests<br>endogenous<br>cannabinoids are<br>important vascular<br>mediators,<br>released by bone<br>cement. A<br>preventive therapy<br>is unclear.                              |
| Digas<br>2004<br>RCT                              | 5.0         | N = 90<br>95.6% OA                                                 | Cemex fluoride<br>vs. Palacos<br>Gentamicin<br>cement vs.<br>hybrid group<br>(femoral<br>component<br>separately<br>randomized to<br>either cement.)<br>All Spectron<br>stems. Whole<br>polyethylene<br>Reflection and<br>press-fit | Harris hip score after<br>2 years 0.24. Pain<br>after 2 years 0.15.<br>Cup translation (mm)<br>medial (+)/lateral (-)<br>mean value: Cemex-<br>F -0.01; uncemented<br>0.12; Palacos -0.09 p<br>= 0.05. Proximal (+)/(-)<br>p-value = 0.79.<br>Anterior (+)/(-) p =<br>0.72. Cup rotations<br>anterior (+)-posterior<br>(-) tilt p-value = 0.56.<br>Ante- (-)/ retroversion<br>(+) p-value 0.66.                                                              | Appearance of<br>radiolucent lines was<br>almost equal in the two<br>cemented groups.<br>Uncemented cups had<br>less radiolucent lines<br>at 2 years. Fluoride<br>containing cement or<br>uncemented fixation<br>did not improve the<br>early postoperative<br>stability of the socket."                                                                                                                                                                                                                                                                                                                                                                                 | Suggests fluoride<br>added to cement<br>not helpful.                                                                                                                                    |

|                        |     |                                       | Trilogy cups.                                                                                                                                          | Increase (+)/decrease<br>(-) of inclination mean<br>value: Cemex-F -<br>0.09; Uncemented<br>0.23; Palacos -0.21, p<br>= 0.14.                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                |
|------------------------|-----|---------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|
| Digas<br>2005<br>RCT   | 5.0 | N = 90<br>95.6% OA                    | Same as<br>above                                                                                                                                       | At 6 month follow-up,<br>almost no mean<br>subsidence recorded<br>in 2 groups, which<br>increased to -0.07 and<br>-0.12mm at 2 years (p<br>= 0.25). Distal<br>migration of stems at<br>2 years -0.15 and -<br>0.09 mm, respectively<br>(p = 0.6). In 29 of 32<br>patients with<br>rheumatoid arthritis or<br>continuous treatment<br>with cortisone in<br>whom subsidence<br>could be evaluated at<br>2 years, mean values<br>in C-F and Palacos<br>groups -0.16 and -<br>0.13mm. | "[T]here is no obvious<br>advantage of addition<br>of fluoride to acrylic<br>bone cement when<br>used to fixate the<br>femoral component in<br>total hip arthroplasty."                                                                                                                                                                                                           | Cement not<br>significantly<br>different.                                      |
| Digas<br>2006<br>RCT   | 5.0 | N = 90<br>95.6% OA                    | Same as<br>above                                                                                                                                       | Between post-op<br>follow-up and 2-year<br>follow-up, bone close<br>to fluoride cement<br>showed no significant<br>changes ( $p > 0.1$ ).<br>Uncemented sockets<br>had reduction in bone<br>mineral density in<br>regions 1-3 (-3 to -<br>17%, $p = 0.001-0.04$ ).<br>Decrease post-op<br>year ( $p = 0.001-0.01$ )<br>without certain further<br>changes following<br>year ( $p > 0.2$ ). Cups<br>cemented with<br>Palacos, 14%<br>increase BMD in<br>region 5 ( $p = 0.02$ ).   | Use of fluoride cement<br>did not influence the<br>periprosthetic BMD 2<br>years after the<br>examination.<br>Increased loss of BMD<br>with use of<br>uncemented press-fit<br>cups in the region in<br>which osteolytic<br>lesions are commonly<br>found suggests that<br>stress shielding may<br>initiate development of<br>this complication.                                   | Addition of fluoride<br>to the cement of<br>no added benefit.                  |
| Brodner<br>2003<br>RCT | 5.0 | N = 100<br>OA or<br>osteonecrosi<br>s | Hip<br>arthroplasty<br>Alloclassic<br>without cement<br>treated with a<br>metal-on-metal<br>articulation vs.<br>ceramic-on-<br>polyethylene<br>bearing | Serum cobalt median<br>prep 0.15 vs.<br>0.15µg/L. At one<br>year, 1 vs. 0.15. At 5-<br>years 0.7 vs. 0.15.                                                                                                                                                                                                                                                                                                                                                                        | "Systemic cobalt<br>release from Metasul<br>metal-on-metal<br>articulations was<br>demonstrated<br>throughout 5-year<br>study period. Median<br>serum cobalt<br>concentrations found<br>to be slightly above<br>detection limit and<br>remained in a constant<br>range. Serum cobalt<br>concentrations did not<br>reflect a so-called run-<br>in wear period of<br>metal-on-metal | Clinical<br>significance<br>uncertain as there<br>is no clinical<br>correlate. |

|                                       |     |                                 |                                                                                                                                                 |                                                                                                                                                                                                                                                                      | articulations."                                                                                                         |                                                                                                                                                                                                                              |  |  |  |
|---------------------------------------|-----|---------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
|                                       |     |                                 |                                                                                                                                                 |                                                                                                                                                                                                                                                                      |                                                                                                                         |                                                                                                                                                                                                                              |  |  |  |
| Acupuncture for Arthroplasty Patients |     |                                 |                                                                                                                                                 |                                                                                                                                                                                                                                                                      |                                                                                                                         |                                                                                                                                                                                                                              |  |  |  |
| Usichenko<br>2005<br>RCT              | 8.0 | N = 61<br>Hip arthro-<br>plasty | Auricular<br>acupuncture<br>(hip joint,<br>shenmen,<br>lung,<br>thalamus) vs.<br>sham<br>acupuncture (4<br>helix points) for<br>up to 3 post-op | Auricular acupuncture<br>received 32% less<br>piritramide vs. control<br>in 1st 36 post-op<br>hours (37 vs. 54mg, p<br>= $0.004$ ). Total dose<br>36% lower ( $0.54$ vs.<br>0.84mg/ kg, p =<br>0.002). Time to 1st<br>request lower (40 vs.<br>25 minutes - $0.04$ ) | "(Auricular<br>acupuncture) could be<br>used to reduce<br>postoperative<br>analgesic<br>requirement."                   | No differences in<br>rates of belief of<br>receipt of real<br>acupuncture.                                                                                                                                                   |  |  |  |
| Usichenko<br>2006<br>RCT              | 7.5 | N = 64<br>THA                   | Auricular<br>acupuncture<br>(lung,<br>shenmen,<br>forehead, hip)<br>vs. sham (4<br>helix points)                                                | 21% less fentanyl<br>(3.9±1.4 vs. 4.9±1.2,<br>p = 0.005) in<br>acupuncture group<br>vs. sham. 6 in<br>acupuncture group<br>required<br>intraoperative<br>atropine vs. 3 (NS).                                                                                        | "Auricular acupuncture<br>reduced fentanyl<br>requirement compared<br>to sham procedure<br>during hip<br>arthroplasty." | Data suggest mild<br>reduction in<br>fentanyl. No other<br>differences.<br>Considering<br>quality evidence,<br>traditional<br>acupuncture not<br>superior to sham<br>for LBP,<br>arthritis.Study<br>requires<br>replication. |  |  |  |

#### **Bisphosphonates and Calcitonin**

Bisphosphonates have been used to attempt to reduce periprosthetic bone resorption in the immediate peri-operative period.(1155) Calcitonin has been used to attempt to develop better healing after hip fracture fixation.(305)

1. Recommendation: Routine Use of Bisphosphonates

There is no recommendation for or against the routine peri-operative use of bisphosphonates. Strength of Evidence – No Recommendation, Insufficient Evidence (I)

2. Recommendation: Routine Use of Calcitonin

There is no recommendation for or against the routine post-operative use of calcitonin. *Strength of Evidence* – No Recommendation, Insufficient Evidence (I)

#### Rationale for Recommendations

Multiple studies have shown less bone loss with cemented prostheses(976, 1156-1158) and a greater effect on the knee.(1155) A high-quality trial of intranasal calcitonin also found better healing after internal fixation of hip fractures compared to placebo.(305) These studies are of short-term duration and there is no long-term follow-up. Thus, the utility of these medications for this purpose is unclear. Among those patients with osteoporosis however, these medications would appear to be indicated.

Evidence for the Use of Bisphosphonates and Calcitonin

There is 1 high- and 2 moderate-quality RCTs incorporated in this analysis.

| Author/Yea<br>r Study<br>Type | Score<br>(0-11) | Sample<br>Size | Compariso<br>n Group         | Results                                                                         | Conclusion                                                                                 | Comments                    |
|-------------------------------|-----------------|----------------|------------------------------|---------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|-----------------------------|
|                               |                 |                |                              | Bisphosphonates                                                                 |                                                                                            |                             |
| Venesmaa<br>2001              | 5.0             | N = 13         | Alendronat<br>e 10mg<br>plus | Periprosthetic bone mass<br>in all Gruen zones (post-<br>op/3 months/6 months): | "[A]lendronate seems to be<br>a potent drug to inhibit the<br>periorsthetic bone loss that | Small sample<br>sizes. Data |
| RCT                           |                 | uncemente      | calcium                      | calcium                                                                         | occurs after primary                                                                       | alendronate                 |

#### Copyright© 2016 Reed Group, Ltd.

|                          |     | d THA                            | carbonate<br>500mg vs.<br>calcium<br>500mg only<br>for 6<br>months                                  | (1.58±0.12/1.43±0.22/1.4<br>3±0.19), p = 0.022 vs.<br>alendronate plus CaCO3<br>(1.60±0.25/1.55±0.27/1.5<br>6±0.25), NS. Between<br>group differences p<br><0.05.                                                                                                                                                                                                                                                                                                                                                             | uncemented THAthe<br>follow-up time was too short<br>and the study population too<br>small to make firm<br>conclusions"                                                                                                                                                                                                                 | may be<br>effective, but<br>study<br>underpowered.                                                            |
|--------------------------|-----|----------------------------------|-----------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|
| Wilkinson<br>2001<br>RCT | 5.0 | N = 47<br>THA                    | Single-dose<br>infusion<br>pamidronat<br>e 90mg vs.<br>placebo                                      | Pamidronate significantly<br>reduced bone loss<br>compared with placebo<br>(p< 0.01). Pamidronate<br>associated with<br>suppressing multiple<br>biochemical markers of<br>bone turnover (p <0.05).                                                                                                                                                                                                                                                                                                                            | "Pamidronate significantly<br>reduces the acute bone<br>loss of proximal femur and<br>pelvis over the first 6<br>months after total hip<br>arthroplasty. The most<br>protective effect of<br>pamidronate was seen in<br>the medial periprosthetic<br>bone of the femur, the site<br>is where femoral bone<br>typically is most severe." | Single dose<br>study. No long<br>term follow-up.<br>No significant<br>differences in<br>clinical<br>outcomes. |
|                          |     |                                  |                                                                                                     | Calcitonin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                         |                                                                                                               |
| Huusko<br>2002<br>RCT    | 8.5 | N = 260<br>Acute hip<br>fracture | Intranasal<br>salmon<br>calcitonin<br>200 IU daily<br>vs. placebo<br>nasal spray<br>for 3<br>months | At 3-months, median pain<br>intensity VAS scale 0mm<br>in calcitonin group vs.<br>4mm in placebo (p =<br>0.15). Median change in<br>IADL score from baseline<br>to 3 months: -1 calcitonin<br>vs2 placebo (p = 0.74).<br>"The mean change in<br>calcaneal bone mineral<br>density from baseline to 3<br>months was not<br>statistically significant<br>between the groups -<br>0.004 (95% CI -0.008 to -<br>0.001) in the calcitonin<br>group and -0.007 (95% CI<br>-0.012 to -0.003) in the<br>placebo group (P =<br>0.28)." | "Intranasal calcitonin might<br>be useful for hip fracture<br>patients but the clinical<br>significance of this finding<br>needs to be confirmed by<br>studies with more<br>participants, a longer<br>treatment period, a longer<br>follow-up, and perhaps a<br>higher dose of calcitonin."                                             | Data trend<br>towards<br>suggesting<br>weak efficacy.                                                         |

#### Antibiotics

Antibiotics have been utilized systemically and added to cement for many years.(1040, 1159-1171)

#### Recommendation: One Day Use of Systemic Antibiotics for Hip Surgery One-day use of systemic antibiotics is moderately recommended for patients undergoing surgical hip procedures.

#### Strength of Evidence – Moderately Recommended, Evidence (B)

#### Rationale for Recommendation

There is evidence from a non-randomized registry data of 10,905 hip prostheses that the risk of revision due to infection was reduced 75 to 78% with a systemic antibiotic combined with an antibiotic-impregnated cement compared with either systemic antibiotic administration or antibiotic-impregnated cement alone. The risk, if there was only antibiotic in the cement, was 6.3-fold higher, and, if the antibiotic was only systemic risk, was 4.3-fold greater.(1172) There is a belief that some cases of aseptic loosening are undiagnosed infections(1040) as there were lower rates of aseptic loosening among those with both routes of antibiotic administration compared with either alone(1172) and those with gentamicin cement appear to have lower rates of aseptic loosening compare with systemic antibiotics.(1173, 1174) In the largest comparative trial of more than 1,600 hip arthroplasties, cement with gentamicin was found to produce fewer deep infections, but more superficial infections compared with an uncontrolled arm of systemic antibiotics alone.(1159, 1173, 1174) There is one low-quality study suggesting no difference in

#### Copyright© 2016 Reed Group, Ltd.

infection rates between cement-antibiotic and systemic antibiotic arms.(1175) Thus, there is quality evidence that a combination of systemic and antibiotic-impregnated cement is important to prevent infections. There was no prosthesis survival benefit if systemic antibiotics were administered for greater than one day.(1176) Numerous antibiotics have been utilized, including gentamicin, cloxacillin, dicloxacillin, probenecid, cephalexin, and phenoxymethylpenicillin,(1159) but there are no large-scale, head-to-head comparative trials available.

#### Evidence for the Use of Antibiotics

There are 2 high-(1177, 1178) and 5 moderate-quality RCTs(1159, 1171, 1173, 1174, 1179) incorporated in this analysis. There are 2 low-quality RCTs(862, 1175) in Appendix 2.

| Author/Yea<br>r Study | Score<br>(0-11) | Sample<br>Size                                                                                                                                                            | Compariso<br>n Group                                                                                                                                                                     | Results                                                                                                                                                                                                                                                                                                              | Conclusion                                                                                                                                                                                                                                                                                                                                                                                                                                            | Comments                                                                                                                                                                                                                                                                    |
|-----------------------|-----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Туре                  |                 |                                                                                                                                                                           | Antibiotics (                                                                                                                                                                            | Systemic and/or within                                                                                                                                                                                                                                                                                               | n Cement)                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                             |
| Bodoky<br>1993<br>RCT | 10.0            | N = 239<br>Internal<br>fixation with<br>dynamic<br>hip screw<br>for hip<br>fractures                                                                                      | Cefotiam<br>2gm at<br>anesthesia<br>induction<br>and 12<br>hours later<br>vs. placebo                                                                                                    | Major wound<br>infections: 5%<br>placebo (n = 6) vs.<br>1% (n = 1)<br>antibiotics (p <0.05).<br>No differences in<br>pulmonary infection<br>(9% vs. 6%). Urinary<br>infections: 31/115<br>(18%) vs. 15/124<br>(12%). Pre-op<br>albumin and<br>operation duration<br>most predictive of<br>minor wound<br>infections. | "The most powerful<br>predictors of major<br>wound infection were the<br>duration of the operation,<br>the interval between the<br>accident and admission<br>to the hospital, and the<br>duration of postoperative<br>urinary catheterization.<br>The preoperative level of<br>serum albumin and the<br>absolute lymphocyte<br>count were significant<br>predictors (p<0.05) of<br>minor wound infection<br>and systemic infection,<br>respectively." | Data suggest peri-<br>operative antibiotics<br>effective for reducing<br>risk of major wound<br>infections in hip<br>fracture patients.                                                                                                                                     |
| Gatell<br>1984<br>RCT | 8.0             | N = 284<br>Any metal<br>device<br>inserted to<br>be eligible<br>(plates,<br>screws,<br>wires). No<br>open<br>fracture; no<br>hip surgery;<br>no joint<br>replacemen<br>ts | Cefamandol<br>e 2gm IV 30<br>minutes<br>before, 2gm<br>2 hours after<br>start of<br>operation,<br>1gm IV or IM<br>8, 14, and<br>20 hours<br>later vs.<br>placebo                         | Superficial wound<br>infections in 0/ 134<br>(0%) patients given<br>cefamandole vs.<br>7/150 (4.7%), p<br><0.05. Two deep-<br>wound infections<br>developed in<br>cefamandole group<br>vs. four controls (p<br>>0.05).                                                                                               | "Cefamandole (five<br>doses) reduced the rate<br>of wound infection in<br>patients undergoing<br>clean orthopaedic<br>surgery that required an<br>internal fixation device."                                                                                                                                                                                                                                                                          | Varied diagnoses.<br>Does not apply to<br>hip. Cefamandole<br>appears prevent<br>superficial wounds,<br>but not deep<br>infections. Mortality<br>was higher in<br>Cefamandole group<br>unrelated to<br>infection, although<br>did not reach<br>statistical<br>significance. |
| Wahlig<br>1984<br>RCT | 7.0             | N = 30<br>67% OA,<br>10%<br>fracture                                                                                                                                      | Hip<br>replacement<br>using<br>antibiotic-<br>loaded<br>acrylic<br>cement<br>containing<br>0.5g vs. 1.0g<br>gentamicin<br>base/ 40g<br>polymer<br>powder. No<br>systemic<br>antibiotics. | Gentamicin<br>concentrations in<br>drainage fluid higher<br>than minimal<br>inhibitory<br>concentrations or<br>minimal bactericidal<br>concentration values<br>necessary for usual<br>pathogens. Serum<br>levels acceptably<br>low.                                                                                  | "[A]pproximately twice as<br>much gentamicin is<br>detectable in the urine<br>and from suction<br>drainage when one gram<br>is added to 40g of<br>powdered polymer<br>compared with the half<br>gram usedWhile these<br>pharmacokinetic results<br>are conclusive, they do<br>not prove whether or not<br>one gram of half a gram<br>of gentamicin added to<br>the cement is more<br>efficacious clinically."                                         | Pharmacokinetic<br>study without any<br>clinical outcomes to<br>indicate reduced<br>infections.                                                                                                                                                                             |

| McQueen<br>1987<br>RCT                          | 4.5 | N = 295<br>Hip or knee<br>arthro-<br>plasties        | Cefuroxime<br>in bone<br>cement<br>(1.5g mixed<br>in 40gm<br>CMW<br>cement<br>powder) vs.<br>cefuroxime<br>1.5gm IV at<br>induction<br>and 750mg<br>Q6 hour x 2 | 21 infections in 3<br>month period<br>(6.8%), 11 (7.5%) in<br>cement vs. 6.7%<br>parenteral (NS).<br>Three deep<br>infections, 1 in<br>cement (0.7%) vs. 2<br>in parenteral (1.3%),<br>(NS).                                                                                                                                                                              | "Both methods of<br>administering<br>Cefuroxime appear to be<br>satisfactory in the<br>prevention of early<br>infection after total joint<br>replacement."                                                                                      | Data suggest<br>equivalent efficacy<br>for IV vs. antibiotic in<br>the cement for<br>prevention of<br>infections.                                                                                                                                          |
|-------------------------------------------------|-----|------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Josefsson<br>1993<br>Ten-Year<br>Survey<br>RCT  | 4.0 | N = 1688<br>85% OA,<br>6.8%<br>fracture,<br>4.1% RA  | Prophylaxis<br>with<br>systematic<br>antibiotics<br>(not<br>standardized<br>) vs.<br>gentamicin<br>bone cement                                                  | During 10-year<br>period, 585 hips<br>developed signs of<br>aseptic loosening of<br>1 or both<br>components: 301<br>hips (55%) SA; 284<br>(50%) GBC.<br>Christiansen<br>prosthesis showed<br>high (80%)<br>loosening rate in<br>both groups.                                                                                                                              | "[T]he differences<br>between the SA and<br>GBC groups found at<br>both the two- and five-<br>year reviews are no<br>longer significant at ten<br>years after surgery."                                                                         | Methodology details<br>sparse. Systemic<br>antibiotics not<br>standardized at<br>start. Higher rates of<br>aseptic loosening<br>among systemic<br>antibiotic group.                                                                                        |
| Josefsson<br>1990<br>Five-Year<br>Survey<br>RCT | 4.0 | N = 1,688<br>85% OA,<br>6.8%<br>fracture,<br>4.1% RA | Prophylaxis<br>with<br>systematic<br>antibiotics<br>(not<br>standardized<br>) vs.<br>gentamicin<br>bone cement                                                  | After 1-2 years<br>follow-up, infection<br>rates favored<br>gentamicin cement.<br>After 5 years,<br>difference unaltered.<br>Total 16 deep<br>infections SA group<br>(1.9%), 7 (0.8%) in<br>gentamicin (p<br><0.05).<br>Roentgenographicall<br>y, aseptic loosening<br>29% vs. 24%<br>respectively,<br>suggesting<br>admixture of<br>antibiotic did not<br>weaken cement. | "The results of this five-<br>year review clearly<br>showed the prophylactic<br>value of gentamicin<br>cement against deep<br>infection after THA but<br>did not support the<br>hypothesis that this effect<br>was prolonged over one<br>year." | 2nd of 3 publications<br>of this population.<br>Participants<br>increased from<br>original.<br>Methodology details<br>sparse. Study<br>demonstrated poor<br>results of<br>Christensen<br>prothesis, which was<br>"obsolete:" at time of<br>this follow-up. |
| Josefsson<br>1981<br>RCT                        | 4.0 | N = 1,685<br>85% OA,<br>6.8%<br>fracture,<br>4.1% RA | Prophylaxis<br>with<br>systematic<br>antibiotics<br>(not<br>standardized<br>) vs.<br>gentamicin<br>bone cement                                                  | Systemic antibiotic:<br>49 (5.9%) vs.<br>71(8.3%) gentamicin<br>cement with<br>superficial infections.<br>Difference<br>statistically<br>significant (p <0.05).<br>Deep infections<br>favored gentamicin<br>cement (0.4% vs.<br>1.6%, p <0.01).                                                                                                                           | "The difference in deep<br>infection frequency<br>between the antibiotic<br>and gentamicin group<br>was statistically<br>significant."                                                                                                          | First of 3<br>publications on<br>same group. Sparse<br>methodological<br>description weakens<br>score. Systemic<br>antibiotics not<br>standardized. More<br>superficial infections<br>in cement group, but<br>fewer deep<br>infections.                    |

#### **Infected Prostheses**

An infected prosthesis is an occasionally serious outcome as it usually requires surgical debridement and drainage followed by gram stain, culture, and sensitivity to determine the causative organism. Treatment frequently necessitates prolonged IV antibiotics, and multiple surgical procedures. Some patients will

require removal of the implanted hardware. These events can occur years after surgery and require referral back to the treating surgeon.

#### Dislocations

Dislocations are among the most common post-operative complications.(1044, 1180) A quality trial on earlier removal of activity restrictions did not increase the rate of dislocation (see post-operative rehabilitation below).(1181) There currently is insufficient evidence to conclude how best to reduce incidence of dislocations, although there are recommendations on how to approach recurrent dislocations.(1080-1085, 1180, 1182) Dislocations usually require referral back to the treating surgeon.

#### **Prosthetic Failure**

Prosthetic failures are associated with increased morbidity and decreased satisfaction.(1183) There are two major types of prosthetic failure – the most important is loosening; the other is prosthetic articular surface wear. The risks for these types of failure appear dissimilar.

The vast majority of RCTs reporting findings of loosening of prosthesis do not report activity levels. Thus, a potentially important confounder appears ignored in the bulk of the available higher quality literature. Additionally, there are no quality RCTs of exercise and long-term risks for loosening, thus there is a primary reliance on observational studies for inference on risks of prosthetic failures related to activity levels.

There have been suggestions that arthroplasty wear and loosening is related to functional use(1184-1189) and obesity(1172, 1187) rather than time.(1184-1187, 1190) Types of wear have been categorized as Mode-1 between the two surfaces as intended, Mode-2 with wear against an unintended secondary surface such as penetration through the acetabular shell, Mode-3 with wear accelerated by the presence of third bodies (e.g., bone cement) in the articulation, and Mode-4 involves two non-primary surfaces rubbing together, although most wear is believed to be Mode-1.(1184) Purported risk factors for wear are thought to include younger age,(1172) male gender,(1185, 1191) height, weight,(1172, 1185) and hip center of rotation.(1185) Additional potential risks are listed in Table 9. One non-randomized study reported higher wear for Hylamer<sup>®</sup>; however, the results appear confounded by the strong propensity for the selection of that product for their younger more active patients(1185) and thus that conclusion may not be valid (see post-operative rehabilitation).

#### Table 9. Purported Risks for Hip Revision

| Purported Risks for Hip Revision*         |
|-------------------------------------------|
| Younger age                               |
| Male gender                               |
| Heavy weight                              |
| History of heavy smoking**                |
| Diabetes mellitus                         |
| Prosthesis due to femoral neck fracture   |
| Inhaled pulmonary steroid use             |
| Systemic steroid use                      |
| Preoperative regular exercise among males |
| Females performing heavy work             |
| Inhaled pulmonary steroid use             |

\*This list is designed to be more inclusive. The level of evidence supporting each of these factors varies from weak to moderate. \*\*Current smoking was not a risk.(1172) This is a footnote.

#### Hemiarthroplasty

Hemiarthroplasty is most commonly performed for fracture of the proximal femur(1004) and is reviewed in the section on hip fractures above.

### **PRE-OPERATIVE EDUCATION**

Educational interventions have been utilized for rehabilitation of patients with hip pain, particularly for pre-operative preparation.(1192-1194) These interventions may include various combinations of procedural, sensory information, cognitive coping strategies, reassurance, and relaxation and hypnosis training.(1195, 1196) Multiple modes of instruction are frequently incorporated, including oral, written, and video.

#### Recommendation: Pre-operative Educational Program Prior to Hip Arthroplasty

A pre-operative educational program is moderately recommended prior to hip arthroplasty. Components should include procedural and recovery information and use at least two modes of teaching (e.g., oral and written).

#### Strength of Evidence – Moderately Recommended, Evidence (B)

#### Rationale for Recommendation

Most studies of educational interventions for rehabilitation of hip pain patients have demonstrated benefits (see pre-operative education evidence table). Lengths of contact have ranged widely, although most studies do not report educational contact time. Some programs encourage involvement of family members and other care givers. Better post-operative compliance with rehabilitation has been shown.(1197) A number of studies have combined exercises and other interventions with the educational interventions. However, nearly all studies reporting length of hospital stay have shown earlier discharge from a hospital after hip arthroplasty for the educational interventions,(1192-1194, 1198, 1199) while others have shown earlier performance of activities such as stair climbing.(1200) Other studies have suggested reductions in pain and anxiety.(1201)

#### Evidence for the Use of Pre-operative Education Prior to Hip Arthroplasty

There are 12 moderate-quality RCTs(266, 1193, 1194, 1196-1204) incorporated in this analysis. There are 5 low-quality RCTs(1192, 1205-1208) in Appendix 2.

| Author/Year<br>Study Type              | Score<br>(0-11) | Sample<br>Size | Comparison<br>Group                                                                                                                                                                                    | Results                                                                                                                                                                                                                                                                                                                                                                                                                                        | Conclusion                                                                                                                                                                                                                                 | Comments                                                                                                                                |
|----------------------------------------|-----------------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|
| Giraudet-Le<br>Quintrec<br>2003<br>RCT | 6.5             | N = 100<br>THR | Group 1<br>attended a ½<br>day collective<br>multidisciplinary<br>information<br>session 2 to 6<br>weeks before<br>surgery vs.<br>controls who<br>did not attend.                                      | Patients receiving<br>education significantly<br>less anxious just before<br>surgery than control (-<br>4.98; 95% Cl, -8.62 to –<br>1.34, p = 0.01), in linear<br>regression after<br>adjustment for gender,<br>trait, state anxiety at<br>baseline, depression<br>score, and health<br>assessment<br>questionnaire score.<br>Intervention group had<br>less pain before surgery<br>(p = 0.04), and<br>borderline after surgery<br>(p = 0.07). | "The current study<br>showed the value<br>of developing<br>alternative<br>information<br>approaches for<br>informing patients<br>and answering their<br>questions. Group<br>discussion with the<br>care team seems<br>to be useful."       | Suggests<br>education is<br>effective to<br>reduce anxiety<br>and pain<br>especially pre-<br>operatively.                               |
| Siggeirsdottir<br>2005<br>RCT          | 5.5             | N = 50<br>THR  | "Conventional"<br>rehabilitation<br>augmented by<br>stay at rehab<br>center (control<br>group, CG) vs.<br>pre-op and<br>post-op<br>education<br>program and<br>home visits<br>from outpatient<br>team. | Mean hospital stay SG<br>6.4 days vs. CG 10<br>days, $p < 0.001$ ). During<br>6-month study period,<br>non-fatal complications<br>were not different (9 in<br>SG vs 12 in CG, $p =$<br>0.3). Oxford Hip Scores<br>were better for SG at 2<br>months ( $p = 0.03$ ) and<br>the difference remained<br>throughout the study.                                                                                                                     | "Our preoperative<br>education program,<br>followed by<br>postoperative<br>home-based<br>rehabilitation,<br>appears to be safer<br>and more effective<br>in improving<br>function and QOL<br>after THR than<br>conventional<br>treatment." | Suggests<br>educational<br>program and<br>home visits<br>superior to<br>rehabilitation<br>stay. Hospital<br>stays longer than<br>in US. |

| Mancuso<br>2008<br>RCT | 5.5 | N = 177<br>THR<br>N = 143<br>TKR                             | Two RCTs for<br>patients<br>undergoing<br>THA or TKA.<br>Controls<br>received<br>standard class<br>vs. intervention<br>(standard class<br>plus additional<br>information<br>focusing on<br>expectations of<br>recovery during<br>12 months after<br>surgery). | Main outcome was<br>within-patient change in<br>pre-operative<br>expectation scores<br>(maximum increase,<br>+100; maximum<br>decrease, -100) before<br>and after class. Mean<br>changes in hip scores<br>were 3.3±8 for<br>intervention patients<br>(range, -22±32) and<br>4.9±8 for control<br>patients (range, -<br>13±29).             | "[E]xpectations of<br>patients<br>undergoing THA<br>and patients<br>undergoing TKA<br>can be modified by<br>classes<br>administered<br>before surgery."                                                                                                                                  | More controls<br>were retired at<br>baseline (69%<br>vs. 54%, p =<br>0.05).                                                                                                                                                                                                                                                                      |
|------------------------|-----|--------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Gocen<br>2004<br>RCT   | 5.0 | N = 60<br>THR<br>patients, all<br>thrust plate<br>prostheses | Pre-operative<br>physiotherapy<br>(strengthen<br>limbs and hip<br>ROM for 8<br>weeks) plus<br>educational<br>program vs. no<br>intervention<br>prior to surgery                                                                                               | First day for activity<br>(exercise vs. controls):<br>walking 2.1 $\pm$ 0.2 vs.<br>2.2 $\pm$ 0.41, p=0.14;<br>climbing stairs 6.2 $\pm$ 1.7<br>vs 7.4 $\pm$ 1.0, p = 0.01;<br>bed transfer 2.9 $\pm$ 0.6 vs<br>3.3 $\pm$ 0.7, p = 0.02.<br>Improvements in Harris<br>Hip scores not<br>significant at 3 months<br>or 2 years (p >0.05).    | "[T]he routine use<br>of preoperative<br>physiotherapy and<br>education<br>programme is not<br>useful in total hip<br>replacement<br>surgery."                                                                                                                                           | Baseline<br>differences<br>present with<br>exercise group<br>younger ( $p =$<br>0.01) and lower<br>BMI ( $p = 0.06$ ),<br>Harris Hip scores<br>( $p = 0.13$ )<br>suggesting<br>randomization<br>failure. Authors<br>report study as<br>negative based<br>on Harris Hip<br>score, but all 5<br>functional post-<br>op measures<br>favor exercise. |
| Wong<br>1985<br>RCT    | 5.0 | N = 98<br>THR                                                | Intervention<br>group (pre-<br>operative<br>teaching that<br>combined<br>educational and<br>behavioral<br>strategies by a<br>research<br>assistant) vs.<br>control group                                                                                      | Significant difference<br>between experimental<br>and controls in<br>regularity, willingness,<br>accuracy with which<br>they performed<br>prescribed post-op<br>exercises. Experimental<br>patients significantly<br>more satisfied with<br>approach to pre-op<br>teaching than controls.                                                  | "The findings<br>suggest that an<br>approach to<br>preoperative<br>teaching that<br>combines<br>educational and<br>behavioral<br>strategies<br>significantly<br>improves patients'<br>adherence to the<br>prescribed<br>postoperative<br>activities."                                    | Four day study,<br>no long-term<br>follow-up. No<br>outcome data<br>such as length of<br>stay,<br>performance<br>benchmarks or<br>long-term<br>complications.                                                                                                                                                                                    |
| Daltroy<br>1998<br>RCT | 5.0 | N = 222<br>47% THR<br>53% TKR                                | Slide-tape with<br>post-operative<br>inpatient<br>rehabilitation<br>(Information)<br>vs. Benson's<br>Relaxation<br>Response with<br>bedside<br>audiotape<br>(Relaxation) vs.<br>both vs. neither                                                              | Relaxation response<br>did not influence post-<br>operative outcomes, but<br>information reduced<br>length of stay (data not<br>described in detail).<br>Main outcomes were<br>not analyzed or not<br>reported. Instead, sub-<br>analyses were<br>performed. Sub-<br>analyses suggested<br>those in denial and with<br>anxiety may benefit | "Patients who<br>exhibit most denial<br>and highest anxiety<br>may benefit from<br>educational<br>interventions, but<br>patients directly<br>expressing desire<br>for information may<br>be a poor guide in<br>deciding which<br>patients would<br>benefit, compared<br>with more formal | Conclusion does<br>not directly follow<br>the study's<br>primary<br>hypothesis and<br>design. Due to<br>problems with<br>inadequate time<br>to practice<br>relaxation, the<br>primary<br>hypothesis was<br>either not tested<br>(or possibly was                                                                                                 |

|                            |     |                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                  | from educational interventions.                                                                                                                                                                                                                                                                                                                                                                                                                                 | psychological<br>testing for denial<br>and anxiety."                                                                                                                                                                                                                                                                                                                                       | negative for<br>differences<br>between the<br>groups).                                                                                                                                                                                                                                                                                                                                                                                              |
|----------------------------|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Vukomanovic<br>2008<br>RCT | 4.5 | N = 45<br>THR                                                                                                                                             | Study group vs.<br>control group<br>(with and<br>without pre-<br>operative<br>education and<br>physical<br>therapy)                                                                                                                                                                                                                                                              | Groups started walking<br>at same time, but study<br>group walked up and<br>down stairs $(3.7\pm1.66$<br>vs. $5.37\pm1.46$ , p =<br>0.002), used toilet<br>$(2.3\pm0.92$ vs. $3.2\pm1.24$ ,<br>p = 0.02) and chair<br>$(2.2\pm1.01$ vs.<br>$3.25\pm1.21$ , p = 0.006)<br>significantly earlier than<br>the control group.                                                                                                                                       | "The short-term<br>preoperative<br>program of<br>education with the<br>elements of<br>physical therapy<br>accelerated early<br>functional recovery<br>of patients<br>(younger than 70)<br>immediately after<br>THA and we<br>recommend it for<br>routine use."                                                                                                                             | Program<br>components not<br>described.<br>Frequency of<br>activities not<br>described.                                                                                                                                                                                                                                                                                                                                                             |
| Butler<br>1996<br>RCT      | 4.5 | N = 132<br>THR                                                                                                                                            | Total hip<br>replacement<br>educational<br>booklet vs. no<br>booklet                                                                                                                                                                                                                                                                                                             | Length of stays higher<br>for women (12.2 vs. 8.2<br>days). Less anxiety<br>reported in booklet<br>group. Booklet group<br>engaged in deep<br>breathing, coughing, log<br>rolling and leg<br>exercises more than<br>controls (p <0.001).<br>Booklet group used less<br>PT (32.7 vs. 45.6, p =<br>0.001).                                                                                                                                                        | "Compared to the<br>No-Booklet<br>patients, patients<br>who had received<br>the booklet were<br>less anxious at the<br>time of hospital<br>admission and at<br>discharge, were<br>more likely to have<br>practised<br>physiotherapy<br>exercises prior to<br>hospitalization, and<br>required<br>significantly less<br>occupational<br>therapy and<br>physiotherapy<br>while in hospital." | Study included<br>first time as well<br>as other THR<br>patients. 32 or<br>80 first timers<br>received the<br>booklet and 48<br>did not, resulting<br>in a potential<br>significant<br>confounding.                                                                                                                                                                                                                                                 |
| Pour<br>2007<br>RCT        | 4.5 | N = 100<br>THR,<br>uncemented,<br>proximally<br>coated<br>tapered<br>stem<br>(Accolade)<br>and plasma-<br>sprayed<br>acetabular<br>component<br>(Trident) | Group A<br>standard<br>incision<br>(>10cm),<br>standard pre-<br>op/ post-op<br>care (2-3 days<br>PCA<br>analgesia).<br>Group-B small<br>incision<br>(≤10cm),<br>standard pre-<br>op/ post-op<br>protocols.<br>Group-C<br>standard<br>incision but pre-<br>op counseling,<br>accelerated<br>rehab, altered<br>pain control<br>regimen<br>(OxyContin<br>5mg Q4-6 hour.<br>PRN plus | Hospital lengths of stay<br>(standard vs.<br>accelerated rehab): 4.2<br>days (range 3-8) vs. 3.5<br>(range 2-5) (p = 0.001).<br>Walking independently<br>or supervised at<br>discharge 60.4% vs.<br>84.8%, p = 0.009.<br>Walking distance at<br>discharge: 24.3m<br>(range 3.5-91.5) vs.<br>35m (range 7-91.5), p =<br>0.008. Equianalgesic<br>requirement (mg):<br>26.8(2.4-113.7) vs. 41.2<br>(2.4-120); p = 0.01. No<br>benefits of short<br>incision shown. | "This study<br>highlights the<br>importance of<br>factors such as<br>family education,<br>patient<br>preconditioning,<br>preemptive<br>analgesia, and<br>accelerated<br>preoperative and<br>postoperative<br>rehabilitation in<br>influencing the<br>outcome of total hip<br>arthroplasty."                                                                                                | Due to multiple<br>interventions, the<br>effects of any<br>single<br>intervention are<br>unclear.<br>Suggests<br>combination of<br>education, pre-<br>operative gait<br>training and<br>exercise,<br>assistive walking<br>the day of<br>surgery, and oral<br>narcotics plus<br>celecoxib are<br>more effective.<br>No benefit<br>shown of small<br>incision. Overall<br>equianalgesic<br>opioid dose<br>higher in<br>accelerated<br>rehabilitation. |

|                                              |     |                                               | celecoxib<br>200mg a day.<br>Group-D small<br>incision, pre-op<br>counseling,<br>accelerated<br>rehab,altered<br>pain control<br>regimen.                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                            |
|----------------------------------------------|-----|-----------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Gammon<br>Intl J Nurs<br>Stud<br>1996<br>RCT | 4.0 | N = 82<br>All pre-<br>surgery THA<br>patients | Educational<br>program<br>(procedural,<br>sensory and<br>coping<br>information) vs.<br>usual education<br>(usual advice<br>by ward,<br>medical and<br>nursing staff)                                                                                                                           | Length of<br>hospitalization 14 vs. 17<br>days (p <0.001).<br>Intramuscular analgesia<br>doses favored<br>intervention (2 vs. 4, p<br><0.001). Mobilization,<br>breathing exercise<br>frequency, exercise<br>frequencies all favored<br>intervention (p <0.05).<br>No differences in post-<br>op complications or oral<br>analgesic doses.<br>Patient assessments of<br>ability to cope favored<br>intervention (6.6 vs. 4.1,<br>p <0.001). | "[P]reparatory<br>information, given<br>pre-operatively,<br>post-operatively<br>and pre-discharge<br>had positive effects<br>on the physical<br>recovery and<br>coping outcomes<br>measured."                                                                                          | Quasi-<br>randomized<br>every other<br>patient.<br>Suggested<br>benefits of more<br>focused<br>information on<br>arthroplasty and<br>recovery<br>processes.                                                                                |
| Gammon<br>J Adv Nurs<br>1996<br>RCT          | 4.0 | N = 82<br>All pre-<br>surgery THA<br>patients | Educational<br>program<br>(procedural,<br>sensory and<br>coping<br>information) vs.<br>usual education<br>(usual advice<br>by ward,<br>medical and<br>nursing staff)                                                                                                                           | Anxiety scores for<br>information group mean<br>4.2 vs. 4.4, p <0.001.<br>Sense of control scores<br>19.9 vs. 11.2, p <0.01.<br>Patient sense of coping<br>6.6 vs. 4.3, p <0.001.                                                                                                                                                                                                                                                           | "[P]reparatory<br>information of<br>various types and<br>in different forms<br>appears to have<br>positive effects on<br>psychological<br>coping outcomes<br>for THR patients,<br>which may have<br>influenced<br>postoperative<br>recovery."                                          | Differences in<br>anxiety (mean<br>4.2, range 0-11<br>vs. mean 4.4,<br>range 0-16)<br>stated<br>statistically<br>significant, but<br>biological<br>significance<br>appears<br>questionable.<br>Sense of control<br>appears<br>significant, |
| Hopman-<br>Rock<br>2000<br>RCT               | 4.0 | N = 105<br>Hip or knee<br>OA                  | Group receiving<br>program,<br>"Living with<br>osteoarthritis of<br>the hip or knee"<br>consisted of 6<br>weekly<br>sessions of 2<br>hours, including<br>health<br>education by a<br>peer and<br>physical<br>exercise taught<br>by physical<br>therapist vs.<br>group without<br>intervention. | Significant MANOVA<br>group x time effects (p<br>< 0.05, 1-sided) found<br>for pain, quality of life,<br>strength of left M.<br>quadriceps, knowledge,<br>self-efficacy, BMI,<br>physically active<br>lifestyle, and visits to<br>physical therapist. Most<br>effects negative; those<br>positive were moderate<br>at post-test assessment<br>and smaller at followup.<br>No effects for ROM and<br>functional tasks.                       | "[T]his self-<br>management<br>program was<br>reasonably<br>effective in terms of<br>the educational<br>and exercise<br>components.<br>However, future<br>interventions<br>should pay more<br>attention to<br>proactive follow up<br>interventions such<br>as telephone follow<br>up." | Stratification by<br>hip or knee OA<br>not performed.<br>Most results<br>negative and<br>those positive<br>were mild.                                                                                                                      |

## PREVENTION OF VENOUS THROMBOEMBOLIC DISEASE

Venous thromboembolic disease (VTED) is a high-risk complication among post-operative hip or knee arthroplasty patients resulting in morbidity and mortality. Reported risk factors in these post-operative patients include age, general anesthesia, and obesity. There has been some review of risk of VTED from cement; however, the evidence conflicts.(1209, 1210) Treatments have included early ambulation (discussed elsewhere), compression boots, and medications. There are currently four classes of medications used to prevent VTED: warfarin/coumadin, low molecular weight heparin, Factor Xa inhibitors, and direct thrombin inhibitors.(1211) Of these options, all are currently available in the U.S. with the exception of no oral direct thrombin inhibitor. While initially believed to be a complication of hospitalization, post-hospital discharge surveillance data suggest high risk of thromboembolism continues well after discharge(1212) with many studies treating patients for 30 days for longer.

1. Recommendation: Prevention of Venous Thromboembolic Disease

Prevention of venous thromboembolic disease is strongly recommended for post-operative hip patients, particularly arthroplasty patients or other post-operative patients with prolonged reductions in activity. Early ambulation is recommended.

Strength of Evidence – Strongly Recommended, Evidence (A)

2. Recommendation: Compressions Stockings for Prevention of Venous Thromboembolic Disease The use of post-operative graded compression stockings is moderately recommended for the prevention of venous thromboembolic disease.(1213, 1214)

*Indications* – All post-operative major hip surgical patients (e.g., hip fractures, hip arthroplasties, or any other patients thought at increased risk of VTED in the post-operative period).

*Duration* – Duration of treatment is unclear and longer use does not add expense. As risk of VTED is high, particularly for these major procedures, threshold for use of 2 weeks or longer should be generally low.

#### Strength of Evidence – Moderately Recommended, Evidence (B)

3. Recommendation: Lower Extremity Pumps for Prevention of Venous Thromboembolic Disease The use of lower extremity pump devices is moderately recommended for the prevention of venous thromboembolic disease.(1215-1217)

*Indications* – All post-operative major hip surgical patients (e.g., hip fractures, hip arthroplasties, or any other patients thought at increased risk of VTED in the post-operative period).

*Devices* – Devices include foot pumps, foot plus calf pumps, entire lower extremity intermittent compression devices and various other combinations. As there are no quality comparative trials, there is no recommendation for a particular device.

*Duration* – Duration of treatment is unclear. Most have utilized devices for the duration of hospitalization. As risk of VTED is high particularly for these major procedures, threshold for use of 2 weeks or longer should be generally low including while at home.

*Indications for Discontinuation* – Discontinuation is generally recommended by 14 days unless there are continuing ongoing issues, such as delayed rehabilitation and ambulation that result in a judgment of increased risk. Some patients are also unable to tolerate devices.(1218)

#### Strength of Evidence – Moderately Recommended, Evidence (B)

4. Recommendation: Low-molecular Weight Heparin for Prevention of Venous Thromboembolic Disease Low-molecular weight heparin is strongly recommended for prevention of venous thromboembolic disease.

*Indications* – Post-operative arthroplasty patients, hip fracture patients and other major hip surgery patients, particularly those with either prolonged inactivity or prolonged reduced or sedentary activity levels.(1213, 1219-1230) There is some evidence LMWH is generally preferable to warfarin for VTED prophylaxis. Patients with prior reactions to LMWH should generally receive other treatments first.
*Dose/Frequency* – Subcutaneous injections of enoxaparin (Lovenox) 4,000 IU or 40mg SC QD(1213, 1219, 1220, 1222, 1227, 1231-1236) for variable durations ranging from 5 to 9 postoperative days(1234-1236) to 8 to 14 days(1233) to 10 to 14 days,(1231) 21 days,(1219, 1220) 30 days,(1227) to 12 weeks.(1222) There is no consensus on duration of treatment, and individualization based on activity level appears indicated.

*Duration* – Duration unclear. Available quality studies utilized treatment courses ranging from 4 days(1226) to 12 weeks.(1222) A plurality of the studies utilized a course of 30 to 35 days.(1224, 1225, 1227, 1228) There is quality evidence that treatment is generally required beyond hospitalization; there is evidence of deep venous thromboses many months later (reviewed above). One quality trial suggested no benefits from extending 4 to 10 days treatment out to 12 weeks.(1223) In the absence of substantive quality data comparing various durations of treatment, it is suggested that approximately 30 days of treatment after surgery may be required for average patients (a single trial suggested 30 to 42 days after arthroplasty).(1212) Patients with prior histories of venous thrombi, prolonged inactivity, delayed recovery or recurrences of thromboses, or family histories of venous thrombi likely require longer courses. Those with major risk of bleeding may warrant individualized shorter courses. Patients who regain activity rapidly may be appropriate candidates for shorter courses of treatment.

*Indications for Discontinuation* – Completion of course of treatment, development of major complication (e.g., major bleeding) or other adverse effect.

Strength of Evidence - Strongly Recommended, Evidence (A)

### 5. Recommendation: Factor Xa Inhibitors for Prevention of Venous Thromboembolic Disease Factor Xa inhibitors are strongly recommended for the prevention of venous thromboembolic disease.

*Indications* – Post-operative arthroplasty patients, hip fracture patients, or other major hip surgery patients, particularly those with prolonged inactivity or prolonged reduced or sedentary activity levels.(1210, 1237-1239) Patients with prior reactions should generally receive other treatments first. Patients with renal failure or renal insufficiency should generally receive a different medication due to renal excretion of this compound.

*Dose/Frequency* – Subcutaneous injections of Fondaparinux (Arixtra) 2.5mg SC QD. Currently Rivaroxaban (Xarelto) is investigational in the U.S.

*Duration* – The recommended duration of a course of treatment is unclear. The literature suggests duration be individualized based largely on factors such as prolonged inactivity, delayed recovery or thrombotic recurrences, prior history and risks of bleeding.

*Indications for Discontinuation* – Completion of course of treatment, development of major complication (e.g., major bleeding) or other adverse effect.

#### Strength of Evidence - Strongly Recommended, Evidence (A)

#### Recommendation: Warfarin and Heparin for Prevention of Venous Thromboembolic Disease Warfarin and heparin are moderately recommended for prevention of venous thromboembolic disease.

*Indications* – Post-operative arthroplasty patients, hip fracture patients and other major hip surgery patients.(1240, 1241) Patients with adverse reactions to warfarin may be maintained on heparin throughout the treatment course. Patients with reactions to heparin, but at increased risk of thrombosis may be begun on the other agents and switched to warfarin.

*Dose/Frequency* – Subcutaneous injections of Heparin, which can be titrated to the activated partial thromboplastin time (aPTT). Warfarin dose titrated to International Normalized Ratio (INR). Magnitude of anticoagulation is recommended to be individualized, and include risks of thrombi versus risks of bleeding and it is notable that the quality studies utilized a range of INRs.

*Duration* – The recommended duration of a course of treatment is unclear. The literature suggests duration be individualized based largely on factors such as prolonged inactivity, delayed recovery or thrombotic recurrences, prior history and risks of bleeding.

*Indications for Discontinuation* – Completion of course of treatment, development of major complication (e.g., major bleeding) or other adverse effect.

#### Strength of Evidence – Moderately Recommended, Evidence (B)

#### 7. Recommendation: Prevention of Venous Thromboembolic Disease

Aspirin is moderately recommended for the prevention of deep venous thrombosis. Indications – Post-operative arthroplasty patients, hip fracture patients and other major hip surgery patients, particularly after cessation of other treatments such as LMWH, heparin, or other anticoagulants.(1242)

*Dose/Frequency* – Aspirin 160mg per day was used in the PEP trial. Other studies have found 85mg/day sufficient for heart attack prevention.

*Duration* – Duration of a course of treatment is unclear. One month is suggested, however due to other risk factors, prolonged or indefinite treatment may be recommended.

*Indications for Discontinuation* – Completion of course of treatment, development of major complication (e.g., major bleeding) or other adverse effect.

#### Strength of Evidence - Moderately Recommended, Evidence (B)

#### Rationale for Recommendations

There are many quality studies of various means to reduce risk of venous thromboembolic disease (see venous thromboembolic disease evidence table), although various methodological issues in the available trials have been raised.(1212, 1243-1248) Graded compression stockings have been compared with no compression stockings and found to reduce risk in one moderate quality study.(1214) They also have been included in quality studies as adjunctive therapy in a trial comparing enoxaparin plus stockings vs. enoxaparin alone and found to reduce risk.(1213) Stockings are not invasive, have few adverse effects and are low cost, thus, they are moderately recommended.

Pumps have been evaluated in quality trials that have included comparisons with no pump devices, as well as in therapeutic combinations.(1215-1217) One quality study suggested superiority of pump devices to a low molecular weight heparin,(1218) while another found superiority to unfractionated heparin.(1249) Devices include foot pumps, foot plus calf pumps, entire lower extremity intermittent compression devices and various other combinations. As there are no quality comparative trials, there is no recommendation for a particular device. Pump devices are not invasive, have few adverse effects and are low cost, thus, they are moderately recommended.

Generally, major bleeding is the most significant adverse effect of most of the medications used to prevent VTED. The high or moderate quality trials are mostly underpowered to detect these events. The general trend across the medications and studies is for more bleeding in the more effective agents. This suggests individualization is needed, and among patients with a greater risk for bleeding, consideration of the agents with apparently lower risk (e.g., enoxaparin or warfarin) is suggested.

There are many quality studies of low-molecular weight heparin with the quality studies comparing treatment with placebo all suggesting benefits.(1219-1221, 1223-1230) These have shown approximately 1/3 reductions in deep venous thrombosis compared with warfarin(1250) and result in lower incidence of heparin-associated thrombocytopenia.(1251-1253) While mildly invasive and with some adverse effects, these medications are effective in reducing risk of VTED and thus are strongly recommended.

There are a few studies of Factor Xa inhibitors, with quality studies having shown Fondaparinux superiority to placebo.(1238) Additionally, these agents have been shown to be superior to enoxaparin in two quality studies,(1210, 1237) although equivalent in another.(1239) Major bleeding appears more

common with Fondparinux than enoxaparin.(1247) While mildly invasive and with some adverse effects, these medications are effective in reducing risk of VTED and thus are strongly recommended.

The oral thrombin inhibitor, Dabigatran etexilate is investigational in the US. It appears to have a superior profile to enoxaparin for deep venous thrombosis prevention.(1235) A prior medication in this category was withdrawn due to hepatotoxicity. There is no recommendation at this point for this medication.

There is quality evidence that heparin is effective compared with placebo.(1240) However, a moderate quality study found dextran superior to subcutaneous heparin administration.(1254) Heparin may still be an option in select patients who have contraindications for using other more effective medications for VTED prevention. While mildly invasive and with some adverse effects, these medications are effective in reducing risk of VTED and thus are strongly recommended.

There also is quality evidence from the large scale PEP trial that aspirin reduces risk.(1242) However, other agents reviewed above are likely superior for DVT prevention and ASA may be best used for treatment after cessation of other anti-thrombotic therapy(ies).

Duration of prophylaxis is one of the areas of controversy.(1255) One quality study suggested a reduction if the treatment period after arthroplasty is extended to 30 to 42 days with an OR = 0.38 and NNT = 50.(1212) Another study suggested no benefits from extending treatment from 4 to 10 days out to 12 weeks.(1223) Individualization of treatment likely is required to include factors such as activity level, other joint involvement, cancer status, prior venous thromboembolism history, and bleeding risks. Onset of treatment is another area of controversy, as European surgeons initiate prophylaxis preoperatively and North American surgeons initiate prophylaxis post-operatively.(1243)

#### Evidence for the Prevention of Venous Thromboembolic Disease

There are 30 high-(1210, 1219-1229, 1231-1236, 1238-1241, 1256-1264) (one with 2 reports) and 57 moderate-quality(154, 1213-1218, 1230, 1237, 1242, 1249, 1254, 1265-1309) RCTs incorporated in this analysis. There are 5 low-quality studies(1310-1314) in Appendix 2.

| Author/Yea | Score    | Sample       | Comparison        | Results                    | Conclusion             | Comments     |
|------------|----------|--------------|-------------------|----------------------------|------------------------|--------------|
| r          | (0-11)   | Size         | Group             |                            |                        |              |
| Study Type |          |              |                   |                            |                        |              |
|            |          |              | Compression St    | tockings vs. No Stockings  |                        |              |
| Hui        | 4.0      | N = 177      | Above vs. below-  | DVT on venograms in        | "[W]ith the exception  | Two studies  |
| 1996       |          |              | knee graded       | 27% controls vs. 22%       | of below-knee          | done         |
|            | (5.0 for | Total hip or | compression       | above-knee vs. 50%         | stockings in knee      | together     |
| RCI        | IKA      | knee         | stocking vs.      | below-knee stockings of    | replacement patients,  | analyzed     |
|            | patient  | arthropiasti | controis          | THR patients. Knee rates   | graded compression     | differently. |
|            | 5)       | 65           |                   | THR patients wearing       | ineffective in         | lower risk   |
|            |          |              |                   | below-knee stocking had    | preventing DVT after   | natients     |
|            |          |              |                   | a higher rates of proximal | hip or knee            | THA groups   |
|            |          |              |                   | or major calf DVT (p =     | replacement surgery."  | less         |
|            |          |              |                   | 0.03).                     |                        | comparable.  |
|            |          |              | Compressi         | ion Devices vs. None       |                        | · · · · ·    |
| Hull       | 6.5      | N = 310      | Sequential        | DVT in 77/158 (49%) in     | "[S]equential          | Data suggest |
| 1990       |          |              | intermittent calf | controls vs. 36/152 (24%)  | intermittent leg       | efficacy.    |
|            |          | THR          | and thigh         | of compression group (p =  | compression is         |              |
| RCT        |          |              | compression vs    | 0.0001).                   | effective for reducing |              |
|            |          |              | placebo for 14    |                            | the frequency of calf  |              |
|            |          |              | days. 3-month     |                            | vein and proximal      |              |
|            |          |              | Tollow up.        |                            | following total hip    |              |
|            |          |              | Total hin         |                            | renlacement            |              |
|            |          |              | arthroplasties    |                            | Intermittent           |              |
|            |          |              |                   |                            | compression also       |              |
|            |          |              |                   |                            | reduced the extent of  |              |
|            |          |              |                   |                            | deep vein thrombosis   |              |
|            |          |              |                   |                            | as measured            |              |

|                         |     |                                                      |                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                           | impedance                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                              |
|-------------------------|-----|------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Bradley<br>1993<br>RCT  | 6.0 | N = 74<br>THA                                        | Compression<br>foot pump vs. no<br>foot pump post-<br>operatively until<br>discharge. All<br>thigh-length<br>compression<br>stockings,<br>heparin 5000 IU<br>SC BID,<br>hydroxychloroquine<br>sulphate 40mg<br>BID | 12 (27.3%) thromboses in<br>non-pumped vs. 2 (6.6%),<br>p <0.025.                                                                                                                                                                                                                                                                                                                                                                                         | "[T]he combination of<br>chemical prophylaxis,<br>graded compression<br>stockings, and the<br>arteriovenous impulse<br>system reduces the<br>incidence of deep<br>venous thrombosis<br>further than when<br>chemical prophylaxis<br>is used alone."                                                          | DOB used to<br>randomize.<br>One group<br>larger than<br>other by<br>chance. Data<br>suggest<br>pump helpful<br>adjunctive<br>treatment.                                                                                                                     |
| Gallus                  | 6.0 | N = 98                                               | Intermittent                                                                                                                                                                                                       | 15/43 (35%) compression                                                                                                                                                                                                                                                                                                                                                                                                                                   | "Intermittent calf                                                                                                                                                                                                                                                                                           | Data suggest                                                                                                                                                                                                                                                 |
| RCT                     |     | THR                                                  | compression 1<br>week vs.<br>untreated.<br>Compression<br>continuous<br>day/night other<br>than walk, PT,<br>etc.                                                                                                  | with DVT (NS).Incidence<br>of calf vein thrombosis<br>lower among treated<br>patients 45 vs. 16 %, p<br><0.005.                                                                                                                                                                                                                                                                                                                                           | significantly reduced<br>the postoperative calf<br>vein thrombosis rate<br>by 64 percent."                                                                                                                                                                                                                   | enicacy.                                                                                                                                                                                                                                                     |
|                         | 1   |                                                      | Compression De                                                                                                                                                                                                     | evices vs. Other Treatment                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                                                                                                                                                                                                                                                                                            | 1                                                                                                                                                                                                                                                            |
| Robinson<br>1997<br>RCT | 9.0 | N = 1,024<br>Total hip or<br>knee<br>replacemen<br>t | Bilateral<br>screening<br>compression<br>ultrasonography<br>vs. sham<br>ultrasonography                                                                                                                            | 518 screening<br>compression<br>ultrasonography; 19<br>(3.7%) positive result;<br>6/19 proximal DVT<br>excluded by venography;<br>4 (0.8%) developed<br>symptomatic proximal<br>DVT. All 4 normal results<br>on screening compression<br>ultrasonography. Of 506<br>randomly assigned to<br>sham ultrasonography, 3<br>developed symptomatic<br>DVT, 2 non-fatal<br>symptomatic PE. Total<br>primary outcome cluster<br>event rate 1% (Cl, 0.3-<br>2.2%). | "Our results suggest<br>that continuing<br>warfarin prophylaxis<br>beyond an average of<br>9 days after total hip<br>or knee arthroplasty<br>would be of little<br>value, given the low<br>rate of symptomatic<br>venous<br>thromboembolic<br>complications."                                                | Unusual<br>blinding:<br>techs had<br>blank screen<br>during sham<br>so not to<br>affect<br>results.<br>Followed all<br>excluded<br>patients who<br>gave<br>informed<br>consent. Co-<br>interventions<br>mentioned<br>but not<br>accounted<br>for.            |
| Kalodiki<br>1996<br>RCT | 7.0 | N = 93<br>THR                                        | Enoxaparin 4000<br>anti Xa IU SC<br>QD vs.<br>enoxaparin 4000<br>anti Xa IU SC<br>QD plus<br>graduated<br>compression<br>stockings vs.<br>placebo                                                                  | Controls discontinued as<br>93% developed DVT vs.<br>23% in enoxaparin and<br>20% in enoxaparin plus<br>stockings (p <0.001).<br>Patients then randomized<br>to enoxaparin vs.<br>enoxaparin plus stockings.<br>Enoxaparin plus stockings<br>reduced proximal DVT<br>(p<0.01). PE in 42%<br>controls, 10% of<br>enoxaparin vs. 6% of<br>enoxaparin plus stockings,<br>(p <0.01).                                                                          | "[O]ne subcutaneous<br>daily dose of<br>enoxaparin 40 mg<br>was at least as<br>effective and well<br>tolerated as standard<br>LDH. The effect of the<br>combined use of<br>LMWH with GEC<br>stockings in the<br>prevention of DVT in<br>patients having total<br>hip replacement has<br>not been evaluated." | Placebo for<br>meds<br>blinded, but<br>1 group had<br>stockings,<br>not blinded.<br>Meds after<br>discharge<br>unclear.<br>Data suggest<br>efficacy<br>compared<br>with placebo,<br>and that<br>enoxaparin<br>plus<br>stockings<br>superior to<br>medication |

|                                                                 |     |                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                              | alone as well<br>as placebo.                                                                                                                                                                                                                                                                                                                                       |
|-----------------------------------------------------------------|-----|-------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Bailey<br>1991<br>RCT                                           | 6.5 | N = 95<br>THR                                   | Low-dose<br>warfarin (LDW)<br>vs. sequential<br>compression<br>devices (SCD)<br>after total hip<br>arthroplasty                                                                                                                                                                                                                                                                                                       | DVT in 12/45 (26.6%) on<br>LDW vs. 3/50 (6%) with<br>SCDs, p <0.006.Venous<br>thrombi in 12/46 (26%)<br>primary THAs and 3/42<br>(7.1%) revision cases.                                                                                                                                                                            | "[L]DW was found to<br>be more protective<br>than SCDs against<br>thigh thrombiSCDs<br>were found to be<br>significantly better<br>then LDW at reducing<br>the overall thrombi<br>rate. However, the<br>thrombi, when<br>present, typically<br>occurred in clinically<br>serious locations." | SCD better<br>at reducing<br>total rate.                                                                                                                                                                                                                                                                                                                           |
| Pitto<br>2004<br>RCT                                            | 6.5 | N = 200<br>THR                                  | A-V impulse<br>system foot<br>pump vs. low<br>molecular weight<br>heparin<br>(Fraxiparin). All<br>treated with<br>stockings.                                                                                                                                                                                                                                                                                          | DVT in 3/100 pump vs.<br>6/100 LMWH (p <0.05).<br>Greater post-op draining<br>in LMWH (p <0.05).                                                                                                                                                                                                                                   | "The foot pump was<br>associated with<br>greater effectiveness<br>than LMWH and<br>lacked the side<br>effects of chemical<br>intervention"                                                                                                                                                   | Used hose,<br>no mention<br>of meds.<br>Notes some<br>patients do<br>not tolerate<br>pump;<br>suggests<br>efficacy.                                                                                                                                                                                                                                                |
| Woolson J<br>Bone Joint<br>Surg Am<br>1991;73:50<br>7-12<br>RCT | 5.0 | N = 239<br>THA                                  | Thigh-high<br>stocking with<br>graduated<br>elasticity, thigh-<br>high 6<br>chambered boot<br>for sequential<br>intermittent<br>compression vs.<br>elastic stockings,<br>intermittent<br>pneumatic-<br>compression<br>boots, 650mg<br>aspirin orally BID<br>beginning<br>evening before<br>operation vs.<br>elastic stockings,<br>compression<br>boots, 7.5 or<br>10mg warfarin<br>orally evening<br>before operation | 196 patients included.<br>DVT in 12% of intermittent<br>compression vs. 10% of<br>intermittent compression<br>plus aspirin vs. 9% of<br>compression plus warfarin<br>group (p = 0.8).                                                                                                                                              | "Intermittent<br>compression during<br>and after the<br>operation effectively<br>reduces the rate of<br>proximal-vein<br>thrombosis after total<br>hip replacement."                                                                                                                         | Blinding of<br>radiologist<br>unclear.<br>Small<br>amount of<br>variation in<br>timing to<br>check for<br>DVT. No<br>mention of<br>co-<br>interventions<br>. Conclusion<br>regarding<br>efficacy of<br>compression<br>unclear as<br>no placebo/<br>control for<br>that<br>treatment.<br>Study<br>suggests<br>addition of<br>ASA or<br>warfarin not<br>significant. |
| Kaempffe<br>1991<br>RCT                                         | 5.0 | N = 149<br>Total hip or<br>knee<br>arthroplasty | Coumadin 10mg<br>night before<br>surgery, 5mg<br>night after, then<br>dose keeping PT<br>= 15s vs. thigh-<br>length<br>intermittent<br>pneumatic<br>compression<br>(IPC). Treatment<br>duration unclear,<br>appears to be                                                                                                                                                                                             | 13/52 (25%) had<br>roentgenographic DVT<br>evidence 5/21 (24%) total<br>hip arthroplasty patients<br>developed DVT. Overall<br>DVT incidence with IPC<br>12/48 (25%) vs. 13/52<br>(25%) on coumadin.<br>Following total hip<br>arthroplasty, the IPC<br>group was more effective<br>at preventing DVT (16%<br>vs 24% in coumadin). | "36% of patients<br>(5/14) who were<br>treated with revision<br>surgery developed<br>DVT despite<br>prophylaxis (4/10 in<br>the Coumadin group<br>and ¼ in the IPC<br>group). These figures<br>may indicate that<br>neither Coumadin nor<br>IPC are effective in<br>the prevention of        | Relatively<br>small<br>numbers of<br>subjects.<br>Different<br>clotting risk<br>in revision<br>THA. Data<br>suggest<br>equivalency.                                                                                                                                                                                                                                |

| Santori<br>1994<br>RCT5.0N = 132<br>THRCalcium heparin<br>5000 IU TID vs.<br>intermittent<br>plantar pump for<br>10 days. Pump<br>used except23/65 (35.4%) DVT in<br>heparin group vs. 9/67<br>(13.4%) in plantar foot<br>pump (p <0.005). "The<br>differences for all<br>thromboses and for major"Because of the<br>potential complication<br>of pharmacological<br>prophylaxis, it seems<br>that impulse pumping<br>may become the                                                                                                                                                                                                                                                                                                                                                                                    | Blinding<br>unknown for<br>assessor.<br>Mentions<br>only some<br>co-<br>interventions                                                                                                                                       |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PT. significant at P<0.005." for the prophylaxis of DVT and PE."                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                             |
| Low Molecular Weight Heparin vs. Placebo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                             |
| Heit<br>200011.0N = 1195All received open<br>label treatment<br>for 4 to 10 days.<br>Then randomized<br>to extended<br>treatment with<br>daily<br>subcutaneous<br>ardeparin (100<br>anti-Xa IU/kg vs<br>placebo for total<br>hip or knee<br>replacement from<br>hospital<br>discharge to 6<br>weeks after<br>surgery.Incidence of 9 (1.5%) with<br>extended treatment vs. 12<br>                                                                                                                                                                                                                                                                                                                                                                                                                                        | Low number<br>of higher risk<br>patients,<br>thus article<br>primarily<br>addresses<br>low risk.<br>Study<br>primarily<br>addresses<br>benefit of<br>extended<br>treatment as<br>all initially<br>were actively<br>treated. |
| Planes<br>1996<br>(2 reports)10.5N = 179<br>THREnoxaparin<br>40mg SC QD vs.<br>placebo 12 hrs<br>preop, 12 hours<br>post-op then QD<br>for 21±2 daysSix patients rejected<br>because of unsuccessful<br>second bilateral<br>phlebography with 18<br>more rejected from study,<br>leaving 155 fully compliant<br>patients. 7.1% vs. 19.3%<br>enoxaparin for proximal<br>DVT (p = 0.064). No<br>deaths."[I]n patients who<br>have undergone<br>THR, who do not<br>have venogram-<br>proven DVT at<br>hospital discharge,<br>and who do not<br>receive antithrombotic<br>prophylaxis after<br>discharge, the risk for<br>late-onset DVT<br>remains high for 35<br>days after surgery.<br>Continued<br>prophylaxis with<br>enoxaparin is an<br>effective and safe<br>way to reduce the<br>rate of DVT in such<br>patients." | Data<br>demonstrate<br>efficacy<br>among usual<br>THR<br>patients.<br>Both efficacy<br>& safety ITT<br>analyses.<br>Data may<br>suggest<br>longer<br>treatment.                                                             |
| Comp<br>200110.0N = 873Enoxaparin<br>40mg QD vs.<br>placebo for 12Prevalence of venous<br>thromboembolism in<br>enoxaparin 8% (18/224)<br>vs. 23.2% (49/211) for"[T]he recommended<br>seven to ten-day<br>postoperative<br>thromboprophylactic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Suggests<br>efficacy.<br>Includes<br>younger                                                                                                                                                                                |

Copyright© 2016 Reed Group, Ltd.

|                        |     | replacemen<br>t                    |                                                                          | placebo (p <0.001). OR =<br>3.62 (95% Cl 2.00- 6.55),<br>Relative risk reduction<br>65.5%.                                                                                                                                                                                                                                                                   | regimen of 30mg of<br>enoxaparin twice<br>daily for patients<br>treated with total hip<br>replacement is<br>suboptimal and that a<br>substantial<br>therapeutic benefit is<br>gained, without<br>compromising safety,<br>by prolonging the<br>enoxaparin treatment<br>(at a dose of 40mg<br>once daily) for an<br>additional three<br>weeks<br>postoperatively<br>(resulting in a total of<br>four weeks of<br>enoxaparin<br>treatment)" | patients.<br>Stratified<br>analyses<br>suggest no<br>effect in<br>males with<br>knee<br>replacement.<br>Suggests<br>treatment for<br>4 weeks.                                                |
|------------------------|-----|------------------------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Lassen<br>1998<br>RCT  | 9.5 | N = 281<br>THR                     | Dalteparin 40mg<br>vs. placebo QD<br>for 35 days                         | 17 (8%) patients<br>developed DVT. Risk of<br>postoperative DVT<br>reduced 63%. Serious<br>adverse events less<br>frequent in the dalteparin<br>group 4/140 (2.9%) vs.<br>placebo 9/141 (6.4%).                                                                                                                                                              | "[P]rolongation of<br>prevention with<br>dalteparin for 35 days<br>is effective and safe,<br>but further new<br>studies with<br>prolonged prophylaxis<br>using clinical<br>endpoints, such as<br>survival with an<br>observation period of<br>at least 2-3 years, are<br>warranted."                                                                                                                                                     | Suggests<br>efficacy.                                                                                                                                                                        |
| Turpie<br>1986<br>RCT  | 9.0 | N = 100<br>Elective hip<br>surgery | PK10169 low-<br>molecular-weight<br>heparin vs<br>placebo for 14<br>days | Thromboses in 6/50 (12%)<br>on low-molecular-weight<br>heparin vs. 21/50 (42%)<br>on placebo (p = 0.0007).<br>Hemorrhagic<br>complications in 2/50 on<br>LMWH vs. 2/50 on<br>placebo (NS).                                                                                                                                                                   | "The marked<br>reduction in proximal-<br>vein thrombosis<br>indicates that<br>prophylaxis with<br>PK10169 heparin is<br>effective in reducing<br>the risk of clinically<br>important<br>thromboembolic<br>events in patients<br>undergoing elective<br>hip replacement."                                                                                                                                                                 | Data support<br>efficacy vs.<br>placebo.<br>Appear to be<br>lower risk<br>patients.<br>Concealment<br>implied.<br>Physical<br>examination<br>not<br>mentioned.                               |
| Arnesen<br>2003<br>RCT | 9.0 | N = 265<br>THR                     | Dalteparin<br>5000IU vs.<br>placebo for 35<br>days                       | Differences at day 35<br>significant for F1+2 ( $p = 0.02$ ), TAT ( $p = 0.01$ ) and<br>D-dimer ( $p < 0.001$ ) with<br>highest values in placebo<br>group, and also for PA1-<br>1act ( $p = 0.04$ ) with<br>highest values with<br>dalteparin. 32/104 (33%)<br>on placebo had<br>venographically proven<br>DVT vs. 22/114 (19%) on<br>dalteparin at day 35. | "[D]emonstrated that<br>the well known initial<br>activation of<br>coagulation after HRS<br>is sustained at least<br>for 35 days<br>postoperatively, and<br>that this activation is<br>significantly reduced<br>by the subcutaneous<br>administration of<br>dalteparin 5000 IU<br>od."                                                                                                                                                   | Thrust of<br>study<br>mechanistic.<br>Suggests<br>efficacy. D-<br>dimer<br>decreased in<br>placebo<br>group that<br>does not<br>have DVT.<br>Score relies<br>on Dahl<br>1997 for<br>methods. |
| 1992                   | 9.0 | IN = 82                            | Low molecular<br>weight heparin                                          | DVTs in 30% Fragmin vs.                                                                                                                                                                                                                                                                                                                                      | daily offers an                                                                                                                                                                                                                                                                                                                                                                                                                          | short term<br>study of 6                                                                                                                                                                     |

| RCT                                                |     | Hip fracture<br>surgery                          | (Fragmin) 2,500<br>IU for first 2<br>injections then<br>5000 IU<br>antifactor Xa SC<br>vs. placebo for 6<br>days                                                                | 58% placebo (p <0.03).<br>Blood drainage (NS);<br>higher need for blood<br>transfusions in Fragmin (p<br><0.005); 7 died during<br>trial. No DVTs/ PEs<br>suspected at follow-up<br>exam in any patients.                                                                   | effective and safe<br>thromboprophylaxis in<br>hip fracture surgery."                                                                                                                                                                                                                                                                                   | days.<br>Unknown if<br>co-<br>interventions<br>. Suggests<br>efficacy.                                                                 |
|----------------------------------------------------|-----|--------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|
| Bergqvist<br>1996<br>RCT                           | 8.5 | N = 262<br>THR                                   | All treated<br>actively in<br>hospital with<br>enoxaparin for 7-<br>11 days, then<br>Enoxaparin<br>40mg vs placebo<br>QD for 30 days                                            | 66/233 (28%) with DVT or<br>PE. 39% of placebo group<br>and 18% of enoxaparin<br>had thromboembolism.<br>Rehospitalization because<br>of DVT judged necessary<br>for 32 in placebo vs. 11 in<br>enoxaparin group.                                                           | "[P]atients receiving<br>prophylaxis with<br>enoxaparin for a full<br>month after surgery<br>had significantly less<br>venous<br>thromboembolic<br>disease (most of<br>which was<br>asymptomatic),<br>including proximal<br>deep-vein<br>thrombosis, than<br>patients receiving<br>enoxaparin<br>prophylaxis only<br>during their<br>hospitalizations." | Data suggest<br>efficacy.<br>Medications<br>after hospital                                                                             |
| Dahl<br>1997<br>RCT                                | 8.5 | N = 308<br>THR                                   | Dalteparin 5000<br>IU vs. placebo<br>QD for 4 weeks                                                                                                                             | DVT at Day 35 in 11/93<br>(11.8%) of dalteparin vs.<br>23/89 (25.8%) of placebo.<br>(RR = 0.46, 95% CI 0.24-<br>0.88, p = 0.017).                                                                                                                                           | "[T]he occurrence of<br>DVT increased<br>significantly from 1 to<br>5 weeks after hip<br>replace-ment surgery<br>in patients without<br>prolonged<br>thromboprophylaxis.<br>One daily self-<br>administered dose of<br>dalteparin (Fragmin),<br>5000 IU, significantly<br>counteracted the<br>progression of DVT."                                      | VQ scan<br>also used.<br>Incidence &<br>prevalence.<br>Reported.<br>Population<br>reported in<br>Arnesen.<br>Data suggest<br>efficacy. |
| Hoek<br>1992<br>RCT                                | 8.5 | N = 218<br>Hip<br>arthroplasti<br>es             | Org 10172<br>(Lomoparan)<br>anti-factor Xa<br>750U vs. placebo<br>SC BID for 10<br>days                                                                                         | DVT in 15.5% Lomoparan<br>vs. 56.6% of placebo (p<br><0.001). No major<br>bleeding. No differences<br>in drain fluid or<br>transfusions.                                                                                                                                    | "[1]he low molecular<br>weight heparinoid<br>(Org 10172) is a<br>highly effective<br>antithrombotic agent<br>in reducing the<br>occurrence of both<br>proximal- and isolated<br>calf-vein thrombosis<br>in the post operative<br>hospitalisation period<br>following elective total<br>hip replacement<br>surgery."                                     | Only 1st<br>phase study<br>randomized.<br>Blinding<br>mentioned in<br>abstract<br>only. Data<br>suggest<br>efficacy.                   |
| RD Heparin<br>Arthroplasty<br>Group<br>1994<br>RCT | 7.5 | N = 1173<br>Total hip or<br>knee<br>arthroplasty | Anti-factor- $X_a$<br>50U of RD<br>heparin/kg SC<br>BID vs. anti-<br>factor- $X_a$ ()U of<br>RD heparin/kg<br>body weight SC<br>QD vs. warfarin<br>5mg QD and<br>adjustments to | VT disease among 8% (14<br>patients). RD bid heparin<br>3% (n = 5/178) had<br>proximal DVT vs. 14%<br>(24/171) QD heparin vs.<br>14% (24/174) on warfarin.<br>No difference between<br>heparin BID and warfarin<br>efficacy – p = 0.07 for BID<br>vs. warfarin and p = 0.82 | "For patients who had<br>a total hip<br>arthroplasty, a fixed<br>dose of anti-factor-Xa<br>units of RD heparin<br>per kilogram of body<br>weight, administered<br>unmonitored twice<br>daily, beginning<br>postoperatively, and                                                                                                                         | Accounted<br>for<br>medications<br>& physical<br>exams.<br>Suggests<br>comparable<br>efficacy,<br>although<br>trend                    |

|                |      |              | PTT 1.2-1.5 for    | for QD vs. warfarin.          | low-dose warfarin        | towards BID     |
|----------------|------|--------------|--------------------|-------------------------------|--------------------------|-----------------|
|                |      |              | total hip          |                               | were equally effective   | heparin         |
|                |      |              | replacement        |                               | and safe."               | dosing.         |
|                |      | Low Molecula | r Weight Heparin v | s. Other LMWH Doses or Ot     | her Treatments           |                 |
| Bara           | 10.5 | N = 440      | 4,500IU anti-Xa    | DVT rate was similar in       | "A significant           | Actual study    |
| 1999           |      |              | tinzaparin vs.     | both groups 21.7% and         | correlation was          | of DVT          |
|                |      | THR          | 4000IU anti-Xa     | 20.1%. Mean plasma anti-      | observed between         | published       |
| RCT            |      |              | (40mg)             | Xa activity was               | anti-Ila activity and    | (Planes, et al  |
|                |      |              | enoxaparin for 8-  | significantly higher in the   | anti-Xa activity and     | 1999). Used     |
|                |      |              | 14 days            | enoxaparın group.             | the dose of each         | much of         |
|                |      |              |                    |                               | LIVIV H Injected. The    | same            |
|                |      |              |                    |                               | anti-Xa activity was     | scoring.        |
|                |      |              |                    |                               | with enovanarin and      | are left out of |
|                |      |              |                    |                               | the anti-lla activity    | this report     |
|                |      |              |                    |                               | was significantly        | this report.    |
|                |      |              |                    |                               | higher with tinzaparin.  |                 |
|                |      |              |                    |                               | No clear relationship    |                 |
|                |      |              |                    |                               | between these two        |                 |
|                |      |              |                    |                               | activities and the       |                 |
|                |      |              |                    |                               | clinical outcomes was    |                 |
|                |      |              |                    |                               | observed."               |                 |
| Kakkar         | 10.5 | N = 298      | Bemiparin 3,500    | DVT in 9/101 (8.9%) of        | "[B]emiparin, a          | Not clear ITT   |
| 2000           |      |              | IU SC once daily   | bemiparin vs. 24/116          | second generation        | used.           |
| DOT            |      | Hip artnro-  | plus placebo       | (20.7%) UFH (p = 0.03).       | LIVIVVH, administered    | Strongly        |
| RUI            |      | plasties     |                    | 101a1 V TE. 9 (7.2%)          | daily at a dose of       |                 |
|                |      |              | Unfractionated     | LIFH $n = 0.01$ 37 patients   | 3 500 II I in high risk  | prevent DVT     |
|                |      |              | heparin 5.000 IU   | adverse events either         | patients undergoing      | provone D V I.  |
|                |      |              | BID 2 hours        | during in patient stay or     | hip arthroplasty is      |                 |
|                |      |              | before surgery     | during follow up, 22          | more effective but       |                 |
|                |      |              | continued for at   | adverse events bemiparin      | equally safe in          |                 |
|                |      |              | least 8 days post  | vs. 15 UFH, p = 0.20. One     | preventing post-         |                 |
|                |      |              | surgery            | bemiparin patient died on     | operative DVT than       |                 |
|                |      |              |                    | 3rd post-op day and 3         | standard UFH             |                 |
|                |      |              |                    | died during follow-up. S      | administered twice       |                 |
|                |      |              |                    | different (NS)                | daily at a dose of       |                 |
| Friksson       | 10.5 | N - 873      | Phase 2 study      | Major postoperative           | "[A]n 8-fold dose of     | Suggests        |
| Circulation    | 10.0 | 11 - 070     | Oral rivaroxaban   | bleeding in 2.3%, 0.7%.       | rivaroxaban ( to 40      | rivaroxaban     |
| 2006           |      | THR          | 5, 10, 20, 30, or  | 4.3%, 4.9%, and 5.1% (5.      | ma) given once daily     | has lower       |
|                |      |              | 40mg once daily    | 10, 20, 30, and 40mg          | postoperatively          | risk of DVT.    |
| RCT            |      |              | vs subcutaneous    | rivaroxaban) vs. 1.9% with    | showed similar           |                 |
|                |      |              | enoxaparin 40mg    | enoxaparin (NS). DVT          | efficacy to enoxaparin   |                 |
|                |      |              | once daily for 5-9 | incidence was 14.9%,          | (40mg once daily) for    |                 |
|                |      |              | days after totally | 10.6%, 8.5%, 13.5%,           | the prevention of VIE    |                 |
|                |      |              | nip replacement.   | 6.4% for rivaroxaban vs.      | after elective total hip |                 |
|                |      |              |                    | 25.2% for enoxaparin.         | without the need for     |                 |
|                |      |              |                    |                               | routine coagulation      |                 |
|                |      |              |                    |                               | monitoring. Major        |                 |
|                |      |              |                    |                               | bleeding rates           |                 |
|                |      |              |                    |                               | observed in the 5-       |                 |
|                |      |              |                    |                               | and 10-mg                |                 |
|                |      |              |                    |                               | rivaroxaban once         |                 |
|                |      |              |                    |                               | daily dose groups        |                 |
|                |      |              |                    |                               | were similar to those    |                 |
| <b>Frikese</b> | 10 5 | N 700        |                    | V/TE in 450/ 440/ 400/        | With enoxaparin."        | Data average    |
|                | 10.5 | IN = 722     | 7030 2 5 5 10      | V = 11110%, 14%, 12%, 18%     | risk for developing      |                 |
| Haemost        |      | THR          | 20. or 30mg BID    | (2.5, 5, 10, 20  and  30  mg) | thrombosis and           | efficacy        |
| 2006           |      | ,            | vs. enoxaparin     | vs. 17% enoxaparin.           | bleeding, direct FXa     | 5               |
|                |      |              | 40mg QD for 5-9    | Comparable major VTEs.        | inhibition with BAY-     |                 |
| RCT            |      |              | days after         | Major, postoperative          | 59-7939 was effective    |                 |

|                         |     |                                   | surgery                                                                                                                                                                                         | bleeding not different<br>(NS).                                                                                                                                                                                                                               | across the dose<br>range studied, and<br>compared favorably<br>with enoxaparin;<br>safety was similar<br>between BAY 59-<br>7939 2.5-10mg twice<br>daily and<br>enoxaparin."                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                     |
|-------------------------|-----|-----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|
| Adolf<br>1999<br>RCT    | 9.5 | N = 172<br>THR                    | Certoparin 3,000<br>IU aXa vs. 5,000<br>IU aXa low<br>molecular weight<br>heparin daily 12-<br>14 days                                                                                          | DVTs in 8.7 (3,000) vs.<br>7.1% (5,000 IU) (NS).<br>Bleeding rates not<br>different except cell saver<br>volumes (770±136 vs.<br>475±186ml; p <0.001).                                                                                                        | "[C]onventional<br>dosage (3,000 IU<br>aXa/day) of<br>certoparin ensures<br>maximal<br>antithrombotic<br>activity."                                                                                                                                                                                                                                                                                                                                                                           | No physical.<br>Concealment<br>unclear.<br>Suggests<br>3,000 dose<br>sufficient.                                                                    |
| Levine<br>1991<br>RCT   | 9.5 | N = 669<br>Hip<br>replacemen<br>t | Low molecular<br>weight heparin<br>30mg vs.<br>standard calcium<br>heparin 7,500U<br>SC BID. First<br>dose 12-24 hours<br>after surgery<br>continued for 14<br>days or until<br>discharge.      | Thrombi in 57/333<br>(17.1%) LMWH vs. 63/332<br>(19.0%) standard. Total<br>bleeding events in 5.1%<br>vs. 9.3%, p = $0.035.5.7\%$<br>standard heparin vs. 3.3%<br>LMW heparin with major<br>bleeding, p = $0.13$ . No<br>differences in transfusions<br>(NS). | "Low molecular<br>weight heparin is<br>significantly less<br>hemorrhagic than<br>standard<br>unfractionated<br>heparin; the<br>difference in the rate<br>of deep vein<br>thrombosis, although<br>not statistically<br>significant (p>0.2),<br>favors the use of<br>LMW heparin."                                                                                                                                                                                                              | Data suggest<br>LMWH not<br>superior,<br>although<br>trend<br>towards<br>more thrombi<br>in standard<br>heparin<br>group and<br>less<br>hemorrhage. |
| Eriksson<br>1991<br>RCT | 9.5 | N = 136<br>THR                    | Low molecular<br>weight heparin<br>5000 IU SC QD<br>vs.<br>unfractionated<br>heparin 5000U<br>TID for 10 days                                                                                   | DVT in 30.2% LMWH vs.<br>42.4% unfractionated<br>heparin (NS). PE in 12.3%<br>LMWH vs. 30.6% (p =<br>0.016).Total blood loss<br>and total blood transfused<br>higher with standard<br>heparin.                                                                | "The efficacy of low-<br>molecular-weight<br>heparin was superior<br>to that of standard<br>heparin in the<br>prevention of femoral<br>thrombosis and<br>pulmonary embolism,<br>although the over-all<br>incidence of deep-<br>vein thrombosis was<br>not statistically<br>different. Safety was<br>also improved, since<br>the over-all volumes<br>of blood loss and<br>transfused blood<br>were significantly less<br>in the patients who<br>received low-<br>molecular-weight<br>heparin." | Medications<br>not<br>mentioned.<br>Data suggest<br>LMWH<br>superior.                                                                               |
| Planes<br>1998<br>RCT   | 8.5 | N = 498<br>THA                    | Low-molecular<br>weight heparin<br>reviparin-sodium<br>(Clivarine <sup>®</sup> )<br>4200IU anti-Xa<br>activity vs.<br>enoxaparin 40mg<br>SC QD for 10-14<br>days. Treatment<br>12 hours pre-op. | 1 otal DV Is in 22/230<br>(10%) enoxaparin vs.<br>27/230 (12%) reviparin<br>(NS). 6% each group with<br>proximal DVTs. 2 vs. 1<br>major bleeds.                                                                                                               | "The clinical tolerance<br>was statistically<br>unequivalent in favor<br>of reviparin-sodium<br>with regard to<br>haemoglobulin and<br>wound haematoma.<br>Biologically we had<br>great discrepancy<br>between the anti-Xa<br>activity of the two<br>groups."                                                                                                                                                                                                                                 | No<br>differences<br>in DVT. More<br>hematomae<br>with<br>enoxaparin.                                                                               |

| Spiro<br>1994<br>RCT    | 8.5 | N = 572<br>Hip<br>replacemen<br>ts                                                | 10mg enoxaparin<br>QD vs. 40mg<br>enoxaparin QD<br>vs. 30mg<br>enoxaparin every<br>12 hours, all<br>subcutaneous<br>injections with<br>1st dose within<br>24 hours before<br>surgery and<br>continued up to 7<br>days                                                                                                                                                                                                                                       | 16% of 568 developed<br>DVT. 36/161 (31%) 10mg<br>vs. 21/149 (14%) 40mg<br>vs. 16/143 (11%) 30mg<br>BID ( $p < 0.001$ comparing<br>10mg, but $p > 0.2$ for 40 vs<br>30mg). Use of graduated<br>compression stocking<br>reduced DVT incidence<br>DVT 12% vs. 26%, p<br><0.001.Incidence of<br>hemorrhagic<br>complications similar in 40<br>and 30mg groups.                                     | "[E]noxaparin is an<br>effective agent to<br>prevent deep venous<br>thrombosis in patients<br>having elective hip<br>replacement surgery.<br>Administered after<br>surgery of 30 mg of<br>enoxaparin every 12<br>hours or 40 mg once<br>daily substantially<br>reduces the incidence<br>of deep venous<br>thrombosis compared<br>with an ineffective<br>dose (10 mg given<br>once daily)."                                                                                             | 10mg<br>stopped due<br>to higher risk<br>than 30mg,<br>and 40mg.<br>Graduated<br>compression<br>stockings<br>decreased<br>DVT's (p<br><0.001),<br>however not<br>randomized<br>on this<br>factor.                       |
|-------------------------|-----|-----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Hull<br>1993<br>RCT     | 8.5 | N = 795<br>Hip surgery<br>patients<br>N = 641<br>Knee<br>arthroplasty<br>patients | Warfarin sodium<br>initial dose 10mg<br>post-operatively<br>on evening of<br>surgery and QD<br>with dose<br>adjusted to INR<br>2.0-3.0 vs. low<br>molecular weight<br>heparin fixed<br>dose of 75 IU/kg<br>body weight SC<br>QD. Treatments<br>until 14th post-<br>operative day or<br>hospital<br>discharge.                                                                                                                                               | 37.4% warfarin vs. 31.4%<br>of the low molecular<br>weight heparin group<br>developed DVT, p = 0.03.<br>1.2% of warfarin group vs.<br>2.8% low molecular<br>weight heparin group with<br>major bleeding, p = 0.04.                                                                                                                                                                              | "[L]ow-molecular-<br>weight heparin given<br>in a single<br>subcutaneous<br>injection per day is<br>effective, as<br>compared with<br>warfarin sodium<br>prophylaxis, and that<br>it avoids the need to<br>monitor the level of<br>anticoagulation. The<br>reduction in the rate<br>of venous thrombosis<br>with low-molecular-<br>weight heparin, as<br>compared with<br>warfarin, is offset by<br>an increase in the<br>number of bleeding<br>complications and<br>wound hematomas." | Dropouts<br>unclear.<br>Appears to<br>be ITT. Data<br>suggest<br>modest<br>reduced risk<br>for DVT with<br>LMWH.                                                                                                        |
| Eriksson<br>2007<br>RCT | 8.0 | N = 641<br>THA                                                                    | Dose escalation<br>study.<br>Rivaroxaban 2.5,<br>5, 10, 20 or<br>30mg vs.<br>enoxaparin.<br>Rivaroxaban 6-8<br>hours after<br>wound closure<br>and every 12±1<br>hour after vs.<br>rivaroxaban<br>30mg beginning<br>6-8 hours after<br>wound closure,<br>every 24±1 hour<br>after for 5-9 days<br>after surgery vs.<br>enoxaparin 40mg<br>SC evening<br>before surgery<br>then 6-8 hours<br>after wound<br>closure and QD<br>evenings for 5-9<br>days after | Major VTE incidence<br>inverse with rivaroxaban<br>dose (total DVT, non-fatal,<br>PE, all cause mortality:<br>22.2%, 23.8%, 20.0%,<br>15.1%, 10.2%, 17.4% vs.<br>enoxaparin 16.8%) (p =<br>0.0108). Rivaroxaban vs.<br>enoxaparin (NS). Major<br>post operative bleeding<br>more frequently with<br>rivaroxaban vs.<br>enoxaparin (0%, 2.5%,<br>2.9%, 4.5%, 6.5%, 10.8%<br>vs. 0%), p = 0.0008. | "This study<br>demonstrated proof-<br>of-principle for<br>rivaroxaban to reduce<br>the incidence of<br>VTE."                                                                                                                                                                                                                                                                                                                                                                           | Some co-<br>interventions<br>. Data<br>suggest<br>rivaroxaban<br>equivalent<br>efficacy to<br>enoxaparin.<br>Dose-<br>response<br>relationship<br>for<br>rivaroxaban.<br>Higher<br>bleeding<br>rates in<br>rivaroxaban. |

|                         |     |                  |                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                               |
|-------------------------|-----|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                         |     |                  | surgery.                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                               |
| Leyvraz<br>1991<br>RCT  | 7.0 | N = 409<br>THR   | Unfractionated<br>heparin<br>subcutaneous<br>injections at<br>intervals of 8<br>hours, 1st dose<br>"4.0 IU" then<br>injections<br>adjusted based<br>on patient's<br>activated<br>thromboplastin<br>time (increased<br>or decreased by<br>500 IU) vs. low<br>molecular weight<br>heparin one<br>injection of 41<br>IU/kg for first 3<br>days then<br>increased to 62<br>IU/kg from days<br>4-9, 10, or 11. | 12.6% of low molecular<br>weight heparin group vs.<br>16% unfractionated<br>heparin group developed<br>DVT, $p = 0.45$ . Proximal<br>thrombi in 2.9% LMWH<br>vs. 13.1% heparin ( $p$<br><0.001).More injection site<br>hematomas in<br>unfractionated heparin<br>group, $p = 0.001$ .                                                                                             | "[T]he low molecular<br>weight heparin<br>Fraxiparine, with the<br>dose adjusted for<br>body weight and<br>given subcutaneously<br>once a day, is at least<br>as efficacious and<br>safe in the prevention<br>of total deep vein<br>thrombosis after<br>elective hip<br>replacement as<br>individually adjusted<br>unfractionated<br>heparin give thrice<br>daily. In addition, the<br>low molecular weight<br>heparin was<br>significantly more<br>efficacious in<br>preventing deep vein<br>thrombosis of<br>proximal veins and is<br>simpler to use than<br>unfractionated | Data suggest<br>LMWH<br>superior to<br>unfractionate<br>d for reduced<br>proximal<br>DVT.                                                                                                                                                                                     |
| Samama<br>2002<br>RCT   | 7.0 | N = 1,279<br>THR | Fixed-dose<br>subcutaneous<br>low-molecular-<br>weight heparin or<br>adjusted-dose<br>oral<br>anticoagulant<br>(acenocoumarol)<br>for 6 weeks                                                                                                                                                                                                                                                             | Failure rate reviparin<br>(4.2%) lower than<br>acenocoumarol (10.3%).<br>Low-molecular-weight<br>heparin with fewer<br>bleeding complications (p<br>= 0.0001).                                                                                                                                                                                                                    | "[T]he extended use<br>of low-molecular-<br>weight heparin given<br>in a single<br>subcutaneous<br>injection per day is<br>superior to<br>acenocoumarol<br>prophylaxis in<br>patients undergoing<br>elective hip surgery<br>and that it avoids the<br>need to monitor the<br>level of<br>anticoagulation."                                                                                                                                                                                                                                                                    | Clinically<br>significant<br>events –<br>more "real<br>world."<br>Sufficient<br>power to find<br>differences.<br>Suggests<br>LMWH<br>superior.                                                                                                                                |
| Kalodiki<br>1996<br>RCT | 7.0 | N = 93<br>THR    | Enoxaparin<br>4,000 anti Xa IU<br>SC QD vs.<br>enoxaparin 4000<br>anti Xa IU SC<br>QD plus<br>graduated<br>compression<br>stockings vs.<br>placebo                                                                                                                                                                                                                                                        | Controls discontinued as<br>93% developed DVT vs.<br>23% in enoxaparin and<br>20% in enoxaparin plus<br>stockings (p <0.001).<br>Patients then randomized<br>to enoxaparin vs.<br>enoxaparin plus stockings.<br>Enoxaparin plus stockings<br>reduced proximal DVT (p<br><0.01). PE in 42%<br>controls, 10% of<br>enoxaparin vs. 6% of<br>enoxaparin plus stockings,<br>(p <0.01). | "[O]ne subcutaneous<br>daily dose of<br>enoxaparin 40 mg<br>was at least as<br>effective and well<br>tolerated as standard<br>LDH. The effect of the<br>combined use of<br>LMWH with GEC<br>stockings in the<br>prevention of DVT in<br>patients having total<br>hip replacement has<br>not been evaluated."                                                                                                                                                                                                                                                                  | Placebo for<br>meds<br>blinded, but<br>1 group had<br>stockings,<br>not blinded.<br>Meds after<br>discharge<br>unclear.<br>Data suggest<br>efficacy<br>compared<br>with placebo.<br>Data suggest<br>enoxaparin<br>plus<br>stockings<br>superior to<br>medication<br>alone, as |

|                 |     |         |                                     |                                                           |                                                 | well as<br>placebo.      |
|-----------------|-----|---------|-------------------------------------|-----------------------------------------------------------|-------------------------------------------------|--------------------------|
|                 |     |         |                                     |                                                           |                                                 | Process.                 |
|                 |     |         |                                     |                                                           |                                                 |                          |
| Dechavann       | 6.5 | N = 124 | Kabi 2165 2 500                     | DVTs in 2/38 BID dose vs                                  | "[K]abi 2165                                    | Heterogenou              |
| e               | 0.0 |         | anti-Xa U every                     | 3/39 QD dose vs. 4/40                                     | treatment provides                              | s patients.              |
| 1989            |     | surgery | 12 nours vs.<br>2,500 anti-Xa U     | day 7 there was significant                               | effective prophylaxis                           | assessor                 |
| RCT             |     |         | Kabi 2165 every                     | decrease in antithrombin-                                 | of postoperative                                | unknown. No<br>physical  |
|                 |     |         | hours post-                         | treated with standard                                     | undergoing elective                             | Pre-op                   |
|                 |     |         | operatively, then 5,000 anti-Xa U   | heparin vs. anti-thrombin-<br>III activity before surgery | hip surgery."                                   | NSAIDS<br>accounted      |
|                 |     |         | QAM vs. 5,000                       | (p<0.001). No difference                                  |                                                 | for. Appears             |
|                 |     |         | Calciparine®                        | loss as well as transfusion                               |                                                 | powered.                 |
|                 |     |         | 5,000 U SC BID<br>for 2 days, then  | requirements.                                             |                                                 |                          |
|                 |     |         | heparin dose                        |                                                           |                                                 |                          |
| Yoo             | 5.5 | N = 100 | Low molecular                       | In control group 16 %                                     | "[Study indicates]                              | Suggests                 |
| 1997            |     | THR     | weight heparin,<br>nadroparin       | (8/50; p = 0.015)<br>developed DVT vs. 2%                 | efficacy of nadroparin<br>calcium in preventing | nadroparin<br>effective. |
| RCT             |     |         | calcium 41 IU/kg                    | (1/50) for treatment group $(p = 0.015)$                  | post-operative DVT in                           |                          |
|                 |     |         | through 3rd day                     | (p = 0.013).                                              | elective total hip                              |                          |
|                 |     |         | then 65 IU/kg vs.<br>no prophylaxis |                                                           | replacement."                                   |                          |
|                 |     |         | pre-operatively,                    |                                                           |                                                 |                          |
| Avikainen       | 5.0 | N = 167 | Enoxaparin                          | Four in unfractionated                                    | "[E]noxaparin is an                             | Underpower               |
| 1995            |     | THR     | 40mg SC QD, 12<br>hours pre-        | neparin group vs. 1<br>enoxaparin developed               | form of DVT                                     | ed. Trend<br>but no p-   |
| RCT             |     |         | operatively vs.                     | DVT, (p >0.05). No                                        | prophylaxis in                                  | values given.<br>Unclear |
|                 |     |         | heparin 5,000 IU                    | transfusions, blood loss.                                 | elective hip                                    | whether                  |
|                 |     |         | hours pre-op,                       |                                                           | regimen was well                                | for ASA or               |
|                 |     |         | 2nd dose 12<br>hours post-op for    |                                                           | tolerated and there                             | physical.                |
|                 |     |         | 10 days                             |                                                           | increased bleeding."                            | <b>0</b>                 |
| Senaran<br>2006 | 5.0 | N = 100 | Enoxaparin<br>40mg SC QD 12         | DVT in 2 enoxaparin vs. 0<br>heparin (NS), 0 late DVT     | "[L]ow molecular<br>weight heparin              | Some details sparse.     |
| RCT             |     | THA     | hours pre-op vs.                    | in enoxaparin vs. 2<br>beparin (NS), No                   | (Enoxaparin) was                                | Blinding                 |
|                 |     |         | 5,000 IU SC 8                       | differences in                                            | and as effective as                             | Compliance               |
|                 |     |         | hours pre-op and<br>continued to    | complications and blood loss.                             | standard heparin in the prophylaxis of          | and dropouts<br>unclear. |
|                 |     |         | 15,000 per day in 3 equal doses     |                                                           | DVT in patients                                 | Underpowere<br>d         |
|                 |     |         | every 8 hours for                   |                                                           | hip arthroplasty."                              |                          |
| Borris          | 5.0 | N = 246 | Enoxaparin                          | Heptest increased from                                    | "Postoperative levels                           | Lack of                  |
| 1991            |     | THR     | 40mg SC QD for<br>8 days starting   | baseline with Enoxaparin<br>(p <0.001) vs. decrease in    | of TAT [thrombin-<br>antithrombin               | power in<br>enoxaparin - |
| RCT             |     |         | 12 hours after                      | Dextran (p<0.01).TAT                                      | complexes], D-dimer,                            | no decision              |
|                 |     |         | dextran 70                          | operative level. On Day 7,                                | significantly increased                         | usefulness of            |
|                 |     |         | (60mg) IV<br>starting during        | Dextran group had higher levels of TAT than               | in both groups,<br>however, TAT was             | D-dimer.<br>Article      |
|                 |     |         | anesthetic                          | Enoxaparin group.                                         | significantly higher in                         | mainly on                |
|                 | 1   | 1       |                                     | Significant anterence in                                  | padonio in die Devidi                           | association              |

|                        |      |                  | dose 6 hours<br>later, and 3rd<br>and 4th on Days<br>1 and 3 post-op                                                                        | DVTs in favor of<br>enoxaparin (p <0.01).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | group than in the<br>Enoxaparin<br>patients.D-dimer was<br>significantly higher in<br>Dextran patients with<br>DVT postoperatively<br>compared with<br>patients without DVT.<br>No differences<br>concerning TAT or t-<br>PA:ag were observed<br>between patients with<br>and without DVT in<br>any of the groups."                                                                                                                                                                                                                     | between<br>blood tests<br>and DVT for<br>mechanism<br>hypothesis<br>generation.                                                                                                                           |
|------------------------|------|------------------|---------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Colwell<br>1999<br>RCT | 5.0  | N = 3,011<br>THR | Enoxaparin<br>30mg SC vs.<br>warfarin dose<br>adjusted to INR<br>2.0-3.0 for 14<br>days after<br>surgery; 3-month<br>follow-up              | 2,229 patients completed;<br>782 discontinued<br>prematurely. VT disease in<br>111 (3.7%), 55 in<br>enoxaparin group (3%)<br>and 56 in warfarin group<br>(3.7%); 19 patients died.<br>Adverse events occurred<br>in 1,921 (63.8%) of 3,011<br>patients. Serious adverse<br>events in 301 patients<br>(10%). DVT was found in<br>0.1% of enoxaparin group<br>and 1% of the warfarin<br>group.                                                                                                                                 | "[T]he data-collection<br>tool designed to<br>capture overall<br>bleeding events was<br>neither sensitive or<br>specific enough to<br>delineate bleeding<br>events induced by the<br>study medication from<br>those caused by<br>concurrent illness or<br>operative<br>procedure The<br>timing of the dose of<br>the enoxaparin had a<br>notable effect on the<br>occurrence of major<br>bleeding in<br>association with<br>enoxaparin therapy<br>were administered<br>the medication from<br>zero to twelve hours<br>postoperatively." | Warfarin<br>allowed.<br>Blinding<br>unknown.<br>Some<br>differences<br>at baseline.<br>Variable<br>dosing<br>intervals<br>results in<br>questions<br>regarding<br>conclusions<br>of relative<br>efficacy. |
| Menzin<br>1994<br>RCT  | 4.0  | N = 607<br>THR   | Enoxaparin<br>30mg q12 hour<br>vs. enoxaparin<br>40mg QD vs.<br>unfractionated<br>heparin 5,000 U<br>q8hour for 7<br>post-operative<br>days | Confirmed DVT rates<br>enoxaparin 30mg 4.7%<br>vs. enoxaparin 40mg<br>14.9% vs. heparin 11.6%.<br>Enoxaparin 30mg superior<br>to heparin, $p < 0.05$ . No<br>difference between<br>enoxaparin 40mg and<br>unfractionated heparin ( $p = 0.33$ ). Fewer major<br>bleeds in enoxaparin<br>40mg than heparin. No<br>difference between<br>heparin and enoxaparin<br>30mg ( $p = 0.72$ ).<br>Unfractionated heparin<br>group in hospital longer<br>than enoxaparin groups,<br>11.3 days heparin, 9.9<br>days enoxaparin<br>30mg. | "Compared with<br>unfractionated<br>heparin, use of<br>enoxaparin following<br>total hip replacement<br>may decrease the risk<br>of DVT and length of<br>hospital stay."                                                                                                                                                                                                                                                                                                                                                                | Blinding not<br>mentioned.<br>Co-<br>interventions<br>unclear.<br>Unknown if<br>ITT<br>applicable.<br>Data suggest<br>enoxaparin<br>superior.                                                             |
|                        | 1    |                  | Нера                                                                                                                                        | rin vs. Placebo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                           |
| Beisaw                 | 11.0 | N = 148          | Dihydro-                                                                                                                                    | 128 patients completed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | "[T]he combination                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Heparin                                                                                                                                                                                                   |
| 1988                   |      |                  | ergotamine                                                                                                                                  | the study; 52.3% placebo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | agent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | appears                                                                                                                                                                                                   |
|                        |      | THA              | 0.5mg and                                                                                                                                   | vs. 25.4%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | dihydroergotamine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | more                                                                                                                                                                                                      |

| RCT                     |     |                                                                          | heparin sodium<br>5,000 units vs.<br>placebo of<br>lidocaine<br>hydrochloride for<br>7-9 days                                                                                                                                                                                                                                | dihydroergotamine<br>mesylate/heparin sodium<br>developed DVT, p =<br>0.0021. No PEs.                                                                                                                                                                                                                                                                     | mesylate/heparin<br>sodium was effective<br>and safe prophylaxis<br>against deep-vein<br>thrombosis for the<br>patients who<br>underwent total hip<br>replacement in this<br>study."                                    | effective for<br>reducing<br>proximal<br>thrombi;<br>thought more<br>clinically<br>useful. Intent<br>to treat done<br>on efficacy<br>study, not<br>safety.                                                                   |
|-------------------------|-----|--------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Westrich<br>2005<br>RCT | 9.0 | N = 165<br>THA                                                           | Unfractionated<br>heparin 1 IV<br>dose intra-<br>operative before<br>femoral<br>preparation vs.<br>IV saline. Both<br>treated with<br>elastic stockings<br>and 325mg<br>aspirin BID 1<br>month.                                                                                                                              | Evaluated with MR<br>venograms. No increased<br>blood loss, bleeding, units<br>transfused hemoglobin/<br>hematocrit with heparin.<br>No clinical PE or<br>symptomatic thrombo-<br>emboli observed. No<br>demonstrated reduction of<br>thrombosis with heparin<br>(13% vs. 10.8%, p >0.05).                                                                | "[P]elvic thrombi may<br>form following THA<br>and that a single dose<br>of intraoperative<br>heparin does not<br>prevent their<br>formation, but may be<br>effective at preventing<br>ipsilateral femoral<br>thrombi." | Single-dose<br>heparin.<br>Included<br>those usually<br>excluded.<br>Minimal<br>post-surgical<br>prophylaxis.<br>No efficacy<br>of single<br>dose heparin<br>for DVTs.                                                       |
| RCT                     | 5.0 | N = 80<br>Hip fracture<br>N = 220<br>Hip surgery<br>including<br>213 THA | Heparin 5,000 IU<br>SC 1 hour before<br>surgery and<br>5,000 IU SC Q12<br>hour 5 days vs.<br>dextran 70 500ml<br>during operation,<br>500ml right after<br>operation; 500ml<br>on 1st and 3rd<br>post-op days vs.<br>no treatment<br>controls                                                                                | DV1 In hip fracture patient<br>controls 90.9% vs. dextran<br>48.1% vs. heparin 63.0%<br>(p <0.05 comparing no<br>treatment controls). Thigh<br>thromboses in 50.0% vs.<br>22.2% vs. 37.0%.<br>thromboses among<br>elective hip surgery<br>patients were 62.7% vs.<br>57.4% vs. 48.0%.                                                                     | [D]extran 70 is to be<br>preferred for DVT<br>prophylaxis after hip<br>fractures."                                                                                                                                      | No treatment<br>controls.<br>Data suggest<br>heparin<br>superior to<br>no treatment<br>for hip<br>fracture, but<br>dextran<br>superior to<br>low dose<br>heparin.<br>Results less<br>strong for<br>arthroplasty<br>patients. |
|                         |     |                                                                          | Heparin v                                                                                                                                                                                                                                                                                                                    | s. Other Treatments                                                                                                                                                                                                                                                                                                                                       | ·                                                                                                                                                                                                                       |                                                                                                                                                                                                                              |
| Kakkar<br>1979<br>RCT   | 5.0 | N = 300<br>Major<br>abdominal<br>surgery,<br>100 THR                     | Abdominal<br>surgery trial:<br>dihydroergot-<br>amine mesylate<br>vs. heparin 5000<br>IU SC. Second<br>trial: 5,000 IU<br>heparin calcium<br>vs. 5,000 IU<br>heparin calcium<br>plus 0.5mg<br>dihydroergotamin<br>e mesylate 2<br>hours before<br>surgery and Q8<br>hours 7 post-op<br>days or longer if<br>confined to bed. | Abdominal surgery trial:<br>10/50 dihydroergotamine<br>vs. 2/50 (4%) heparin (p<br><0.05). THR study: DVTs<br>on heparin 26/50 (52%)<br>vs. heparin plus<br>dihydroergotamine 10/50<br>(20%), p <0.01. Blood loss<br>and hematoma not<br>different. THR patients<br>significant different DVT<br>incidence (p <0.01) in<br>favor of combination<br>group. | "[T]he combination of<br>dihydroergotamine<br>and heparin<br>represents an<br>effective form of<br>prophylaxis in<br>patients undergoing<br>total hip<br>replacement."                                                  | Suggests<br>heparin<br>superior to<br>dihydroergot<br>amine in<br>abdominal<br>surgery and<br>combination<br>better than<br>heparin<br>alone for<br>THR.                                                                     |

| Eriksson<br>Arch Intern<br>Med<br>2003<br>RCT | 10.0 | N = 656<br>Hip fracture<br>surgery       | Fondaparinux<br>sodium 2.5mg<br>SC vs. placebo<br>for 19-23 days<br>after total hip<br>replacement                                                                                                                                                                                                                                                                          | Venous thromboembolic<br>incidence of 35% (77/220)<br>on placebo vs. 1.4%<br>(3/208) with fondaparinux.<br>Relative risk reduction<br>95.9% (95% CI 87.2%-<br>99.7%, p = 0.001).<br>Significant reductions in<br>total, proximal as well as<br>distal-only deep vein<br>thrombosis (p <0.001).                                                                                                                                                                                               | "[E]xtended<br>prophylaxis with<br>fondaparinux for 3<br>weeks after hip<br>fracture surgery<br>reduced the risk of<br>VTE by 96% and was<br>well tolerated."                                                                                                                                                                                                                                                                                                                                                                        | Suggests<br>efficacy. Few<br>exclusions<br>except for<br>drug safety.<br>Physical<br>exam not<br>allowed.<br>Appears to<br>include ITT,<br>but not<br>labeled such<br>in report.               |
|-----------------------------------------------|------|------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Agnelli                                       | 10.5 | N - 511                                  | Pactor Xa Innib                                                                                                                                                                                                                                                                                                                                                             | Difumarate resulted in                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | "In conclusion this                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Suggests                                                                                                                                                                                       |
| 2007<br>RCT                                   |      | Total hip or<br>knee<br>replacemen<br>ts | study. Oral<br>LY517717<br>(Difumarate) 25,<br>50, or 75mg or<br>later doses of<br>100, 125, or<br>150mg 6-8 hours<br>after wound<br>closure then<br>every morning<br>after overnight<br>fasting at 7am±1<br>hour vs.<br>enoxaparin 40mg<br>SC evening<br>before surgery,<br>then every<br>evening at 8pm±2<br>hours; both<br>treatments<br>continued for 6 to<br>10 doses. | dose-dependent decrease<br>in the incidence of<br>thromboembolic events (p<br>= 0.0001). Doses between<br>25-75 mg ineffective.<br>Incidences of VTE with<br>100, 125 and 150mg of<br>19%, 19% and 16% vs.<br>21% enoxaparin (NS).                                                                                                                                                                                                                                                           | phase II proof-of-<br>concept study<br>demonstrated the<br>safety and efficacy of<br>LY517717 for the<br>prevention of VTE<br>following THR or TKR<br>in comparison to<br>enoxaparin."                                                                                                                                                                                                                                                                                                                                               | comparable<br>efficacy with<br>enoxaparin.                                                                                                                                                     |
| Eriksson<br>1997<br>RCT                       | 10.0 | N = 2079<br>THR                          | Desirudin 15mg<br>SC BID, first<br>injection 30<br>minutes before<br>surgery vs.<br>enoxaparin 40mg<br>QD, first injection<br>evening before<br>surgery. Both 8-<br>12 days<br>treatment.                                                                                                                                                                                   | 6.2% of all patients had a<br>major thromboembolic<br>event (proximal DVT,<br>pulmonary embolism, or<br>unexplained death). Major<br>TE event in 4.9%<br>desirudin vs. 7.6%<br>enoxaparin, $p = 0.02$ .<br>Relative reduction 36.4%.<br>Proximal DVT in 36/802<br>(4.5%) desirudin vs.<br>59/785 (7.5%) enoxaparin,<br>p = 0.01. Overall DVT rate<br>lower, $p = 0.001$ .During<br>follow up, 4 patients died.<br>Total blood loss was not<br>significantly different<br>between the groups. | "[S]pecific inhibition of<br>thrombin is effective<br>in preventing<br>postoperative<br>thromboembolism in<br>high-risk patients who<br>have undergone hip-<br>replacement surgery.<br>The patients who<br>received desirudin<br>twice daily for at least<br>eight days had a 40<br>percent lower risk of<br>proximal deep-vein<br>thrombosis than<br>those given<br>enoxaparin, a low-<br>molecular-weight<br>heparin. The<br>treatment regimens<br>were equally safe and<br>did not require<br>specific laboratory<br>monitoring." | No physical<br>allowed,<br>ASA ok.<br>Suggests<br>desirudin<br>superior to<br>enoxaparin.<br>Post hoc<br>analyses<br>support age,<br>general<br>anesthesia,<br>obesity,<br>cement as<br>risks. |

| Eriksson<br>2001<br>RCT            | 7.0     | N = 1711<br>Hip fracture<br>surgery                       | Fondaparinux<br>2.5mg QD vs.<br>enoxaparin 40mg<br>QD for at least 5<br>days after<br>surgery                                                                                                                                                                                                       | Venous thromboembolism<br>incidence by Day 11<br>52/626 (8.3%) with<br>fondaparinux vs. 119/624<br>(19.1%) with enoxaparin.<br>Major bleeding by Day 11<br>in 18/831 fondaparinux vs.<br>19/842 enoxaparin (p =<br>1.00).                                                                                                                                                                                                                                 | "[P]rophylactic<br>fondaparinux is more<br>effective than<br>enoxaparin in<br>preventing venous<br>thromboembolism in<br>patients undergoing<br>hip-fracture surgery<br>and does not<br>increase the risk of<br>clinically relevant<br>bleeding."                                                                                                                                                                           | Data suggest<br>fondaparinux<br>superior to<br>enoxaparin                                                                                                                                              |
|------------------------------------|---------|-----------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                    | <b></b> |                                                           | Warfarin vs                                                                                                                                                                                                                                                                                         | s. Aspirin vs. Placebo                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                             | L                                                                                                                                                                                                      |
| Powers<br>1989<br>RCT              | 8.5     | N = 194<br>Hip fracture                                   | Warfarin orally<br>10mg right after<br>surgery then daily<br>doses adjusted<br>on basis of<br>prothrombin time<br>for 21 days after<br>surgery or dis-<br>charge vs. 650mg<br>enteric-coated<br>aspirin at 8am<br>and 8pm daily<br>starting post-op,<br>continuing 21<br>days or dis-<br>charge vs. | DVT and/or PE in 20.0%<br>warfarin, 40.9% aspirin,<br>46.0% placebo (p =<br>0.005). "[W]arfarin was<br>clearly much more<br>effective than aspirin or<br>placebo, and there was<br>little difference between<br>aspirin and placebo."<br>Bleeding outcomes not<br>statistically significant; 6<br>patients died during 21-<br>day period, 7 during follow<br>up. None lost to follow up<br>after 3 months; 1<br>thromboembolic event in<br>that time apap | "[S]odium warfarin<br>therapy is safe and<br>effective in preventing<br>thromboembolic<br>complications in<br>patients undergoing<br>surgery for fractured<br>hip, and that aspirin<br>therapy is an equally<br>safe and effective<br>method for preventing<br>proximal vein<br>thrombosis or<br>pulmonary<br>embolism."                                                                                                    | No mention<br>of<br>ambulation<br>or stockings.<br>Bias not<br>discussed.<br>Patients<br>blinded to<br>some<br>interventions<br>(pills).<br>Suggests<br>warfarin<br>superior to<br>ASA and<br>placebo. |
|                                    |         |                                                           | placebo                                                                                                                                                                                                                                                                                             | that time span.                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                        |
| Agpolli                            | 0.5     | Dhoos 1:                                                  | Dermatan S                                                                                                                                                                                                                                                                                          | Suiphate VS. Placebo                                                                                                                                                                                                                                                                                                                                                                                                                                      | "Olur otudu provide -                                                                                                                                                                                                                                                                                                                                                                                                       | Somo sa                                                                                                                                                                                                |
| Agnelli<br>1992<br>RCT             | 9.5     | Phase 1:<br>N = 80<br>Phase 2:<br>N = 126<br>Hip fracture | 2-ml ampules of<br>MF 701<br>dermatan<br>sulphate 100 or<br>200 mg vs.<br>placebo (saline<br>solution) for 14<br>days in non-<br>operated patients<br>or 10 days post-<br>operative                                                                                                                 | MF /01 had no protective<br>effect against total or<br>proximal DVT. DVT<br>incidence 64.9% in MF<br>701 vs. 51.4% in placebo<br>(NS) (proximal DVTs<br>40.5% vs. 29.7%). No<br>difference in bleeding; 6<br>patients died, 3 in-<br>hospital, 3 during follow<br>up. In Phase 2, 37.8% of<br>MF 701 group, 63.9% of<br>placebo group developed<br>DVT (p = 0.01). 3 patients<br>died, 2 in hospital, 1<br>during follow-up.                              | "[O]ur study provides<br>the first clinical<br>demonstration that<br>dermatan sulphate is<br>an effective and<br>remarkably safe<br>antithrombotic agent.<br>This result was<br>obtained in a patient<br>population that tends<br>to be resistant to<br>conventional<br>measures for DVT<br>prophylaxis, often<br>resulting in side<br>effects. Our study also<br>provides evidence of<br>the biological role of<br>HC II." | Some co-<br>interventions<br>. Phase 1<br>and 2<br>studies.<br>Trend<br>towards<br>more DVT in<br>active<br>treatment<br>group in one<br>study and<br>towards<br>placebo in<br>other.                  |
| Frikeson                           | 9.0     | N - 2.835                                                 | Melagetran/                                                                                                                                                                                                                                                                                         | 2316 nationts assessed                                                                                                                                                                                                                                                                                                                                                                                                                                    | "In natients                                                                                                                                                                                                                                                                                                                                                                                                                | Data suggest                                                                                                                                                                                           |
| J Thromb<br>Haemost<br>2003<br>RCT | 9.0     | Total hip or<br>knee<br>replacemen<br>t                   | ximelagatran/<br>ximelagatran<br>2mg SC<br>immediately<br>before surgery<br>and 3mg<br>melagatran<br>evening after<br>surgery followed<br>by 24mg<br>ximelagatran<br>orally vs.<br>enoxaparin 40mg                                                                                                  | for first stage and 2326 for<br>second stage. VTE in<br>2.3% of ximelagatran vs.<br>6.3% enoxaparin ( $p =$<br>0.0000018). Relative risk<br>reduction 23.7%. Rate in<br>THR group lower (1.8%<br>vs. 5.5% enoxaparin,<br>0.6% of ximelagatran and<br>0.9% enoxaparin had<br>confirmed symptomatic<br>VTE. More transfusions                                                                                                                               | undergoing total hip<br>or knee replacement,<br>preoperatively<br>initiated s.c.<br>melagatran followed<br>by oral ximelagatran<br>was significantly more<br>effective in preventing<br>VTE than<br>preoperatively<br>initiated s.c.<br>enoxaparin."                                                                                                                                                                        | melagatran/xi<br>melagatran<br>superior.                                                                                                                                                               |

| Hayes<br>1996<br>RCT | 7.0 | N = 40<br>THR | SC QD 12 hours<br>before surgery.<br>Both treatments<br>8-11 days.<br>Aprotinin 2M KIU<br>vs. placebo over<br>20 minutes. All<br>received<br>enoxaparin and<br>stockings. | (66.8% vs. 61.7%) and<br>somewhat higher blood<br>loss (geometric mean<br>1,014mL vs. 913mL) with<br>ximelagatran.<br>No differences in total<br>blood loss, intraoperative<br>blood loss, or<br>postoperative blood loss<br>between groups. No<br>differences in DVT<br>between groups, with 0<br>below DVT in the aprotinin<br>group vs. 1 placebo. | "A single bolus dose<br>of 2 million KIU of<br>aprotinin did not<br>reduce blood loss or<br>transfusion<br>requirements in<br>patients undergoing<br>total hip replacement<br>surgery." | Single<br>administratio<br>n; provider<br>blinding<br>unclear.<br>Data suggest<br>no<br>differences<br>in<br>complication<br>s. Very low |
|----------------------|-----|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|
|                      |     |               | Varvin                                                                                                                                                                    | n Henarin Dosos                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                         | DVT rate<br>due to<br>enoxaparin<br>and<br>stockings for<br>all.                                                                         |
| Colwell              | 6.0 | N = 610       | Enoxaparin                                                                                                                                                                | Rate of DVT lower with                                                                                                                                                                                                                                                                                                                                | "The efficacy and                                                                                                                                                                       | Small                                                                                                                                    |
| 1994                 |     |               | 30mg Q 12                                                                                                                                                                 | enoxaparin 30mg vs.                                                                                                                                                                                                                                                                                                                                   | safety profile of                                                                                                                                                                       | numbers to                                                                                                                               |
| RCT                  |     | THR           | hours. vs 40mg<br>QD vs.                                                                                                                                                  | unfractionated heparin (p<br>= 0.014) and enoxaparin                                                                                                                                                                                                                                                                                                  | enoxaparin supports consideration of                                                                                                                                                    | show<br>efficacy.                                                                                                                        |
|                      |     |               | unfractionated                                                                                                                                                            | 40 mg QD (p = 0.0002).                                                                                                                                                                                                                                                                                                                                | enoxaparin as a                                                                                                                                                                         | Blinding of                                                                                                                              |
|                      |     |               | Q 8 hours after                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                       | therapeutic option for<br>the prevention of                                                                                                                                             | assessor<br>unclear.                                                                                                                     |
|                      |     |               | surgery                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                       | deep venous                                                                                                                                                                             |                                                                                                                                          |
|                      |     |               |                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                       | specific population of                                                                                                                                                                  |                                                                                                                                          |
|                      |     |               |                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                       | patients.                                                                                                                                                                               |                                                                                                                                          |
|                      |     |               |                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                       | postoperatively,                                                                                                                                                                        |                                                                                                                                          |
|                      |     |               |                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                       | enoxaparin was more                                                                                                                                                                     |                                                                                                                                          |
|                      |     |               |                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                       | and was as safe as                                                                                                                                                                      |                                                                                                                                          |
| Levvraz              | 5.5 | N = 96        | Heparin 3 500 IU                                                                                                                                                          | DVT in 16/41 (39%) of                                                                                                                                                                                                                                                                                                                                 | heparin in this study."                                                                                                                                                                 | Data suggest                                                                                                                             |
| 1983                 |     |               | SC Q 8 hour vs.                                                                                                                                                           | fixed dose vs. 5/38 (13%)                                                                                                                                                                                                                                                                                                                             | heparin prophylaxis                                                                                                                                                                     | adjusted                                                                                                                                 |
| RCT                  |     | THR           | Adjusted dose by<br>PTT for 8 days                                                                                                                                        | in adjusted dose, p<0.01.<br>Proximal DVTs in 16 vs. 5                                                                                                                                                                                                                                                                                                | appears to be a safe                                                                                                                                                                    | dose<br>superior to                                                                                                                      |
|                      |     |               |                                                                                                                                                                           | No differences in blood                                                                                                                                                                                                                                                                                                                               | method to reduce the                                                                                                                                                                    | fixed dose.                                                                                                                              |
|                      |     |               |                                                                                                                                                                           | transfusions.                                                                                                                                                                                                                                                                                                                                         | trequency of deep-<br>vein thrombosis in                                                                                                                                                | No placebo<br>group.                                                                                                                     |
|                      |     |               |                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                       | patients undergoing                                                                                                                                                                     | 3                                                                                                                                        |
|                      |     |               |                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                       | total hip replacement."                                                                                                                                                                 |                                                                                                                                          |
| Huo                  | 5.0 | N = 286       | Intraoperative                                                                                                                                                            | Proximal femoral DVT in                                                                                                                                                                                                                                                                                                                               | "[I]n conjunction with                                                                                                                                                                  | Only some                                                                                                                                |
| 1992                 |     | THA           | neparin 30<br>minute interval                                                                                                                                             | 9.1% controls vs. 1.7%,<br>1.6% and 1.7%. p <0.02                                                                                                                                                                                                                                                                                                     | nypotensive epidural anesthesia and                                                                                                                                                     | co-<br>interventions                                                                                                                     |
| RCT                  |     |               | dose (1,000U at                                                                                                                                                           | compared with control.                                                                                                                                                                                                                                                                                                                                | postoperative aspirin,                                                                                                                                                                  | mentioned.                                                                                                                               |
|                      |     |               | and 500U Q 30                                                                                                                                                             | 24.3% to 10%, p <0.01.                                                                                                                                                                                                                                                                                                                                | is effective in reducing proximal                                                                                                                                                       | Suggests<br>intraoperativ                                                                                                                |
|                      |     |               | minutes) vs.                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                       | DVT to less than 2%                                                                                                                                                                     | e heparin                                                                                                                                |
|                      |     |               | adjusted dose                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                       | in primary THA.                                                                                                                                                                         | reauces risk.                                                                                                                            |
|                      |     |               | (30-50% PTT                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                         |                                                                                                                                          |
|                      |     |               | elevation) vs.<br>fixed dose                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                         |                                                                                                                                          |
|                      |     |               | (1,000U before<br>hip dislocation                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                         |                                                                                                                                          |

|                        |     |                                                                  | plus 500U before<br>femoral canal<br>prep) during<br>surgery. All ASA<br>325mg BID post-<br>op.                                                                                           |                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                        |
|------------------------|-----|------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                        |     | I                                                                | Durations a                                                                                                                                                                               | nd Doses of Warfarin                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                        |
| RCT                    | 7.5 | N = 897<br>First<br>episode of<br>venous<br>thrombo-<br>embolism | Warfarin 6 weeks<br>vs. 6 months oral<br>anticoagulant<br>targeting INR<br>2.0-2.85                                                                                                       | No significant difference in<br>mortality or major<br>hemorrhage. Distal<br>thromboses in 79 patients<br>6-weeks vs. 81 6-month<br>group patients (NS).<br>Significant difference in<br>recurrent venous<br>thromboembolism<br>between 6-week group<br>(18.1%) and 6-month<br>group (9.1%, p <0.001). | "[1]he long-term<br>outcome for patients<br>with venous<br>thromboembolism<br>was discouraging,<br>since there was no<br>difference in the<br>incidence of recurrent<br>events in the two<br>groups from 6 to 24<br>months after the initial<br>episode. There was a<br>linear increase in the<br>cumulative risk,<br>corresponding to 5 to<br>6 percent annually."                                                                                                                   | Included<br>multiple risk<br>factors.<br>Longer<br>follow-up of<br>2 years. ASA<br>not allowed.<br>Data suggest<br>longer<br>anticoagulati<br>on not<br>necessary.                                     |
| Hull<br>1979<br>RCT    | 7.0 | N = 68<br>THR                                                    | Adjusted-dose<br>warfarin sodium<br>10mg (1.5-2x) vs.<br>low-dose<br>subcutaneous<br>heparin 5,000IU<br>(PTT to 1.5-2<br>times) after<br>surgery for 14<br>days with 12<br>week follow up | Recurrence in 19 (47%)<br>with proximal DVT vs.<br>none of 17 on warfarin (p<br><0.001). Hemorrhagic<br>complications in7/33 4<br>major) on warfarin and 0<br>on low-dose heparin (p<br><0.005).                                                                                                      | "Although adjusted-<br>dose warfarin sodium<br>prevented recurrence,<br>its effectiveness was<br>counterbalanced to<br>some degree by the<br>frequency of bleeding<br>associated with its<br>use. It is possible that<br>subcutaneous<br>heparin in higher<br>doses or oral<br>anticoagulants in<br>lower doses than<br>those used in this trial<br>might also be<br>effective in preventing<br>venous<br>thromboembolism<br>without producing the<br>same high risk of<br>bleeding." | Recommend<br>ed that<br>possibly<br>higher dose<br>heparin or<br>lower dose<br>warfarin be<br>studied. Data<br>suggest<br>warfarin<br>better for<br>preventing<br>recurrence,<br>but more<br>bleeding. |
| Agnelli<br>2001<br>RCT | 7.0 | N = 290<br>Idiopathic<br>DVT<br>patients                         | Warfarin 3<br>months vs. 1<br>year. INR 2.0-<br>3.0.                                                                                                                                      | Twenty-three excluded;<br>15.7% of continuation<br>group vs. 15.8%<br>discontinuation with<br>recurrent venous<br>thromboembolism, RR =<br>0.99. 18/115 (15.7%) of<br>continuation vs. 21/126<br>(16.7%) discontinuation<br>with recurrence, p = 0.94.<br>14 patients died.                           | "In patients with<br>idiopathic deep<br>venous thrombosis,<br>the clinical benefit<br>associated with<br>extending the<br>duration of<br>anticoagulant therapy<br>to one year is not<br>maintained after the<br>therapy is<br>discontinued."                                                                                                                                                                                                                                          | Most<br>recurrences<br>within 2<br>years; no<br>statistically<br>significant<br>differences<br>between<br>early vs. late<br>dis-<br>continuation.                                                      |

| Bern<br>2002<br>RCT   | 7.0 | N = 98<br>Unilateral<br>hip replace-<br>ment or<br>degenerativ<br>e joint<br>disease | Warfarin 1mg QD<br>vs. variable dose<br>warfarin 7 days<br>pre-operatively<br>continued until<br>discharge                                                                                    | No patients with DVT or<br>PE. Median PT for<br>patients receiving 1mg<br>warfarin was 13.8 sec and<br>17.3 sec for variable<br>dosage group (p <0.05).<br>No statistically difference<br>between groups. Null<br>hypothesis accepted.                                                                                                                                                                   | "This fixed very low<br>dose warfarin<br>therapy, when begun<br>preoperatively,<br>appears to be a<br>useful method for<br>prophylaxis against<br>DVT in these selected<br>patients. This<br>technique appears to<br>be equal to variable<br>dose warfarin in its<br>efficacy, while being<br>less complicated to<br>administer and less<br>expensive to<br>monitor."                                                                                                                                                                                                   | Patients with<br>low DVT risk.<br>Some<br>baseline<br>differences.<br>Ultrasound<br>might have<br>missed some<br>DVTs.<br>LMWD but<br>no p-value.                                                                                                                                               |
|-----------------------|-----|--------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Pinede<br>2001<br>RCT | 6.5 | N = 736<br>DVT or PE                                                                 | Warfarin 6 weeks<br>for isolated calf<br>deep vein<br>thrombosis (C-<br>DVT) vs. 3 to 6<br>month warfarin<br>for proximal DVT<br>(P-DVT) or for<br>pulmonary<br>embolism (PE),<br>INR 2.0-3.0 | Twenty withdrew, 24 died,<br>22 dropped out (3%), and<br>25 developed cancer; 82<br>received shorter course<br>than scheduled. No<br>difference in bleeding<br>complications. Lower<br>recurrence rate for<br>patients with C-DVT 2.6%,<br>than P-DVT or PE, 8.4%.<br>Permanent risk factors<br>including cancers<br>associated with higher risk<br>of recurrence.                                       | "After isolated C-DVT,<br>6 weeks of oral<br>anticoagulation is<br>sufficient. For P-DVT<br>or PE, we<br>demonstrated an<br>equivalence between<br>3 and 6 months of<br>anticoagulant<br>therapy. For patients<br>with temporary risk<br>factors who have a<br>low risk of recurrence,<br>3 months of treatment<br>seems to be<br>sufficient. For patients<br>with idiopathic venous<br>thromboembolism or<br>permanent risk<br>factors who have a<br>high risk for<br>recurrence, other<br>trials are necessary to<br>assess prolonged<br>therapy beyond 6<br>months." | Open label<br>RCT; timing<br>of<br>assessments<br>and variety<br>of<br>interventions<br>. Many<br>community<br>physicians<br>and centers<br>involved, but<br>reflects more<br>real life<br>comparison.<br>Data suggest<br>6 weeks for<br>calf DVT and<br>3 months for<br>proximal<br>DVT or PE. |
| Vives<br>2001<br>RCT  | 5.5 | N = 245<br>Total hip or<br>knee<br>arthroplasti<br>es                                | Fixed minidose<br>warfarin 2mg a<br>day vs. adjusted<br>higher dose<br>warfarin with<br>target PT range<br>of 14 to 16<br>seconds (INR 1.4<br>- 1.8); both taken<br>for 6 weeks               | Twenty-three patients<br>eliminated; 7.1% of<br>adjusted low-dose group<br>vs4.6% fixed minidose<br>group developed<br>symptomatic DVT, $p =$<br>0.02; 8.0% of THA<br>patients and 6.0% TKA<br>patients in adjusted dose<br>group developed<br>symptomatic DVT, $p =$<br>0.03; 6.0% THA patients<br>vs. 4.0% TKA patients on<br>fixed dose developed<br>symptomatic DVT, $p =$<br>0.01. No major bleeds. | "We found no<br>difference in efficacy<br>between the fixed 2-<br>mg dose and the<br>adjusted higher dose<br>warfarin groups. The<br>rates of symptomatic<br>DVT were not<br>significantly different<br>with the numbers<br>available. [W]arfarin<br>has a low rate of<br>major and minor<br>complications when<br>maintained properly<br>on an adjusted low-<br>dose or a fixed<br>minidose regimen.<br>Fixed minidose<br>warfarin holds<br>promise as a<br>streamlined approach                                                                                       | Study thrust<br>to reduce<br>warfarin to<br>oviate need<br>for testing.<br>Conclude<br>that need to<br>monitor on<br>low dose as<br>well.                                                                                                                                                       |

|                                                                          |     |                                                                                   |                                                                                            |                                                                                                                                                                                                                                                                                                                                          | to outpatient<br>thromboembolic<br>prophylaxis after total<br>joint arthroplasty. The<br>efficacy of the fixed<br>minidose regimen<br>appears similar to that<br>of adjusted-dose<br>warfarin."                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                           |
|--------------------------------------------------------------------------|-----|-----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Campbell<br>2007<br>RCT                                                  | 5.0 | N = 810<br>DVT and/or<br>PE                                                       | Three months<br>warfarin vs. 6<br>months warfarin<br>with an INR<br>between 2.0 and<br>3.5 | 61 patients excluded. 4<br>patients died of DVT or<br>PE. 28 died for other<br>reasons. 23 DVT or PE<br>recurrences in 3 month vs.<br>16 in 6 month. Fatal and<br>non-fatal failures during<br>treatment plus<br>recurrences after<br>treatment overall in 31<br>(8.4%) in three month vs.<br>29 (7.6%) in 6 month<br>groups (p = 0.80). | "For patients in the<br>UK with deep vein<br>thrombosis or<br>pulmonary embolism<br>and no known risk<br>factors for recurrence,<br>there seems to be<br>little, if any,<br>advantage in<br>increasing the<br>duration of<br>anticoagulation from<br>three to six months.<br>Any possible<br>advantage would be<br>small and would need<br>to be judged against<br>the increased risk of<br>haemorrhage<br>associated with the<br>longer duration of<br>treatment with<br>warfarin." | Uneven<br>follow-up<br>and treating<br>physicians.<br>Bias not<br>discussed.<br>No blinding.<br>No clear<br>advantage of<br>6 vs. 3<br>months. May<br>have<br>excluded<br>many<br>orthopedic<br>patients. |
|                                                                          |     |                                                                                   | Mi                                                                                         | scellaneous                                                                                                                                                                                                                                                                                                                              | ((FA3)))                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                           |
| 2003                                                                     | 7.5 | N = 1,557<br>THR                                                                  | Ximelagatran<br>24mg vs.<br>enoxaparin 30mg<br>SC BID for 7-12                             | [O]verall incidence of VTE<br>62/782 (7.9%) in<br>ximelagatran vs. 36/775<br>(4.6%) with enoxaparin                                                                                                                                                                                                                                      | [A]ithough both<br>patients populations<br>had a low incidence<br>of VTE, enoxaparin-                                                                                                                                                                                                                                                                                                                                                                                                | Details<br>absent,<br>including<br>possible                                                                                                                                                               |
| RCT                                                                      |     |                                                                                   | days                                                                                       |                                                                                                                                                                                                                                                                                                                                          | treated patients had a<br>significantly lower<br>incidence than did<br>ximelagatran-treated<br>patients."                                                                                                                                                                                                                                                                                                                                                                            | blinded<br>assessors.<br>Suggests<br>enoxaparin<br>superior.                                                                                                                                              |
| RCT<br>Pulmonary<br>Embolism<br>Prevention<br>(PEP) Trial<br>2000<br>RCT | 7.0 | N = 13,356<br>hip fracture<br>surgeries<br>plus 4,088<br>arthroplasty<br>patients | days<br>ASA 160mg QD<br>vs. placebo for<br>35 days                                         | DVT HR 0.71 (0.52-0.97).<br>Death from PE HR 0.42<br>(0.24-0.73)                                                                                                                                                                                                                                                                         | treated patients had a<br>significantly lower<br>incidence than did<br>ximelagatran-treated<br>patients."<br>"[A]spirin reduces the<br>risk of pulmonary<br>embolism and deep-<br>vein thrombosis by at<br>least a third<br>throughout a period of<br>increased risk."                                                                                                                                                                                                               | blinded<br>assessors.<br>Suggests<br>enoxaparin<br>superior.<br>Large study,<br>some details<br>sparse. Data<br>suggest ASA<br>effective for<br>preventing<br>both venous<br>and arterial<br>events.      |
| RCT<br>Pulmonary<br>Embolism<br>Prevention<br>(PEP) Trial<br>2000<br>RCT | 7.0 | N = 13,356<br>hip fracture<br>surgeries<br>plus 4,088<br>arthroplasty<br>patients | days<br>ASA 160mg QD<br>vs. placebo for<br>35 days<br>Defibrinating                        | DVT HR 0.71 (0.52-0.97).<br>Death from PE HR 0.42<br>(0.24-0.73)                                                                                                                                                                                                                                                                         | treated patients had a<br>significantly lower<br>incidence than did<br>ximelagatran-treated<br>patients."<br>"[A]spirin reduces the<br>risk of pulmonary<br>embolism and deep-<br>vein thrombosis by at<br>least a third<br>throughout a period of<br>increased risk."                                                                                                                                                                                                               | blinded<br>assessors.<br>Suggests<br>enoxaparin<br>superior.<br>Large study,<br>some details<br>sparse. Data<br>suggest ASA<br>effective for<br>preventing<br>both venous<br>and arterial<br>events.      |

|                           |     |                                                                   |                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                               |                                                                                                                        | DVTs.                                                                                                                                |
|---------------------------|-----|-------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|
| Perhoniemi<br>1996<br>RCT | 7.0 | N = 165<br>Hip or knee<br>replacemen<br>t or remural<br>fractures | Enoxaparin<br>40mg SC QD vs.<br>dihydroergotamin<br>e 0.5mg and<br>heparin 5,000 IU<br>SC for 7 days.<br>First dose of<br>enoxaparin 12<br>hours before<br>operation and<br>heparin-<br>dihydroergotamin                          | One case of DVT in<br>enoxaparin vs. 0 in HDHE<br>group. 2 cases of PE in<br>HDHE group and 0 in<br>enoxaparin (NS). No<br>differences in blood loss.                                                                                                         | "[E]noxaparin is as<br>effective as HDHE in<br>thromboprophylaxis<br>of patients<br>undergoing<br>othopaedic surgery." | Higher risk<br>patients.<br>Dropouts not<br>mentioned.<br>Appears<br>underpowere<br>d. Suggests<br>comparable<br>efficacy.           |
|                           |     |                                                                   | e (HDHE) 2<br>hours before                                                                                                                                                                                                        |                                                                                                                                                                                                                                                               |                                                                                                                        |                                                                                                                                      |
| Eriksson<br>1996<br>RCT   | 7.0 | N = 1,119<br>THR                                                  | 10, 15, or 20mg<br>CGP 39393 twice<br>daily vs. 5,000 IU                                                                                                                                                                          | 837 patients actually in<br>study. DVTs in 23.9% vs.<br>18.4% vs. 17.7% vs.                                                                                                                                                                                   | "[S]pecific inhibition of<br>thrombin by<br>prophylactic CGP                                                           | Co-<br>interventions<br>not                                                                                                          |
|                           |     |                                                                   | porcine heparin<br>TID right before<br>surgery and for<br>8-11 days                                                                                                                                                               | comparing hirudin doses<br>with heparin). Fewer<br>proximal DVT in 3 doses<br>of CGP 39393 compared<br>to heparin (CGP 10mg, p<br><0.001; 15mg, p <0.001;<br>20mg, p <0.001). CGP<br>39393 dose response not<br>significant. No differences<br>in blood loss. | reduces<br>thromboembolic<br>complications in<br>patients undergoing<br>total hip<br>replacement."                     | Data suggest<br>hirudin<br>superior to<br>unfractionate<br>d heparin.                                                                |
| Francis<br>1992           | 7.0 | N = 232                                                           | Warfarin 10-14<br>days before                                                                                                                                                                                                     | Total VT incidence 32/103<br>(31%) with warfarin vs.                                                                                                                                                                                                          | "Warfarin therapy is<br>significantly more                                                                             | Unclear<br>length of                                                                                                                 |
| RCT                       |     | ТПК                                                               | step regimen<br>with dose<br>adjustments for<br>6-8 days vs. EPC<br>(external<br>pneumatic<br>compression)<br>with 11 second<br>inflation cycle<br>and 60 second<br>deflation cycle.<br>Treatment until<br>venography 6-8<br>days | Proximal thromboses in<br>3% warfarin vs. 12% EPC,<br>p = 0.012.                                                                                                                                                                                              | preventing serious<br>proximal vein<br>thrombosis after total<br>hip replacement."                                     | and uneven<br>time of<br>assessments<br>. Data<br>suggest<br>increased<br>proximal<br>thromboses<br>with<br>pneumatic<br>compression |
| Sørensen<br>1990          | 6.5 | N = 70                                                            | LMWH Logiparin<br>50 anti-Xa U/kg                                                                                                                                                                                                 | Factor VIII clotting activity<br>differed ( $p = 0.039$ ) Day 7                                                                                                                                                                                               | "[S]eems likely that<br>the post-operative                                                                             | Some details sparse.                                                                                                                 |
| RCT                       |     | пк                                                                | days. Both<br>groups with and<br>without DVT.                                                                                                                                                                                     | with DVT. Day-to-day<br>variation of Thrombin-<br>antithrombin-III complex<br>also different (p <0.001)<br>due to high levels Days 1<br>and 3. Day-to-day variation<br>of factor VIII significant (p                                                          | an enhanced<br>activation of<br>coagulation factors<br>and reduced<br>fibrinolytic capacity."                          | interventions<br>only some<br>co-<br>interventions<br>. Limited<br>description<br>of population<br>and unable                        |

|                           |     |                                                    |                                                                                                                                                                                                                                                                                                                                      | <0.001) due to high levels<br>Days 3, 5, 7 vs. Days -1<br>and 1.                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                            | to assess<br>baseline<br>comparability                                                                                                                                                                                         |
|---------------------------|-----|----------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Manganelli<br>1998<br>RCT | 6.5 | N = 61<br>THR                                      | Short-term<br>prophylaxis<br>(subcutaneous<br>UH 15,000 IU/24<br>hours for 15 days<br>vs. 30days                                                                                                                                                                                                                                     | DVT in 21.4% (6/28)<br>short-term vs 12.1%<br>(4/33) long-term UH-<br>treated patients, p = 0.48.                                                                                                                                                                             | "[T]he risk for delayed<br>proximal DVT in<br>patients treated with<br>THR remains high for<br>at least 45 days after<br>surgery. Continuation<br>of prophylaxis with<br>UH appears an<br>effective and safe<br>method to reduce the<br>rate of delayed DVT<br>after THR." | Underpower<br>ed. Trends<br>towards<br>fewer DVT in<br>longer<br>treatment<br>group.                                                                                                                                           |
| Gerhart<br>1991<br>RCT    | 6.5 | N = 289<br>Hip fracture<br>surgery                 | Org 10172<br>(Lomoparan) 750<br>U SC pre-op and<br>Q12 hour until<br>9th post-op day<br>plus warfarin on<br>7th post-op day<br>until discharge<br>vs. warfarin orally<br>until hospital<br>discharge                                                                                                                                 | DVT in 7% Org 10172 vs.<br>21% of warfarin group, p<br><0.001. Eight patients in<br>Org 10172 group vs. 5 on<br>warfarin had major<br>complications (NS). Blood<br>loss or transfusions not<br>different. 1 patient in Org<br>10172 group died vs. 7 on<br>warfarin, p <0.04. | "[T]he low-molecular-<br>weight heparinoid Org<br>10172 is a safe,<br>convenient, effective<br>antithrombotic agent<br>for the prevention of<br>venous thrombosis<br>after an operation for<br>fracture of the hip."                                                       | Broad range<br>of risk<br>factors<br>allowed (not<br>exclusion<br>criteria). ITT<br>term not<br>used, but<br>appears to<br>have been<br>done. Data<br>suggest<br>Lomoparan<br>superior to<br>warfarin,<br>including<br>deaths. |
| Cohen<br>1994<br>RCT      | 6.5 | N = 195<br>THA                                     | Dermatin<br>sulphate 200mg<br>QD vs. BID vs.<br>300mg BID for<br>10 days                                                                                                                                                                                                                                                             | DVT in 53% vs. 51% vs.<br>34%, p = 0.06. Incidence<br>of major DVT was 21%,<br>19% and 8.5%, p = 0.095.<br>Proximal major DVT in<br>11%, 8.5% and 2.1%, p =<br>0.11.                                                                                                          | "In preventing<br>thromboembolism, a<br>dose response was<br>seen. The highest<br>dose, 300 mg twice<br>daily, was most<br>effective and the two<br>lower doses seem to<br>be subtherapeutic in<br>terms of overall<br>thrombosis rate."                                   | Physical not<br>addressed.<br>No placebo.<br>Suggests<br>higher dose<br>more<br>effective.                                                                                                                                     |
| Hamulyak<br>1995<br>RCT   | 6.5 | N = 672<br>Total hip or<br>knee<br>replacemen<br>t | Oral<br>anticoagulant<br>(OAC,<br>acenocoumarol)<br>4mg day before<br>surgery, 2mg<br>evening of<br>surgery day, then<br>adjusted to<br>maintain INR 2.0-<br>3.0 for 10 days<br>vs. low molecular<br>weight heparin<br>(LMWH,<br>nadroparine) SC<br>Q24 hour (about<br>60 IU of<br>antifactor Xa<br>(AXa)/kg), 0.3ml<br>for patients | 50/257 (20%) OAC vs.<br>43/260 (17%) nadroparine<br>with DVTs (p = 0.45). No<br>differences in bleeding,<br>transfusions.                                                                                                                                                     | "[F]ixed-dose<br>subcutaneous<br>nadroparine is at<br>least as effective and<br>safe as adjusted-dose<br>OAC for prophylaxis<br>against DVT after hip<br>or knee implantation,<br>but more convenient<br>to administer."                                                   | Blinded<br>assessor<br>mentioned<br>only in<br>abstract.<br>Stockings<br>not meds<br>mentioned<br>as co-<br>interventions<br>. Data<br>suggest<br>comparable<br>efficacy.                                                      |

|                        |     |                                       | weighing <60kg,<br>0.4ml for those<br>60-80kg, 0.6ml<br>for patients<br>weighing >80kg,<br>for 10 days                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                  |
|------------------------|-----|---------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Schmidt<br>2003<br>RCT | 6.0 | N = 346<br>1º or 2º<br>THR and<br>TKR | Prolonged<br>prophylaxis<br>nadroparine<br>2500-4,000 IU<br>between Day 11<br>and Day 35 vs.<br>sonographic<br>screening for<br>DVT before Day<br>10                          | 36.8% of patients in<br>ultrasound group had<br>asymptomatic thrombosis.<br>Combined endpoint of<br>proximal DVT,<br>symptomatic PE or death<br>by PE diagnosed in 15<br>(8.7%) U/S screening<br>group vs. 7 patients<br>(4.3%) under prolonged<br>prophylaxis (p = 0.12).<br>Any symptomatic event of<br>VTE in 4 (2.3%) in U/S<br>screening (1 PE, 3<br>thrombosis) vs. 7 (4.3%)<br>under prolonged<br>prophylaxis (2 PE, 5<br>thrombosis; p = 0.37). | "[U]Itrasound<br>screening for distal<br>thrombosis after hip<br>or knee replacement<br>surgery with<br>termination of heparin<br>prophylaxis after<br>exclusion of in-<br>hospital thrombosis<br>does not reduce the<br>incidence of proximal<br>DVT or symptomatic<br>PE over five weeks<br>postoperatively when<br>compared to<br>prolonged prophylaxis<br>with LMWH. [Study<br>indicates] efficacy of<br>nadroparin calcium in<br>preventing post-<br>operative DVT in<br>patients undergoing<br>elective total hip<br>replacement " | Study<br>terminated<br>early<br>because of<br>higher DVTs<br>in ultrasound<br>group,<br>though not<br>statistically<br>significant.<br>Co-<br>interventions<br>not<br>mentioned. |
| Comp<br>1998<br>RCT    | 6.0 | N = 488<br>THR                        | Danaparoid 750<br>anti-Xa units SC<br>vs. Warfarin<br>10mg until<br>hospital<br>discharge                                                                                     | DVT rates 14.6% (29/199)<br>danaparoid vs. 26.9%<br>(53/197) warfarin.<br>Absolute risk reduction<br>12.3% danaparoid (95%<br>Cl: 4.4%-20.2%, p =<br>0.003). Overall bleeding<br>rates not different.                                                                                                                                                                                                                                                   | "Danaparoid is<br>significantly more<br>effective than warfarin<br>in preventing<br>combined proximal<br>and distal lower<br>extremity DVT<br>following THR and at<br>least as effective as<br>warfarin in preventing<br>DVT."                                                                                                                                                                                                                                                                                                           | Data suggest<br>danaparoid<br>superior to<br>warfarin.                                                                                                                           |
| Planes<br>1991<br>RCT  | 6.0 | N = 188<br>THR                        | (I) Spinal<br>anesthesia and<br>no injection of<br>enoxaparin vs (I)<br>spinal anesthesia<br>and enoxaparin<br>20mg vs. (III)<br>general<br>anesthesia and<br>enoxaparin 40mg | Total and proximal DVTs<br>not different. Distal DVT<br>differed among 3 groups,<br>p = 0.007) and comparing<br>groups I and II I<br>respectively (Fisher's<br>exact test, $p = 0.013$ ).<br>Confidence intervals for<br>total DVT increased from<br>group II to group I: group<br>I, 7.8% to 26.1%; group II,<br>3.6% to 19.8%; group III,<br>0.3% to 12.6%)."                                                                                         | "[T]he administration<br>of enoxaparin at the<br>dose of 40mg started<br>12 hours before<br>operation performed<br>under general<br>anesthesia, or at the<br>dose of 20/40 mg<br>started one hour after<br>spinal anesthesia,<br>achieves a safe and<br>effective prophylaxis<br>against DVT in<br>elective hip surgery."                                                                                                                                                                                                                | Comparable<br>efficacy.                                                                                                                                                          |
| Leyvraz<br>1988<br>RCT | 6.0 | N = 102<br>THR                        | Heparin sodium<br>as 3 SC<br>injections Q24<br>hour except day<br>of admission<br>given 4,000 IU at<br>2pm and 10pm.<br>Doses adjusted<br>after each APT                      | 11 patients in the heparin<br>sodium group developed<br>DVT vs. 10 in DHE (p<br>>0.5). More transfusions<br>in heparin group (p =<br>0.004).                                                                                                                                                                                                                                                                                                            | "[T]he best preventive<br>regimen for<br>thromboembolism<br>after total hip<br>arthroplasty is<br>subcutaneous<br>heparin in APTT-<br>adjusted doses."                                                                                                                                                                                                                                                                                                                                                                                   | Different<br>criteria for<br>diagnosis of<br>DVT than<br>many<br>articles.                                                                                                       |

|                           |     |                                   | determination vs.<br>2 SC doses Q 24<br>hour combination<br>heparin plus<br>DHE (5,000 IU<br>heparin sodium<br>plus 0.5mg<br>dihydroergotamin<br>e mesylate plus<br>7mg lidocaine<br>hydrochloride)<br>with first dose<br>6pm day of<br>admission.                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                   |
|---------------------------|-----|-----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Flicoteaux<br>1977<br>RCT | 6.0 | N = 40<br>THR                     | ASA vs. no ASA<br>in addition to<br>Calcium heparin<br>5,000 IU SC 2<br>hours before, 12<br>hours after<br>operation and Q8<br>hours for 10 days                                                                                                                                                                                                                                                                   | No difference in rate of<br>DVT. 77 limbs examined<br>using 125 I fibrinogen test<br>and venography. Both<br>tests positive in 12 legs<br>and negative in 60. In 3<br>radioactive fibrinogen test<br>positive, while<br>phlebograms failed to<br>show thrombi. In 2 limbs<br>125 I fibrinogen test<br>negative, but venograms<br>showed a filling defect. No<br>difference in rate of DVT. | "[T]here is a good<br>agreement between<br>the results of 125 I<br>fibrinogen test and<br>venography in the<br>detection of DVT.<br>Moreover a<br>combination of low<br>dose heparin and<br>aspirin does not<br>improve the results<br>obtained with low<br>dose heparin alone in<br>the prevention of DVT.<br>Finally, a significant<br>tendency towards<br>increased bleeding is<br>observed with such a<br>combination."                                                   | Appears to<br>control other<br>methods of<br>DVT<br>prophylaxis.<br>At odds with<br>other<br>literature on<br>ultrasound<br>vs<br>venography<br>for<br>usefulness.<br>Suggests<br>ASA not<br>helpful as<br>adjunct to<br>heparin. |
| Fredin<br>1985<br>RCT     | 6.0 | N = 70<br>Hip fracture<br>surgery | Dihydro-<br>ergotamine<br>0.5mg SC soon<br>as hip fracture<br>diagnosed and<br>BID until Day 5<br>vs. no<br>dihydroergotamin<br>e. All received<br>Dextran 70<br>500mL (first<br>infusion soon as<br>hip fracture<br>diagnosed; if<br>necessary 500ml<br>QOD until<br>surgical day.<br>During operation,<br>500ml Dextran<br>70, post-<br>operatively within<br>12 hours. Post-<br>operative days 1,<br>3, and 5). | DVTs in 5/27 (19%)<br>controls vs. 10/28 (36%)<br>dextran plus<br>dihydroergotamine (NS).<br>Higher number of patients<br>with PE in combination<br>group. 2 patients died.                                                                                                                                                                                                                | "[T]he incidence of<br>thromboembolic<br>complications is high<br>among patients with<br>hip fracture and<br>should be combated<br>by prophylactic<br>treatment. Peroral<br>anticoagulants,<br>dextran 70 and low<br>dose heparin have<br>been found effective<br>in this respect. Use of<br>a combination of<br>dextran 70 and<br>dihydroergotamine,<br>which was evaluated<br>in the present study,<br>did not give results<br>superior to those from<br>dextran 70 alone." | Small<br>numbers,<br>underpowere<br>d. Trend is<br>towards<br>dihydroergo-<br>tamine<br>increasing<br>DVT risk.                                                                                                                   |
| Francis<br>1997<br>RCT    | 6.0 | N = 580<br>THA                    | Dalteparin<br>sodium 1st dose<br>2,500 IU SC 2<br>hours before<br>operation then<br>5,000 IU QD 1st<br>post-op day until                                                                                                                                                                                                                                                                                           | Thirty (30) patients<br>excluded from ITT and<br>168 excluded from per-<br>protocol analysis. DVT in<br>15% of dalteparin vs. 26%<br>of warfarin, p = 0.006. No<br>difference in blood loss                                                                                                                                                                                                | "[P]reoperative<br>prophylaxis with<br>dalteparin is<br>significantly more<br>effective than that with<br>warfarin in preventing<br>deep-vein thrombosis                                                                                                                                                                                                                                                                                                                      | Some<br>baseline<br>differences.<br>Co-<br>interventions<br>unknown.<br>Suggests                                                                                                                                                  |

|                         |     |                                  | venography<br>(about 7th post-<br>op day) vs.<br>warfarin sodium<br>1st dose orally<br>evening before<br>operation,<br>patients weighing<br>≤57kg received<br>5mg, patients<br>weighing >57kgs<br>7.5mg, daily<br>doses adjusted<br>to maintain INR<br>2.5.                                                       |                                                                                                                                                                                                                                    | after total hip<br>arthroplasty. The<br>greater effectiveness<br>of dalteparin must be<br>considered, however,<br>in light of an increased<br>need for postoperative<br>transfusions and an<br>increase in the<br>prevalence of wound-<br>related bleeding<br>complications."                                                                              | pre- and<br>early post-<br>operative<br>dalteparin<br>superior to<br>warfarin.                                                     |
|-------------------------|-----|----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|
| Eriksson<br>1988<br>RCT | 5.5 | N = 113<br>THR                   | Fragmin (LMWH)<br>0.2mL 12,500<br>anti-factor Xa<br>units/mL SC BID<br>subcutaneously<br>twice a day for 7<br>days with first<br>injection 2 hours<br>before operation<br>vs. dextran 70,<br>500ml during<br>operation, 500ml<br>within 6 hours<br>post-operatively,<br>then 500ml 1st<br>and 3rd post-op<br>days | More with previous DVT in<br>dextran group. DVT in<br>20% of LMWH vs. 45%<br>dextran, p <0.01.                                                                                                                                     | "In conclusion, this<br>randomized<br>prospective<br>comparison of LMWH<br>and dextran 70 in<br>patients undergoing<br>total hip replacement<br>showed a statistically<br>significantly better<br>effect of LMWH in<br>preventing DVT in the<br>legs."                                                                                                     | Allowed<br>higher risk<br>patients.<br>Some<br>baseline<br>differences.<br>Suggests<br>efficacy of<br>LMWH.                        |
| Kim<br>1998<br>RCT      | 5.0 | N = 150<br>THR; some<br>trauma   | Aspirin EC<br>400mg TID<br>starting 48 hours<br>before surgery,<br>finish 14 days<br>after vs. low<br>molecular weight<br>dextran<br>50mL/hour<br>infused<br>intravenously<br>perioperatively<br>and continued for<br>2 days vs.<br>controls                                                                      | Incidence of DVT was<br>10/50 (20%) controls vs.<br>6/50 (12%) ASA vs. 3/50<br>(6%) LMW dextran<br>(p<0.05 for LMW dextran<br>vs. control). No<br>differences in major<br>bleeds.                                                  | "[L]MW dextran<br>proved to be an<br>effective and well<br>tolerated prophylactic<br>treatment."                                                                                                                                                                                                                                                           | Starts with<br>premise of<br>lower<br>prevalence<br>in Koreans.<br>Compliance<br>unknown.<br>Data suggest<br>dextran<br>effective. |
| Hogevold<br>1991<br>RCT | 4.0 | N = 50<br>Total hip<br>protheses | Methyl-<br>prednisolone<br>30mg/kg 1.5<br>hours pre-op and<br>4 hours and 12<br>hours post-<br>operatively vs. no<br>steroids                                                                                                                                                                                     | No clinical signs of DVT or<br>PE during first 3<br>postoperative weeks. 2<br>with normal venograms on<br>2nd day after surgery<br>developed clinically and<br>venographically evident<br>DVT 21 and 38 days post-<br>operatively. | "[A]fter total hip<br>replacement there is a<br>high incidence of<br>asymptomatic DVT<br>before the 2nd<br>postoperative day<br>despite dextran<br>prophylaxis. However,<br>all thrombi were<br>localized distally in the<br>leg. Treatment with<br>high dose<br>corticosteroids did not<br>influence the incidence<br>or localisation of the<br>thrombi." | Sparse<br>methods,<br>including<br>compliance,<br>dropouts.<br>Data suggest<br>glucocortico-<br>steroids<br>ineffective.           |
| Zanasi                  | 4.0 | N = 63                           | Defibrotide vs.                                                                                                                                                                                                                                                                                                   | "Although the size of the                                                                                                                                                                                                          | "[T]he effectiveness of                                                                                                                                                                                                                                                                                                                                    | Sparse                                                                                                                             |

| 1988<br>RCT    |     | Most hip<br>surgery;<br>some<br>trauma | calcium heparin<br>and ASA for 8<br>days                                                                                                                                                                                                                                                                                                                              | sample was inadequate<br>for statistical comparison<br>of the three treatment<br>regimens with respect to<br>the incidence of<br>symptomatic DVT and of<br>PE, a trend in favor of<br>defibrotide was apparent." | defibrotide in<br>preventing DVT in<br>patients recovering for<br>orthopedic surgery is<br>approximately equal to<br>that of established<br>treatments such as<br>calcium heparin and<br>ASA."                                                           | methods and<br>details.<br>Heterogeneo<br>us patients.<br>Little baseline<br>data.<br>Underpowere<br>d. |
|----------------|-----|----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|
| Barber<br>1977 | 4.0 | N = 128                                | Dextran 70 1gm<br>start of                                                                                                                                                                                                                                                                                                                                            | DVT in 54.7% of all (dextran 26/51 (51%) vs.                                                                                                                                                                     | "[T]he use of warfarin<br>as a safe method for                                                                                                                                                                                                           | Minimal<br>comparative                                                                                  |
| RCT            |     | THR                                    | anaesthesia,<br>1,000ml QD 3<br>days, then 500ml<br>alternate days for<br>10 days vs.<br>warfarin 36 hours<br>before surgery,<br>15mg loading<br>dose followed by<br>none next day,<br>5mg day after<br>that, dosage<br>adjusted for PT of<br>"10-20%"<br>continued 3<br>weeks vs.<br>heparin 5,000 U<br>SC Q12 hour<br>evening before<br>surgery and for 3<br>weeks. | warfarin 34/58 (58.6%) vs.<br>heparin 10/19 (52.6%), p<br>>0.05. 1 patient each died<br>from PE in heparin and<br>dextran groups.                                                                                | the prophylaxis of<br>pulmonary embolism,<br>following total hip<br>replacement, in<br>preference to dextran<br>70 or twice-daily<br>subcutaneous<br>heparin. Its effects<br>might be increased by<br>commencing<br>administration before<br>operation." | information<br>between<br>groups. Data<br>suggest no<br>differences<br>between the<br>treatments.       |

# PRE- AND POST-OPERATIVE REHABILITATION, INCLUDING HIP ARTHROPLASTY AND HIP FRACTURES

Numerous studies have evaluated post-operative rehabilitation and activity levels that appear important for recovery from hip procedures, especially for arthroplasty and hip fracture patients(1315, 1316) (see post-operative rehabilitation evidence table). Considerations have included pre-operative exercise programs, post-operative activity limitations, post-operative rehabilitation programs and late rehabilitation programs several months after surgery.(1317) Although there is probably overlap with characteristics and needs of arthroplasty patients, mobilization and exercises after hip fracture may differ somewhat and are considered separately below.

#### PRE-OPERATIVE EXERCISE PROGRAMS

Pre-operative exercise programs have been prescribed to attempt to improve arthroplasty results and reduce complications.(230, 1200, 1203, 1318-1323)

#### Recommendation: Pre-operative Exercise Program

A pre-operative exercise program particularly emphasizing cardiovascular fitness and strengthening is moderately recommended, especially for patients who exhibit evidence of weakness or unsteady gait. Flexibility components may be reasonable in those without fixed deficits. (1200, 1320, 1322)

Indications - Pre-operative arthroplasty patients, particularly those with weakness or unsteady gait.

*Frequency/Duration* – Most program elements require an initial appointment to teach exercises followed by a home exercise program prescription. Two or three follow-up appointments for adherence and additional exercise instruction may be needed. Patients with severe deficits may require 2 to 3

appointments a week for 4 to 6 weeks in advance of arthroplasty.(1322) Those with minimal deficits may benefit from a single appointment to teach programmatic elements for a self-directed program.

*Indications for Discontinuation* – Achievement of program goals, resolution of strength or gait deficits, intolerance or other adverse effects.

#### Strength of Evidence - Moderately Recommended, Evidence (B)

#### Rationale for Recommendation

A moderate-quality study demonstrated there were benefits from a 6-week pre-operative exercise program that consisted of several elements broadly including cardiovascular, strengthening and flexibility exercises with 30-60-minute sessions three times a week.(1322) The benefits included reduced post-operative complications, earlier discharge and higher probability to be discharged directly to the patient's home. A second moderate-quality study also demonstrated benefits of a perioperative exercise program and also demonstrated benefits lasting 6 months after surgery (see Figure 24).(1320) Another moderate-quality study was reported as negative using the author's main outcome of changes in Harris Hip Scores. However, all 5 post-operative milestones (e.g., walking, chair transfer, stair climbing) statistically favored the exercise group.(1200)

## Figure 24. Before and After Surgery Graph (mean ± standard error) for Gait Velocity (m/sec) in 28 Subjects



Wang AW, Gilbey HJ, Ackland TR. Perioperative exercise programs improve early return of ambulatory function after total hip arthroplasty: a randomized, controlled trial. Am J Phys Med Rehabil. 2002;81(11):801-6. Reprinted with permission from Wolters Kluwer Health.

#### *Evidence for the Use of a Pre-operative Exercise Program* There are 4 moderate-quality RCTs incorporated in this analysis.

| Author/Year<br>Study Type | Score<br>(0-11) | Sample<br>Size                                                                                        | Comparison<br>Group                                                                                                                                                                                          | Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Conclusion                                                                                                                                                                                                                                                                                                                              | Comments                                                                                                                                                                                                                                                                                                                                                                  |
|---------------------------|-----------------|-------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Rooks<br>2006<br>RCT      | 5.0             | N = 108<br>Patients<br>scheduled<br>to undergo<br>hip (n = 63)<br>or knee (n<br>= 45)<br>arthroplasty | Six-week pre-op<br>program of<br>exercise (water<br>and land-based<br>exercise,<br>cardiovascular,<br>strength and<br>flexibility, 30-60<br>minute sessions,<br>3 times a week)<br>vs. education<br>controls | WOMAC scores<br>(baseline/ pre-op/8<br>weeks) for THA patients<br>improved at pre-op<br>measure (exercise 29.1 $\pm$<br>12.9/26.9 $\pm$ 11.9/12.8<br>$\pm$ 9.0 vs. education<br>29.8 $\pm$ 11.2/33.7 $\pm$ 10.9/<br>12.9 $\pm$ 8.0) pre-op p =<br>0.02. SF-36 scores -0.4<br>vs14.3, at pre-op<br>assessment p = 0.003.<br>Differences not present<br>at 8 weeks. Fewer<br>complications in exercise<br>group (0 vs. 4, p = 0.04).<br>Exercise group more<br>likely to walk 50 feet on<br>post-op Day 3 (76% vs.<br>61%). Exercise group<br>more likely discharged | "A 6-week<br>presurgical<br>exercise program<br>can safely improve<br>preoperative<br>functional status<br>and muscle<br>strength levels in<br>persons<br>undergoing THA.<br>Additionally,<br>exercise<br>participation prior<br>to total joint<br>arthroplasty<br>dramatically<br>reduces the odds<br>of inpatient<br>rehabilitation." | Results more<br>favorable for hip<br>than knee<br>arthroplasty<br>patients.<br>Education<br>controls 3.7 times<br>more likely to be<br>discharged to<br>rehabilitation<br>facility compared<br>with exercise<br>group. High<br>dropout rate.<br>Study suggests<br>preoperative<br>exercise effective<br>for improving<br>functional status<br>and preventing<br>inpatient |
|                           |                 |                                                                                                       |                                                                                                                                                                                                              | to nome 65% vs. 44%.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                         | renabilitation.                                                                                                                                                                                                                                                                                                                                                           |

| Wang<br>2002<br>RCT        | 5.0 | N = 28<br>Patients<br>scheduled<br>to undergo<br>hip arthro-<br>plasty | Exercises (2 1-<br>hour sessions a<br>week for 8 pre-<br>op weeks of<br>hydrotherapy,<br>stationary bike<br>riding, resistive<br>exercises, 2<br>home sessions,<br>week of<br>strengthening<br>and flexibility)<br>vs. controls with<br>usual peri-op<br>care. All given<br>post-op<br>exercises during<br>Weeks 3-12,<br>with some to<br>Week 24. | Mean walk distances<br>(Week 12/Week 24):<br>exercise (503.7/549.7m)<br>vs. controls<br>(450.2/485.1m), p =<br>0.061. Numbers of steps<br>per minute, stride length,<br>gait velocity all<br>comparable at baseline,<br>but favored exercise<br>group at Weeks 3, 12,<br>24.                                                               | "[P]erioperative<br>customized<br>exercise<br>program(s) are<br>well tolerated in<br>the elderly patient<br>with endstage hip<br>arthritis and are<br>effective in<br>improving the rate<br>of recovery in<br>ambulatory<br>function in the first<br>6 mo after total hip<br>arthroplasty." | Small sample<br>sizes. Suggests<br>perioperative<br>exercise has<br>short term<br>benefits with<br>differences<br>lasting to 6 month<br>duration of<br>observations.                                                                                                                                                                                          |
|----------------------------|-----|------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Gocen<br>2004<br>RCT       | 5.0 | N = 60<br>THR, all<br>thrust plate<br>prostheses                       | Pre-op<br>physiotherapy<br>(strengthen<br>limbs and hip<br>ROM for 8<br>weeks) plus<br>educational<br>program vs. no<br>intervention prior<br>to surgery                                                                                                                                                                                           | First day for activity<br>(exercise vs. controls):<br>walking $2.1 \pm 0.2$ vs.<br>$2.2 \pm 0.41$ , p=0.14;<br>climbing stairs $6.2 \pm 1.7$<br>vs $7.4 \pm 1.0$ , p = 0.01; bed<br>transfer $2.9 \pm 0.6$ vs<br>$3.3 \pm 0.7$ , p = 0.02.<br>Improvements in Harris<br>Hip scores not<br>significant at 3 months<br>or 2 years (p >0.05). | "[T]he routine use<br>of preoperative<br>physiotherapy and<br>education<br>programme is not<br>useful in total hip<br>replacement<br>surgery."                                                                                                                                              | Baseline<br>differences<br>present with<br>exercise group<br>younger ( $p =$<br>0.01) and lower<br>BMI ( $p = 0.06$ ),<br>Harris Hip scores<br>( $p = 0.13$ )<br>suggesting<br>randomization<br>failure. Authors<br>report study as<br>negative based<br>on Harris Hip<br>score. However,<br>all 5 functional<br>post-op measures<br>favor exercise<br>group. |
| Vukomanovic<br>2008<br>RCT | 4.5 | N = 45<br>THR                                                          | Study group vs.<br>control group<br>(with and without<br>pre-operative<br>education and<br>physical therapy)                                                                                                                                                                                                                                       | Groups started walking<br>at same time, but study<br>group walked up and<br>down stairs $(3.7\pm1.66$<br>vs. $5.37\pm1.46$ , p =<br>0.002), used toilet<br>$(2.3\pm0.92$ vs. $3.2\pm1.24$ ,<br>p = 0.02) and chair<br>$(2.2\pm1.01$ vs. $3.25\pm1.21$ ,<br>p = 0.006) significantly<br>earlier than the control<br>group.                  | "The short-term<br>preoperative<br>program of<br>education with the<br>elements of<br>physical therapy<br>accelerated early<br>functional recovery<br>of patients<br>(younger than 70)<br>immediately after<br>THA and we<br>recommend it for<br>routine use."                              | Program<br>components not<br>described.<br>Frequency of<br>activities not<br>described.                                                                                                                                                                                                                                                                       |

### POST-OPERATIVE ACTIVITY LIMITATIONS AND REHABILITATION PROGRAMS: HIP ARTHROPLASTY

Historically, post-operative rehabilitation has been empirically derived and emphasized a graded return to normal function.(1317, 1324) Early weight bearing was previously discouraged due to the belief that it would increase the risk for early loosening and incomplete bone growth.(1317, 1324-1330) Recent rehabilitation protocols have usually prohibited early weight bearing for a typical period of 6 weeks.(1315, 1324, 1327-1331) Yet, delayed weight bearing and advancement of activities may similarly delay, and possibly reduce, functional recovery.(1315) A comparative clinical trial also suggests patients with

delayed weight bearing are at increased risk for late development of deep venous thromboses discovered after hospital discharge.(1327) Additionally, reductions in hospital stays have not been shown to increase morbidity related to prostheses.(1332) Trials of exercises with a patient with an experimental pressure-instrumented implanted prosthesis found a lack of correlation between peak pressures and exercise or rehabilitation progression after total hip arthroplasty.(1326)

Post-operative exercises have been widely used for arthroplasty patients, (1315, 1324, 1333) although a minority of motivated patients do not undertake formal rehabilitation programs. Most rehabilitation benefits appear to be realized by 3 to 6 months after surgery; (1190, 1317, 1330, 1334, 1335) however, there is evidence of persisting, measureable impairments (see late postoperative exercises).(1330, 1334, 1336, 1336-1338)

Typical post-operative exercise regimens emphasize non-weight-bearing exercises that target isolated muscle groups.(1339-1341) Other exercise regimens include treadmill training,(1342) high-intensity quadriceps strengthening,(1343) and progressive resistance and functional training.(1344) Many programs mix these elements in an exercise regimen.(1340, 1345) No quality studies have compared these exercise regimens either between specific exercises, among exercise regimens, or with other interventions. Considering that a patient's activities of daily living require weight bearing and strength capabilities, it is recommended that those be the primary exercises emphasized. Patients with significant reductions in ranges of motion may derive benefit from adjunctive flexibility exercises. There are multiple variables that affect the timing of weight-bearing exercises after hip arthroplasty and include the prosthesis utilized, bone quality, stability of the prosthesis, prosthesis type, patient compliance, and patient balance and coordination. The following recommendations assume good bone quality, good immediate surgical results, and no contraindications to initiating a program.

### Recommendation: Post-operative Exercise and Rehabilitation Program for Hip Arthroplasty Surgery Patients

### A post-operative exercise program and rehabilitation program is moderately recommended for hip arthroplasty surgery patients.

*Indications* – All hip arthroplasty patients. Programs and protocols should be closely coordinated with the treating orthopedist, particularly as patient variability is wide, although workers' compensation patients tend to be younger, in better condition, and able to advance conditioning exercises more rapidly than the elderly. Programs need to be individualized, based on factors such as preoperative condition, bone quality, surgical results, contraindications, and other medical conditions. Workers' compensation patients may benefit from immediate post-operative weight bearing,(1181, 1328, 1334) progressive walking,(1181) progressive stair climbing, and marching in place exercises, flexibility, and strengthening. Program advancement must be individualized based on progress.

*Frequency/Duration* – Duration based primarily on progress. Program may typically be daily in hospital settings and rehabilitation inpatient settings, 2 or 3 times weekly in outpatient settings gradually tapered as home exercises are instituted and the patient's recovery advances. Courses of up to 3 months in more severe cases may be required.

#### Strength of Evidence – Moderately Recommended, Evidence (B)

The following are recommended for at least the first 6 weeks (or as long as needed):

- 1. Use walking aid.(1181)- Recommended, Evidence (C)
- 2. Add other recommendations only if needed (e.g., elevated toilet seats, prohibiting driving).(1181) Recommended, Evidence (C)
- 3. ADL adaptive equipment as needed (e.g., long-handled reacher or shoe horn or sock aid). Recommended, Insufficient Evidence (I)

#### Rationale for Recommendations

Quality studies have evaluated risks and benefits from immediate and early post-operative weight bearing (see below). Benefits of immediate or early post-operative weight bearing include: earlier patient

transfer activities,(1334) greater walking ability or distances,(1328, 1334) earlier hospital discharge,(1328, 1334) and superior function muscle strength and 6-minute walk test results at 3 months(1334) attributed to an early full weight-bearing programs. No significant complications have been reported in any of the quality studies. Additionally, a radiographic comparative clinical trial found greater initial uncemented prosthesis subsidence in the immediate weight bearing group, but no differences in long-term bony in-growth or other outcomes,(1328) and a quality trial found no differences in either bone in-growth or development of radiolucent lines,(1328) from which the authors concluded early weight bearing may be acceptable.(1328, 1329)

Earlier removal of activity limitations (including removing an abduction pillow, elevated toilet seats, elevated chairs, side sleeping and no automobile use as either driver or passenger) has been shown to lower costs, improve patient satisfaction and strongly promoted the ability to perform activities of daily living without increasing the risk of dislocation.(1181, 1346) Those in the quality trial's restricted group returned to work on average 3 weeks later (46%, 9.5 versus 6.5 weeks, p <0.001).(1181) There is no quality study reported that evaluated removal of all limitations (A low-quality, uncontrolled study reported results from a hospital where removal of all restrictions resulted in no increased complications.)(1346) Results from the quality trial(1181) suggest routine use of all of the following are potentially unnecessary: transfer in the OR with an abduction pillow, use of abduction pillows in bed, use of elevated toilet seats, use of elevated chairs, prevented from sleeping on the side, prohibited from driving and are being a passenger in a car. However, selected use may remain indicated, for example, an elevated toilet seat for someone who otherwise could not use their home toilet.

### Evidence for the Use of Post-Operative Activity Limitations and Rehabilitation Programs for Hip Arthroplasty

There are 8 moderate-quality RCTs(1181, 1199, 1328, 1334, 1347-1350) incorporated in this analysis. There is 1 low-quality RCT(1345) in Appendix 2.

| Author/Year<br>Study Type | Score<br>(0-11) | Sample<br>Size                                                                                                           | Comparison<br>Group                                                                                                                                                                                                                                                                                                                                                                                                        | Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Conclusion                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Comments                                                                                                                         |
|---------------------------|-----------------|--------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|
| Peak<br>2005<br>RCT       | 6.0             | N = 265<br>All<br>cementless<br>femoral<br>(Accolade)<br>and cups<br>(Trident<br>PSL). All<br>anterolateral<br>approach. | No post-<br>operative<br>restrictions other<br>than limit to <90°<br>flexion, 45°<br>external and<br>internal rotation,<br>avoid adduction<br>for first 6 weeks<br>post-op vs.<br>same<br>restrictions plus<br>placement of<br>abduction pillow<br>in the operating<br>room and bed,<br>use of elevated<br>toilet seats and<br>elevated chairs,<br>no sleeping on<br>the side, no<br>driving or riding<br>in an automobile | One patient from restricted<br>group experienced<br>dislocation vs. none. No<br>differences in prevalence<br>of limp at 6 months (12.5%<br>restricted group vs. 13.2%,<br>p = 0.80). Greater<br>satisfaction with recovery in<br>unrestricted (89.4% vs.<br>74.3%, $p < 0.001$ .) Data on<br>achievement of functional<br>goals<br>restricted/unrestricted:<br>return to work within 6<br>weeks 18.8% vs. 50.0% (p<br><0.001). RTW at mean 9.5<br>(1.0-32.0) vs. 6.5 (0.7-20.0)<br>weeks, $p < 0.001$ ; ability to<br>perform activities of daily<br>living at 6 months 96.5% of<br>pre-operative value (25-<br>200) vs. 106.4 (25-350) %,<br>p = 0.015. More<br>rehabilitation stays<br>required in restricted group<br>(125 hips vs. 100 hips, p<br><0.002). Cost savings<br>approximately \$655 per<br>patient in unrestricted<br>group. Unrestricted group<br>returned to side-sleeping | "[A]nterolateral<br>approach is likely<br>to be associated<br>with a low<br>dislocation rate.<br>Removal of<br>several<br>restrictions did not<br>increase the<br>prevalence of<br>dislocation<br>following primary<br>hip arthroplasty<br>it did promote<br>substantially lower<br>costs and was<br>associated with a<br>higher level of<br>patient satisfaction<br>as patients<br>achieved a faster<br>return to daily<br>functions in the<br>early<br>postoperative<br>period." | Cost estimates<br>do not include<br>lost wages,<br>which likely<br>understate<br>cost savings<br>by possibly at<br>least 4-fold. |

|                         |     |                                                                                |                                                                                                                                                                                                                                                                                                               | sooner ( $p < 0.001$ ), ride in<br>autos more often ( $p < 0.026$ ), and drive autos<br>more often ( $p < 0.001$ )                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                            |
|-------------------------|-----|--------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Unver<br>2004<br>RCT    | 5.5 | N = 51<br>All thrust<br>plate<br>prostheses                                    | Rehab programs<br>with early partial<br>weight bearing<br>(Group 1) vs.<br>early full weight<br>bearing (Group<br>2).<br>Programmatic<br>differences<br>include weight<br>bearing at 6-8<br>weeks post-op<br>Day 2; active<br>isotonic<br>exercises at 3-4<br>vs. 2-3 weeks;<br>endurance<br>training at 8-10 | Group 1 vs. Group 2: 3-<br>month post-operative<br>follow-up 6-minute walk<br>test (m) 182.5 $\pm$ 58.2 vs<br>215.8 $\pm$ 52.5 (p = 0.023).<br>Duration of crutch use<br>(weeks) 12.0 $\pm$ 1.5 vs.<br>7.2 $\pm$ 1.2 (p <0.001). Harris<br>Hip score 81.4 $\pm$ 9.3 vs.<br>89.3 $\pm$ 4.6 (p <0.001).<br>Hospital discharge<br>15.2 $\pm$ 3.5 vs. 11.6 $\pm$ 2.7<br>days (p = 0.001). Walking<br>distance at discharge<br>(which is 2 different times)<br>164.1 $\pm$ 134.8 vs.<br>290.0 $\pm$ 145.2m, p = 0.001. | "These results<br>suggest that<br>patients with<br>[thrust plate<br>prostheses] can<br>tolerate an<br>accelerated<br>rehabilitation<br>program with early<br>weight bearing<br>and will gain the<br>goals of<br>rehabilitation<br>earlier." | Results<br>strongly<br>support early<br>weight bearing<br>and<br>advancement<br>of activities for<br>thrust plate<br>prostheses.<br>Differences at<br>time of hospital<br>discharge<br>understate<br>benefits as<br>early full<br>weight bearing<br>patients were<br>discharged<br>oarlier |
| Bulthuis<br>2007<br>RCT | 5.0 | N = 114<br>RA or OA<br>hospitalized<br>for joint<br>flares or<br>arthro-plasty | Intensive<br>Intensive<br>treatment (3<br>weeks at a<br>resort; BID to<br>QID exercise<br>sessions) vs.<br>usual care (e.g.,<br>physical therapy,<br>temporary<br>nursing home<br>placement)                                                                                                                  | Range of motion scale<br>(baseline/13 weeks/52<br>weeks): intensive<br>(2.8/1.8/2.3) vs. usual<br>(2.7/2.7/2.6) (p <0.01 for<br>13 weeks). HAQ walking:<br>intensive (2.3/1.2/1.0) vs.<br>usual (2.2/1.2/1.0) (NS).<br>No differences at any time<br>for RAND-36 physical or<br>mental component scales.                                                                                                                                                                                                          | "Intensive short-<br>term exercise<br>training of arthritis<br>patients,<br>immediately after<br>hospital discharge<br>results in<br>improved regain of<br>function."                                                                       | Subpopulation<br>of larger<br>DAPPER RCT.<br>Heterogeneou<br>s mix of<br>patients and<br>multiple<br>cointerventions<br>may limit<br>implications.<br>Data suggest<br>minimal<br>intermediate<br>but no long-<br>term<br>improvements<br>as no<br>differences at<br>52 weeks.              |
| Kishida<br>2001<br>RCT  | 4.5 | N = 33<br>All<br>cementless<br>arthroplastie<br>s                              | Full weight-<br>bearing vs.<br>delayed 6 weeks<br>post-operatively                                                                                                                                                                                                                                            | Rehabilitation to walk with<br>cane 5.8 vs. 44.8 days (p<br>= 0.0001). Hospital stay<br>30.1 vs. 46.7 days (p =<br>0.006). No differences in<br>radiolucent lines.                                                                                                                                                                                                                                                                                                                                                | "Full weight-<br>bearing<br>immediately after<br>cementless THA<br>shortened the<br>rehabilitation<br>process and the<br>hospital stay<br>without<br>radiographic<br>migration of the<br>components or<br>clinical<br>complications."       | Results<br>support<br>immediate<br>weight bearing.<br>The length of<br>hospital stay<br>data (Osaka,<br>Japan) are<br>quite long<br>compared with<br>U.S.                                                                                                                                  |
| Pour<br>2007<br>RCT     | 4.5 | N = 94<br>THR,<br>uncemented,<br>proximally<br>coated<br>tapered<br>stem       | Group A<br>standard incision<br>(>10cm) and<br>standard pre-<br>/post-op care (2-<br>3 days PCA<br>analgesia).<br>Group-B small                                                                                                                                                                               | Hospital lengths of stay<br>(standard vs. accelerated<br>rehab): 4.2 days (range 3-<br>8) vs. 3.5 (range 2-5) (p =<br>0.001). Walking<br>independently or<br>supervised at discharge<br>60.4% vs. 84.8%, p =                                                                                                                                                                                                                                                                                                      | "This study<br>highlights the<br>importance of<br>factors such as<br>family education,<br>patient<br>preconditioning,<br>preemptive                                                                                                         | Due to multiple<br>interventions,<br>the effects of<br>any single<br>intervention<br>are unclear.<br>Suggests<br>combination of                                                                                                                                                            |

|                      |     | (Accolade)<br>and plasma-<br>sprayed<br>acetabular<br>component<br>(Trident) | incision (≤10<br>cm) and<br>standard pre-<br>/post-op<br>protocols.<br>Group-C<br>standard incision<br>but pre-op<br>counseling,<br>accelerated<br>rehabilitation,<br>altered pain<br>control regimen<br>(OxyContin 5mg<br>Q 4-6 hours.<br>PRN plus<br>celecoxib 200mg<br>a day. Group-D<br>small incision,<br>pre-op<br>counseling,<br>accelerated<br>rehabilitation,<br>altered pain<br>control regimen. | 0.009. Walking distance at<br>discharge: 24.3m (range<br>3.5-91.5) vs. 35m (range<br>7-91.5), p = 0.008.<br>Equianalgesic requirement<br>(mg): 26.8(2.4-113.7) vs.<br>41.2 (2.4-120); p = 0.01.<br>No benefits of short<br>incision shown. | analgesia, and<br>accelerated<br>preoperative and<br>postoperative<br>rehabilitation in<br>influencing the<br>outcome of total<br>hip arthroplasty."                                                                                                   | education, pre-<br>operative gait<br>training and<br>exercise,<br>assistive<br>walking the<br>day of surgery,<br>and oral<br>narcotics plus<br>celecoxib are<br>more effective.<br>No benefit<br>shown of small<br>incision.<br>Overall<br>equianalgesic<br>opioid dose<br>higher in<br>accelerated<br>rehabilitation. |
|----------------------|-----|------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Galea<br>2008        | 4.5 | N = 23                                                                       | Supervised<br>center-based                                                                                                                                                                                                                                                                                                                                                                                 | Walking speed<br>(baseline/post): Center-                                                                                                                                                                                                  | "No group<br>differences were<br>found in the                                                                                                                                                                                                          | Small sample<br>size. Multiple                                                                                                                                                                                                                                                                                         |
| RCT                  |     | THR                                                                          | week for 45<br>minutes with 7<br>exercises) vs.<br>home-based<br>exercise for 8<br>weeks.<br>Exercises<br>included figure<br>of 8, sit to stand,<br>active simple leg<br>stance, climbing<br>steps, hip<br>abduction, heel<br>raise, side<br>stepping.                                                                                                                                                     | (100.0±25.2/116.7±18.1)<br>vs. home-based<br>(102.2±14.1/117.4±16.7)<br>(NS). Multiple other<br>measures also improved<br>(e.g., steps/min, step<br>length) but most were not<br>different between groups.                                 | majority of the<br>outcome<br>measures. This<br>finding is important<br>because it shows<br>that THR patients<br>can achieve<br>significant<br>improvements<br>through a targeted<br>strengthening<br>program delivered<br>at a center or at<br>home." | Data suggest<br>rehabilitation<br>with a home<br>program may<br>be equally<br>efficacious in<br>this group with<br>mean age of<br>~68 years.                                                                                                                                                                           |
| Maire<br>2003<br>RCT | 4.0 | N = 14<br>All post-THR                                                       | Training group<br>for 6 weeks vs.<br>controls.<br>Training 1 week<br>after surgery, 3-<br>30 minute<br>sessions a<br>week. Only<br>training group<br>had ergometer<br>exercises. Both<br>groups had<br>exercises<br>(walking,<br>aquatics, ROM)<br>2 hours a day.                                                                                                                                          | Six-minute walk test<br>results at 2 months:<br>training 404.5 vs. controls<br>259.0m, p <0.01. VO2<br>(baseline/post-op/2<br>months): training<br>(7.5/9.0/13.0) vs. controls<br>(6.9/5.6/9.8).                                           | "These results<br>stress the<br>importance of<br>physical training in<br>a rehabilitation<br>program after total<br>hip joint<br>arthroplasty and<br>this should be<br>considered for<br>improving the<br>current practices<br>in rehabilitation."     | Very small<br>sample size; 6-<br>week<br>treatment<br>protocol<br>suggests<br>upper<br>extremity<br>exercise may<br>help, however<br>bias may be<br>different<br>degrees of<br>rehab contact.<br>Also, drop in<br>post-op results<br>before training<br>for controls<br>concerning for                                 |
| Bulthuis             | 4.0 | N = 85                                                                       | Intensive                                                                                                                                                                                                                                                                                                                                                                                                  | Twenty-five percent of                                                                                                                                                                                                                     | "(Intensive                                                                                                                                                                                                                                            | Sub-sub group                                                                                                                                                                                                                                                                                                          |

| 2008 |               | treatment (3      | patients did not complete  | exercise training)  | analysis of    |
|------|---------------|-------------------|----------------------------|---------------------|----------------|
|      | Patients with | weeks at resort;  | cost questionnaires. Usual | results in better   | data from      |
| RCT  | rheumatic     | BID to QID        | care treated by PT 1.8     | quality of life at  | Balthuis 2007  |
|      | diseases      | exercise          | times more. No             | lower costs after 1 | and same       |
|      |               | sessions) vs.     | differences in             | year. Thus, IET is  | weaknesses,    |
|      |               | usual care (e.g., | hospitalizations. Mean     | the dominant        | except dropout |
|      |               | physical therapy, | costs per patient 2,068€   | strategy compared   | rate greater.  |
|      |               | temporary         | lower for intensive        | with (usual care)." | Unclear of     |
|      |               | nursing home      | treatment.                 |                     | extent costs   |
|      |               | placement)        |                            |                     | apply outside  |
|      |               |                   |                            |                     | Netherlands.   |

#### POST-OPERATIVE ACTIVITY LIMITATIONS AND REHABILITATION PROGRAMS: HIP FRACTURE

The above considerations among arthroplasty patients are likely important in hip fracture patients, and vice versa, particularly as the bodies of evidence appear to support similar conclusions (see post-operative rehabilitation evidence table). There are many quality trials and other studies that involve largely or solely hip fracture patients(1341, 1351-1356) and many of these patients are often debilitated, potentially producing a few unique indications. Others have reviewed this literature and drawn disparate conclusions. A Cochrane review concluded that the available trials were insufficient to draw conclusions.(1351) Another Cochrane review concluded there was no evidence of reductions in mortality among those treated in an interdisciplinary setting versus an orthopedic unit.(1354) A third review recommended physical therapy, occupational therapy and assessments of the home environment particularly to prevent falls in the elderly.(1318) Cost effectiveness of accelerated rehabilitation has been suggested.(1357)

Variability between patients is large; the general literature does not generally discuss more complex patients. It is advised that the rehabilitation components be coordinated with the treating orthopedist who will be better able to address critical questions of bone strength, quality and immediate post-operative results.

There are no quality studies directly evaluating immediate weight-bearing among hip fracture patients. Accelerated rehabilitation has been shown to reduce hospital stays(1357-1359) while remote trials found no adverse effects from earlier weight bearing.(1360, 1361) There is a belief that similar to arthroplasty patients, lack of weight bearing is harmful. Thus, early weight bearing is recommended for those patients with good immediate surgical results and without contraindications to early weight bearing.

There are multiple studies that have attempted to identify whether treatment in a geriatric unit is superior to an orthopedic ward; (1362-1366) however, the studies do not agree. There also are two quality studies reported of interdisciplinary rehabilitation, one inpatient and one outpatient, which both failed to find superiority to usual care. (1353, 1367) It appears that the location of the care, as well as the field of study of the attending is immaterial. Instead, the quality and components of the care required for a given patient are believed to be important. There is no recommendation for or against treatment in a geriatric unit or given as an interdisciplinary intervention for most patients. There is quality evidence that those patients with multiple health care issues, particularly including moderate dementia, benefit from treatment in a geriatric unit. (1368)

Throughout the exercise literature, a pattern exists that active, functional exercises (e.g., walking, stairs) are more effective and patients are more compliant with those prescriptions. This pattern appears to continue in the quality studies of rehabilitation of hip pain patients.

There is relatively little quality evidence that directly addresses the importance of a walking program (see post-operative rehabilitation evidence table). However, ambulation and walking programs are components of nearly all rehabilitation programs, particularly including accelerated or intensive rehabilitation programs. Those programs are nearly all reportedly beneficial in the quality studies.(1340, 1357-1359, 1369) Quality studies that appear to have particularly included an ambulatory program as an important component also document benefits.(1370-1372) One quality study found aerobic exercises to

be comparable to a resistance training program,(1371) which as noted below suggests efficacy. Available evidence suggests the primary exercise program elements should entail activities patients require for daily living, especially focusing on walking.(1333, 1338) Thus, a progressive walking program is recommended.

Perhaps the most studied exercise program among hip fracture patients is strengthening or resistance exercise (see post-operative rehabilitation evidence table). These exercises may include steps, stairs, and weight machines. Strengthening exercises have been evaluated in many quality trials(1343, 1344, 1370, 1371, 1373-1377) with all but one of those trials(1377) documenting benefits of the strengthening or resistance exercises. Thus, strengthening and resistance exercises are recommended. Exercises included sit to stand, unilateral heel raises, partial knee bends, 1-legged standing balance, knee raises with alternating arms, marching, side and back leg raises in standing, and unilateral pelvic raising and lowering in standing. These data suggest an evaluation at 4 months post-op and consideration of additional strengthening program components and postural stability through controlled weight bearing is recommended.(1378)

Flexibility exercises have traditionally been emphasized in rehabilitation programs; however, there are few quality trials. One quality trial that emphasized flexibility in one treatment arm was negative(1373, 1374) (see Figure 25). Thus some caution is warranted regarding how much, or whether to include flexibility exercises. These are recommended for those patients with significant reductions in functional range of motion, but not generally recommended for other patients.





PPT indicates Physical Performance Score; FSQ, Functional Status Questionnaire. Data are least square means (SEs). *P* values are for comparisons between physical therapy group vs control group and indicate significantly different values from baseline.

Binder EF, Brown M, Sinacore DR, et al. Effects of extended outpatient rehabilitation after hip fracture: a randomized controlled trial. *JAMA*. 2004;292(7):837-46. Reprinted with permission from the American Medical Association.

Evidence is not consistent on whether the program should be home-based or supervised, although home-based programs are generally preferable for reasons of better approximation of long-term environmental factors for purposes of sustenance and cost. The number of appointments and intensity has varied widely in the quality trials (see post-operative rehabilitation evidence table). This suggests individualization is often required, particularly utilizing factors including immediate surgical results, bone quality, patient motivation, caregiver support, degree of deficits, confounding medical conditions, mental health (especially dementia and depression), and mismatches between current functional status and occupational or avocational functional status to be factored into the decision on numbers of appointments and intensity of treatments. An initial instructional appointment is recommended for all patients. Variability is large. Some patients require daily inpatients appointments while others may require thrice weekly appointments and others may require weekly appointments.

The following program components are recommended and are similar to post-arthroplasty components though individualization is similarly required that incorporates the surgical results and patient characteristics as noted above. The following are specific components of a progressive physical or occupational therapy program that are recommended based on the quality treatment literature. They

assume good surgical results, good bone quality, and reasonable pre-injury medical and physical condition.

1. Recommendation: Post-operative Exercise and Rehabilitation Program for Hip Fracture Patients A post-operative exercise program and rehabilitation program are moderately recommended for hip fracture patients.(1357-1361, 1369)

*Indications* – All hip fracture patients. Programs and protocols should be closely coordinated with the treating orthopedist, particularly as patient variability is wide, although workers' compensation patients tend to be younger, in better condition, and able to advance conditioning exercises more rapidly than the elderly. Programs need to be individualized, based on factors such as preoperative condition, bone quality, immediate surgical results, contraindications, and other medical conditions. Workers' compensation patients may benefit from immediate post-operative weight bearing,(1357-1361, 1369) progressive walking,(1370, 1371) progressive stair climbing,(1376) and marching in place exercises, flexibility,(1373, 1374) and strengthening.(1343, 1370, 1371, 1373-1376) Program advancement must be individualized based on progress.

*Frequency/Duration* – Duration based primarily on progress. Program may typically be daily in hospital settings and rehabilitation inpatient settings, 2 or 3 times weekly in outpatient settings gradually tapered as home exercises are instituted and the patient's recovery advances. Courses of up to 3 months in more severe cases may be required.

Strength of Evidence – Moderately Recommended, Evidence (B)

2. Recommendation: Geriatric Unit Treatment

There is no recommendation for or against the use of treatment in a geriatric unit(1362-1366) or the use of interdisciplinary rehabilitation.(1353, 1367)

Strength of Evidence – No Recommendation, Insufficient Evidence (I)

3. Recommendation: Geriatric Unit Treatment for Select Patients Geriatric unit treatment is recommended for patients with multiple health care issues, particularly for those with moderate dementia.(1363)

Strength of Evidence – Recommended, Evidence (C)

#### Rationale for Recommendations

There are multiple quality studies of post-operative rehabilitation programs for hip fracture patients (see post-operative rehabilitation evidence table). Most of these patients appear to require formal physical or occupational therapy, usually in the form of a progressive treatment program. The available evidence suggests functional exercises are helpful, and these include activities patients must successfully perform upon return to home, such as walking, stair climbing and other activities required to perform activities of daily living. These programs are not invasive, have few adverse effects, but help the patient return to normal or improved functional abilities. These programs generally require many visits for success in these patients, thus they are costly. They are recommended.

*Evidence for the Use of Post-Operative Activity Limitations and Rehabilitation Programs for Hip Fractures* There is 1 high- and 20 moderate-quality RCTs (one with two reports) incorporated in this analysis. There are 10 low-quality RCTs(1342, 1360, 1361, 1366, 1369, 1379-1383) in Appendix 2.

| Author/Yea<br>r | Score<br>(0-11) | Sample<br>Size | Comparison<br>Group | Results                  | Conclusion           | Comments       |
|-----------------|-----------------|----------------|---------------------|--------------------------|----------------------|----------------|
| Sludy Type      |                 |                |                     |                          |                      |                |
| Lamb            | 9.5             | N = 26         | Patterned           | Nine PNMS women          | "Neuromuscular       | Wide range in  |
| 2002            |                 |                | neuromuscular       | recovered mobility vs. 3 | stimulation at home  | response       |
|                 |                 | Females        | stimulation         | placebo, p = 0.046. 8    | is feasible and may  | outcomes.      |
| RCT             |                 | over 75        | (PNMS) vs.          | PNMS women could         | be effective in      | Suggests       |
|                 |                 | years with     | placebo of          | tandem stand vs 3 in     | speeding recovery of | PNMS may be    |
|                 |                 | hip            | quadriceps          | placebo group after 7    | mobility after       | beneficial.    |
|                 |                 | fractures      | muscle              | weeks, $p = 0.03$ . Near | surgical fixation of | Major outcomes |
|                 |                 |                |                     | equal number of          | hip fracture."       | benefits not   |
|                                               |     |                                                                                  |                                                                                                                                                                                                       | participants able to stand<br>tandem at 13 weeks. No<br>differences in recovery of<br>leg extensor power<br>during or after<br>stimulation. PNMS group<br>participants had more<br>even distribution of<br>power between injured<br>and non-injured legs and<br>difference significant at 6<br>weeks but not at 13<br>weeks. No statistically or<br>clinically significant<br>differences in pain<br>scores at any<br>assessment intervals.        |                                                                                                                                                                                                                                                                                                                                                                                       | generally<br>shown, but<br>sample size<br>small.                                                                                                                                        |
|-----------------------------------------------|-----|----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Hauer<br>2003<br>RCT                          | 7.0 | N = 57<br>Geriatric<br>females<br>with history<br>of severe<br>falls             | Ambulatory<br>training of<br>strength,<br>functional<br>performance, and<br>balance 3 times a<br>week for 3 months<br>vs. placebo                                                                     | At 2 years, differences<br>between groups were<br>significant in most<br>functional performances,<br>despite decline from<br>significantly improved<br>motor performance levels<br>achieved in the initial<br>training intervention.<br>Persons institutionalized<br>or being cared for by<br>family members showed<br>greater functional<br>decline. Physical activity<br>returned to low baseline<br>levels.                                     | "Improved functional<br>performance in the<br>training group did<br>not lead to an<br>increased level of<br>physical activity after<br>training, which might<br>have preserved the<br>functional<br>improvements."                                                                                                                                                                    | Short term<br>results suggest<br>efficacy,<br>however, long<br>term improve-<br>ments less<br>strong, likely<br>due to fewer<br>differences in<br>physical<br>activity.                 |
| Hauer<br>2001<br>RCT                          | 7.0 | N = 57<br>Geriatric<br>females<br>with history<br>of severe<br>falls             | Ambulatory<br>training of<br>strength,<br>functional<br>performance, and<br>balance 3 times a<br>week for 3 months<br>vs. placebo                                                                     | Increased strength,<br>functional motor<br>performance, and<br>balance significant in<br>intervention group.<br>Significant reduction also<br>found for fall-related<br>behavioral and emotional<br>restriction for intervention<br>group. Moderate loss of<br>improvement during 3-<br>month follow up. No<br>change in strength,<br>functional performance,<br>or emotional status<br>during intervention and<br>follow up for control<br>group. | "Progressive<br>resistance training<br>and progressive<br>functional training<br>are safe and<br>effective methods of<br>increasing strength<br>and functional<br>performance and<br>reducing fall-related<br>behavioral and<br>emotional<br>restrictions during<br>ambulant<br>rehabilitation in frail,<br>high-risk geriatric<br>patients with a<br>history of injurious<br>falls." | Suggests<br>benefits of a<br>progressive<br>resistance<br>training<br>program.                                                                                                          |
| Huusko<br>2002<br>Acta Orthop<br>Scand<br>RCT | 6.5 | N = 243<br>Community<br>dwelling hip<br>fracture<br>patients<br>over 64<br>years | Geriatric ward for<br>team rehabilitation<br>for 2 weeks (early<br>ambulation, self-<br>motivation and<br>function) then 10<br>home PT visits<br>over 2 months vs.<br>local ward for<br>standard care | Hospital stay averaged<br>34 in the geriatric ward<br>group vs. 42 in controls<br>(p = 0.05). Mortality and<br>complication rates not<br>statistically different.<br>Interventions recovered<br>instrumental activities of<br>daily living faster (p =<br>0.05). Total costs<br>€17,900 vs. €15,900<br>controls.                                                                                                                                   | "The length of<br>hospital stay of<br>community dwelling<br>hip fracture patients<br>can be diminished<br>significantly by<br>intensive geriatric<br>rehabilitation, which<br>continues in the<br>patients' homes after<br>their discharge from<br>hospital."                                                                                                                         | Baseline<br>geriatric ward<br>group less likely<br>functionally<br>independent<br>(34% vs. 54%)<br>presumably<br>favoring<br>controls. Data<br>suggest<br>geriatric stay<br>superior to |

|                             |     |                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                               | usual ward<br>care.                                                                                                                                                                                                                                                                                                                                                                                                                  |
|-----------------------------|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Huusko<br>2000<br>RCT       | 6.5 | N = 243<br>Community<br>dwelling hip<br>fracture<br>patients<br>over 64<br>years<br>(same as<br>Huusko<br>2002; this<br>report on<br>mild<br>dementia)                                   | Geriatric ward for<br>team rehabilitation<br>for 2 weeks (early<br>ambulation, self-<br>motivation and<br>function) then 10<br>home PT visits<br>over 2 months vs.<br>local ward for<br>standard care                                                                                                                                                                                                                             | Among those with mild<br>dementia, 91% of<br>geriatric unit treated<br>patients lived<br>independently vs. 67% of<br>controls. For those with<br>moderate dementia, 63%<br>vs. 17% lived<br>independently.                                                                                                                                                                                         | "Hip fracture patients<br>with mild or<br>moderate dementia<br>can often return to<br>the community if<br>they are provided<br>with active geriatric<br>rehabilitation."                                                                                                                                                      | Suggests<br>geriatric care is<br>helpful for those<br>with mild, but<br>especially those<br>with moderate<br>dementia.                                                                                                                                                                                                                                                                                                               |
| Binder<br>2004, 2005<br>RCT | 6.5 | N = 100<br>All had hip<br>fracture<br>from a fall<br>not over 16<br>weeks<br>previously,<br>treated<br>either ORIF<br>or<br>hemiarthro-<br>plasty and<br>all had had<br>"standard"<br>PT | Supervised<br>physical therapy<br>(3 times a week,<br>36 sessions),<br>exercise training<br>vs. home exercise<br>(emphasizing<br>flexibility) for 6<br>months.<br>Supervised PT at<br>indoor exercise<br>facility, 2x3-month<br>phases. Initial<br>phase with small<br>group including<br>flexibility, balance,<br>coordination,<br>movement speed<br>and some<br>strengthening.<br>Second phase<br>progressive<br>strengthening. | Physical performance<br>test results (baseline/3<br>months/6 months):<br>physical therapy<br>$(22.2\pm5.9/26.5\pm6.3/29.0\pm$<br>6.1) vs. controls<br>$(20.7\pm6.2/$<br>23.7 $\pm$ 8.2/23.3 $\pm$ 7.4) (p<br><0.05). Instrumental<br>activities of daily living:<br>physical therapy<br>$(10.4\pm2.2/$<br>11.7 $\pm2.3/11.9\pm2.6$ ) vs.<br>controls $(10.0\pm2.6/11.0\pm$<br>2.6/11.3 $\pm2.5$ ). | "In community-<br>dwelling frail elderly<br>patients with hip<br>fracture, 6 months of<br>extended outpatient<br>rehabilitation that<br>includes progressive<br>resistance training<br>can improve<br>physical function<br>and quality of life<br>and reduce disability<br>compared with low-<br>intensity home<br>exercise." | Entry criteria<br>required frailty,<br>limiting<br>generalizability<br>to similar<br>patients. Home<br>program<br>focused<br>primarily on<br>flexibility,<br>suggesting<br>exercise<br>regimen may be<br>inferior, but no<br>non-exercise<br>control to<br>address that<br>question.<br>Suggests frail<br>patients may<br>benefit from<br>extended<br>exercise with<br>emphasis on<br>active<br>components<br>such as<br>resistance. |
| Ruchlin<br>2001<br>RCT      | 6.0 | N = 114<br>Hip fracture                                                                                                                                                                  | Routine post-op<br>care vs. patient<br>education and<br>high intensity<br>strengthening                                                                                                                                                                                                                                                                                                                                           | Control group total cost<br>was \$17,139 compared<br>to intervention group total<br>cost of \$13,842. Baseline<br>and 6-month follow up<br>among individuals in<br>physical role limitation<br>component of SF-36<br>favored intervention<br>(66.1 vs. 38.9, p =<br>0.002).                                                                                                                        | "The results indicate<br>that the benefits of<br>the intervention<br>exceeded its costs."                                                                                                                                                                                                                                     | Cost savings<br>study.<br>Intervention<br>group less<br>costly.                                                                                                                                                                                                                                                                                                                                                                      |
| Mangione<br>2005<br>RCT     | 6.0 | N = 33<br>Elderly who<br>completed<br>physical<br>therapy<br>following<br>hip fracture                                                                                                   | Resistance vs.<br>aerobic training<br>vs. controls; 20<br>visits, twice a<br>week 2 months,<br>then once a week<br>1 month.<br>Resistance<br>training (hip<br>extensor/                                                                                                                                                                                                                                                           | Six-minute walk<br>distances: Resistance<br>(197.1±104.2/<br>278.9±114.6m) vs.<br>Aerobic<br>(232.4±122/321.1±101.7<br>m) vs. controls<br>(180.6±104.3/<br>266.2±82.4m), NS. MVC<br>Resistance (48.5±12.6/                                                                                                                                                                                         | "High-intensity<br>exercise performed<br>in the home is<br>feasible for people<br>with hip fracture."                                                                                                                                                                                                                         | Higher dropouts<br>in resistance<br>training. All<br>groups<br>improved<br>walking<br>distances<br>considerably.<br>Suggests either<br>exercise                                                                                                                                                                                                                                                                                      |

|                            |     |                                                                                               | abductors/knee<br>extensors, plantar<br>flexors with latex<br>band machine).<br>Aerobic 20-<br>minutes walking at<br>65-75% HR max.<br>Education<br>controls.                                                                                        | 59.6±18.2kg) vs. Aerobic<br>(55.6±17.4/67.1±22.3)<br>vs. controls<br>(64.1±24.6/67.7<br>±22.2kg), p = 0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                 | beneficial.                                                                                                                                     |
|----------------------------|-----|-----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|
| Naglie<br>2002<br>RCT      | 6.0 | N = 279<br>Surgical hip<br>fracture                                                           | Interdisciplinary<br>post-op care<br>(geriatrician, PT,<br>OT, social worker,<br>clinical nurse<br>specialist with 2<br>times a week<br>interdisciplinary<br>rounds) vs. usual<br>care                                                               | Total hours PT time<br>favored ID rehabilitation<br>$(14.2\pm11.7 \text{ vs. } 5.7\pm4.0$<br>hours). OT time<br>averaged $10.8\pm7.6 \text{ vs.}$<br>$3.3\pm2.2$ hours. Social<br>work, dietitian, speech-<br>language pathologist<br>time did not differ. Initial<br>hospitalization longer for<br>interdisciplinary care<br>$(29.2\pm22.6 \text{ vs. } 20.9\pm18.8$<br>days, p <0.001), total<br>institutionalization over 6<br>months not different (p =<br>0.84). At 6 months, 17<br>(12.1%) ID care vs. 21<br>(15.2%) usual care<br>patients died (NS). No<br>differences in decline in<br>ambulation, transfers of<br>changes of residence. | "Postoperative<br>inpatient<br>interdisciplinary care<br>did not result in<br>significantly better 3-<br>or 6-month<br>outcomes in elderly<br>patients with hip<br>fracture."                   | Suggests<br>location of care<br>in an<br>interdisciplinary<br>unit is not<br>important.                                                         |
| Kennie<br>1988<br>RCT      | 5.5 | N = 106<br>All females<br>with<br>proximal<br>femoral<br>fractures                            | Rehabilitation<br>ward (general<br>practitioner care,<br>geriatric<br>consultant with 2<br>ward rounds and 1<br>weekly<br>multidisciplinary<br>team conference<br>vs. orthopaedic<br>ward care. Both<br>groups received<br>PT, OT, and<br>orthotics. | Inpatient hospital stays<br>favored rehabilitation<br>ward with less than 4<br>weeks stays among<br>32/54 rehabilitation ward<br>care patients vs. 18/54<br>orthopaedic ward care.<br>More discharges (31 vs.<br>19) to patients' homes<br>occurred in rehabilitation<br>group (p = 0.03).                                                                                                                                                                                                                                                                                                                                                        | "Both hospital and<br>patient benefited<br>when postoperative<br>rehabilitation was<br>provided in a setting<br>specialising in such<br>care for elderly<br>patients with<br>trauma."           | Supports<br>rehabilitation<br>ward treatment.                                                                                                   |
| Reid<br>1989<br>RCT        | 5.5 | N = 106<br>All females<br>with<br>proximal<br>femoral<br>fractures                            | Same study as<br>Kennie, except 1-<br>year follow-up                                                                                                                                                                                                 | At 1-year, 67% controls<br>vs. 81% rehabilitation<br>ward treated patients<br>survived. Living location<br>was same as pre-fracture<br>for 69% of rehabilitation<br>ward treated patients vs.<br>39% of controls.                                                                                                                                                                                                                                                                                                                                                                                                                                 | "These outcomes<br>challenge the<br>conventional<br>practice of keeping<br>elderly patients with<br>femoral fractures in<br>orthopaedic wards<br>for their<br>postoperative<br>rehabilitation." | Supports<br>rehabilitation<br>ward for both<br>return to the<br>same living<br>environment as<br>well as survival.                              |
| Sherrington<br>2003<br>RCT | 5.5 | N = 80<br>All had hip<br>fracture<br>from a fall<br>and in<br>inpatient<br>rehabilitatio<br>n | Two week<br>programs of daily<br>weight-bearing<br>exercise program<br>vs. non-weight-<br>bearing (exercises<br>same as<br>Sherrington 2004<br>above). All                                                                                           | Physical performance<br>and mobility examination<br>scores (pre/post): weight<br>bearing (5.4/7.5) vs. non-<br>weight bearing (4.5/6.8)<br>NS. Gait (m/s): weight<br>bearing (0.12/0.25) vs.<br>non-weight-bearing<br>(0.09/0.19), NS. Strength                                                                                                                                                                                                                                                                                                                                                                                                   | "Weight-bearing and<br>non-weight-bearing<br>exercise programs<br>produce similar<br>effects on strength,<br>balance, gait and<br>functional<br>performance among<br>inpatients soon after      | Trial length of<br>only 2 weeks<br>and co-<br>interventions of<br>exercises with<br>both weight-<br>bearing appear<br>likely to have<br>reduced |

|                         |     |                                                                                                | received practice<br>with walking and<br>advancement with<br>walking aids.                                                                                                                                                                                                                                                                  | measures not different<br>between groups. Ability<br>to walk with either 1 stick<br>or no aid 20% vs. 5%, p<br><0.05.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | hip fracture."                                                                                                                                                                                                | possible<br>differences.<br>Walking ability<br>favored weight<br>bearing<br>exercise group.                                                                                                                          |
|-------------------------|-----|------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Mitchell<br>2001<br>RCT | 5.0 | N = 80<br>Patients<br>rehabili-<br>tating after<br>proximal<br>femoral<br>fracture             | Six weeks<br>quadriceps<br>training vs.<br>standard<br>physiotherapy<br>after proximal<br>femoral fracture.<br>Quadriceps<br>training: 3 sets of<br>12 repetitions of<br>knee extension for<br>2 weeks at 50% of<br>maximum<br>strength. Then 2<br>weeks at 70% of<br>new maximum<br>and then 80% at<br>new maximum for<br>another 2 weeks. | Quadriceps training<br>group: baseline; week 6;<br>week 16. Leg extensor<br>power fractured leg (W):<br>10.1 (0.8); 25.7 (2.1) $p \le$<br>0.01; 33.0 (3.9) $p \le 0.001$ .<br>Leg extensor power non-<br>fractured leg (W): 20.5<br>(1.6); 34.9 (3.0) $p \le 0.01$ ;<br>40.1 (4.3) $p \le 0.05$ .<br>Elderly Mobility scale<br>(median IQR): 10 (7, 12);<br>17.5 (16, 20) $p \le 0.001$ ;<br>18 (16, 20) $p \le 0.001$ ;<br>18 (16, 20) $p \le 0.05$ .<br>Control group: baseline;<br>Week 6; Week 16. Leg<br>extensor power fractured<br>leg (W): 11.4 (1.2); 17.7<br>(1.6); 21.2 (2.3). Leg<br>extensor power non<br>fractured leg (W): 20.8<br>(2.3); 24.8 (2.5); 25.4<br>(2.2). Elderly mobility<br>scale (median IQR): 11<br>(8, 12.75); 16 (14.75,<br>18): 17 (15.25, 19.5). | "Progressive high-<br>intensity quadriceps<br>training resulted in<br>large increases in<br>leg extensor power<br>and reduced<br>disability after<br>proximal femoral<br>fracture."                           | Gains were<br>retained at 16<br>weeks.                                                                                                                                                                               |
| Lamb<br>1998<br>RCT     | 5.0 | N = 24<br>Females<br>over 75<br>years with<br>hip<br>fractures                                 | Patterned<br>neuromuscular<br>stimulation<br>(PNMS) of the<br>quadriceps<br>muscle vs.<br>placebo<br>stimulation                                                                                                                                                                                                                            | Seventy-five percent<br>compliance; PNMS<br>participants recovered<br>their pre-injury levels of<br>mobility at 7 weeks (p <<br>0.05), but no differences<br>in walking speed.<br>Improvements for PNMS<br>group in walking speed<br>between 7 and 13 weeks<br>after fixation, whereas<br>control group did not (p<br><0.05).                                                                                                                                                                                                                                                                                                                                                                                                                                                      | "Neuromuscular<br>stimulation can<br>improve recovery of<br>mobility after<br>surgical fixation for<br>PFF, larger studies<br>are needed to<br>provide more<br>precise estimates of<br>the treatment effect." | Abstract                                                                                                                                                                                                             |
| Tinetti<br>1999<br>RCT  | 4.5 | N = 304<br>27 home<br>care<br>agencies<br>All had had<br>surgical<br>repair of hip<br>fracture | Home-based<br>multicomponent<br>rehabilitation<br>program vs. usual<br>care; multi-<br>component<br>program included<br>identification of<br>deficits and<br>tailoring PT<br>program plus<br>functional therapy;<br>usual care<br>included home PT                                                                                          | Regaining prefracture<br>level of self-care ADLs at<br>6 months:<br>multicomponent<br>rehabilitation 71% vs.<br>usual care 75%, $p =$<br>0.40. Complete<br>independence 67% vs.<br>71% ( $p = 0.49$ ).<br>Complete ADL<br>independence at 6<br>months 9% vs. 16%, $p =$<br>0.07 and 12 months 19%<br>vs. 25%, $p = 0.23$ . No<br>differences in mobility,<br>balance of lower<br>extremity strength. Gait<br>performance at 6 months<br>favored rehabilitation                                                                                                                                                                                                                                                                                                                     | "The systematic<br>multicomponent<br>rehabilitation<br>program was no<br>more effective in<br>promoting recovery<br>than usual home-<br>based rehabilitation."                                                | Large size and<br>multiple<br>agencies may<br>improve<br>generalizability<br>of results,<br>however<br>dropouts high.<br>Suggests multi-<br>component<br>rehabilitation<br>program not<br>superior to<br>usual care. |

|                        |     |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                         | program (p = 0.08).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                              |
|------------------------|-----|-----------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                        |     |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                              |
| Galvard<br>1995<br>RCT | 4.5 | N = 371<br>Community<br>dwelling hip<br>fracture<br>patients                                                    | Orthopedic vs.<br>geriatric<br>rehabilitation<br>(scant<br>descriptions of<br>program<br>components)                                                                                                                                                                                                                                                    | Days in the hospital were<br>orthopedic 28.0±24.2 vs.<br>geriatric 53.3±47.7 days.<br>Discharge to prior living<br>were 72.0% vs. 72.4%<br>(NS). Deaths were not<br>different. Walking speeds<br>not different. More<br>orthopedic-related<br>readmissions (27.9% vs.<br>11.9%) occurred in the<br>orthopedic unit treated<br>group. Total costs<br>orthopedic group SKr84,<br>537 vs. SKr94, 026.                                                                                                    | "[H]ip fracture<br>patients may be<br>rehabilitated under<br>geriatric supervision<br>and obtain results,<br>that are fully<br>comparable to<br>orthopedic<br>rehabilitation."                                                           | Baseline<br>differences<br>(younger age of<br>males and<br>fewer<br>subtrochanteric<br>fractures)<br>favored<br>orthopedic unit<br>treatment.<br>Results suggest<br>rehabilitation in<br>a geriatric unit<br>possible.<br>Geriatric unit<br>had no prior<br>prolonged<br>experiences<br>with<br>rehabilitation of<br>orthopedic<br>patients. |
| Cameron<br>1993<br>RCT | 4.0 | N = 252<br>All<br>uncompli-<br>cated<br>proximal<br>femoral<br>fractures<br>with<br>surgery<br>within 7<br>days | Accelerated<br>rehabilitation<br>(early mobilization<br>after surgery,<br>comprehensive<br>rehabilitation<br>program, liaison<br>with a care-giver,<br>early hospital<br>discharge,<br>community-based<br>rehabilitation) vs.<br>conventional care<br>(variously<br>interdisciplinary<br>program,<br>discharge home,<br>and transfer to<br>nursing home | Length of hospital stay in<br>limited disability group<br>not in a nursing home<br>before fracture was<br>median 20 days for<br>accelerated care vs. 32<br>days for conventional (p<br>= $0.024$ ). Those with<br>moderate to severe pre-<br>fracture disability not in a<br>nursing home,<br>hospitalization median 20<br>vs. 30.5 days (p =<br>0.324). Lengths of stays<br>for accelerated care were<br>under 1 month for 107<br>(84%) of accelerated<br>care vs. 84 (67%) of<br>conventional care. | "Accelerated<br>rehabilitation led to a<br>substantial reduction<br>in length of hospital<br>stay with a modest<br>short-term<br>improvement in level<br>of physical<br>independence and<br>accommodation<br>status after<br>discharge." | Disparate care<br>given in control<br>group<br>somewhat limits<br>conclusions.<br>Data suggest<br>accelerated<br>rehabilitation is<br>superior.                                                                                                                                                                                              |
| Cameron<br>1994<br>RCT | 4.0 | N = 252<br>All<br>uncompli-<br>cated<br>proximal<br>femoral<br>fractures<br>with<br>surgery<br>within 7<br>days | Same study as<br>Cameron 1993                                                                                                                                                                                                                                                                                                                           | Costs for treatment<br>A\$10,600 for accelerated<br>rehabilitation vs.<br>A\$12,800 for<br>conventional<br>rehabilitation. There were<br>no differences in<br>recovered vs. worse vs.<br>dead status.                                                                                                                                                                                                                                                                                                 | "[A]ccelerated<br>rehabilitation is cost-<br>effective in treating<br>(proximal femoral<br>fracture) and<br>appears superior to<br>conventional<br>orthogeriatric care."                                                                 | Study based in<br>Australia<br>making<br>generalizability<br>and cost<br>estimates<br>difficult to<br>compare.                                                                                                                                                                                                                               |
| Quine<br>1994<br>RCT   | 4.0 | N = 252<br>All<br>uncompli-<br>cated<br>proximal<br>femoral                                                     | Same study as<br>Cameron 1993                                                                                                                                                                                                                                                                                                                           | Thirty-eigth percent of<br>carers assessed by<br>social worker as having<br>burden caring for fracture<br>patient; 55% mild, 40%<br>moderate, 5% severe.<br>Initial assessment of                                                                                                                                                                                                                                                                                                                     | "Accelerated<br>rehabilitation does<br>not impact greatly on<br>carer burden, but<br>already severely<br>burdened carers<br>may benefit from                                                                                             | Suggests<br>disruption<br>results in care-<br>giver burden.                                                                                                                                                                                                                                                                                  |

|                            |     | fractures<br>with<br>surgery<br>within 7<br>days                                                                          |                                                                                                                                                                                                                                                                                                 | burden highly correlated<br>with initial disruption (r =<br>0.9, p <0.001).                                                                                                                                                                                                                       | additional<br>counseling/<br>information."                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                         |
|----------------------------|-----|---------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sherrington<br>1997<br>RCT | 4.0 | N = 42<br>All hip<br>fracture<br>mean 7<br>months<br>earlier                                                              | Home exercise<br>program (step<br>exercises) vs. no<br>exercise controls;<br>1 follow-up visit at<br>1 week                                                                                                                                                                                     | Quadriceps strength<br>improved (baseline/post-<br>test): exercise<br>$(7.7\pm4.6kg/10.4\pm4.9, p$<br><0.01) vs. no exercise<br>$(6.6\pm2.7kg/7.3\pm3.7, NS)$ .<br>Gait velocity: exercise<br>$(0.46\pm0.28/0.51\pm0.34$<br>m/s, p <0.05) vs. no<br>exercise<br>$(0.52\pm0.33/0.50\pm0.35, NS)$ . | "This exercise<br>program improved<br>strength and mobility<br>following hip<br>fracture. Further<br>research is needed<br>to ascertain whether<br>the extent of this<br>improvement in<br>these fall risk factors<br>is sufficient to<br>prevent falls." | Baseline<br>differences of<br>uncertain effect.<br>Suggests home<br>exercise<br>program of step<br>exercises is<br>effective.                                                                                                                                           |
| Karumo<br>1977<br>RCT      | 4.0 | N = 87<br>All femoral<br>neck<br>fractures.<br>Thompson<br>prostheses<br>(n = 39)<br>and 48 with<br>internal<br>fixation. | Intensive physical<br>therapy (usual<br>plus 2nd PT a<br>day) vs. usual<br>therapy. Intensive<br>PT included 30<br>minutes walking<br>with crutches first<br>post-operative<br>day, early weight<br>bearing mostly on<br>1st day, sitting in<br>chair, stair training<br>on 2nd post-op<br>day. | Total hospitalization days<br>prosthesis group<br>(intensive PT 31.8±19.6,<br>routine PT 33.9±20.1) vs.<br>internal fixation (intensive<br>32.5±23.6, routine<br>36.0±23.2). Intensive<br>groups better able to<br>move and sit up in bed<br>on 1st post-operative day<br>(p <0.001).             | "Postoperative<br>mobilisation of<br>elderly patients with<br>femoral neck<br>fractures causes a<br>great deal of work to<br>the nursing staff.<br>Intensified physical<br>therapy did not<br>hasten the patients'<br>recovery in this<br>study."         | Some method<br>details sparse;<br>13 excluded due<br>to inadequate<br>follow-up, but<br>apparently not<br>part of study.<br>Aspects of study<br>dated, e.g.,<br>patients<br>hospitalized<br>average 6-7<br>days prior to<br>operation; may<br>have impacted<br>results. |

# LATE POST-OPERATIVE EXERCISES

While pain is typically resolved after hip arthroplasty, (1082, 1384, 1385) there is some evidence of reductions in strength and postural stability persisting months to at least 1 or 2 years after surgery. (1330, 1333, 1336-1338, 1345, 1378, 1385-1387) Total strength deficits have been estimated at approximately 10-20% compared with the unaffected side. (1330, 1338) Whether these deficits are clinically meaningful is unclear particularly in the more functionally recovered patients. (1337) There are some low quality data suggesting muscle weakness is associated with prosthetic loosening. (1336)

Some have used results from case series to recommend that strengthening exercises be continued after hip arthroplasty for at least 1 year(1330) (see post-operative rehabilitation evidence table), with either a supervised or home program,(1388) but with a supervised program continued for those who lack self-discipline.(1336) Components of a late phase physical or occupational therapy regimen have been thought to best emphasize weight bearing, resistance and postural stability.(1338, 1378, 1388) A non-randomized trial comparing a home exercise program including range of motion and isometric strengthening exercises versus a second home exercise program that also included eccentric muscle contractile exercises of hip abductors in a standing position versus controls with no exercise program found the home programs comparably effective.(1386)

There are three quality studies that have evaluated late post-operative exercise programs for treatment of post-fracture patients.(1344, 1371, 1389) These studies have found comparable results to those for arthroplasty patients. A weight-bearing home exercise program,(1389) resistance, functional and balance training program(1344) were found to be effective. The third quality trial found aerobic exercises to have equivalent efficacy to a resistance training program.(1371) The parallel findings between the hip arthroplasty and hip fracture patients strengthen these conclusions.

Recommendation: Late Post-operative Exercise Program for Arthroplasty or Hip Fracture

A late post-operative exercise program after arthroplasty or hip fracture emphasizing cardiovascular fitness and strengthening or resistance is recommended for patients who exhibit significant evidence of weakness or unsteady gait. A home exercise program among motivated patients may be sufficient.(1345)

Strength of Evidence – Recommended, Evidence (C)

There is no recommendation for or against the use of a late post-operative program for patients with mild reductions of questionable significance in the late post-operative period.

#### Strength of Evidence - No Recommendation, Insufficient Evidence (I)

*Evidence for the Use of Late Post-operative Exercises* There are 5 moderate-quality RCTs incorporated in this analysis.

| Author/Year<br>Study Type           | Score<br>(0-11) | Sample<br>Size                                                                          | Comparison<br>Group                                                                                                                                                                                                                                                                                                                                                                                                       | Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Conclusion                                                                                                                                                                                                                                                                                          | Comments                                                                                                                                                                                                                                                                                                   |
|-------------------------------------|-----------------|-----------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Trudelle-<br>Jackson<br>2004<br>RCT | 7.5             | N = 34<br>4 to 12<br>months<br>post-<br>operative<br>THA<br>patients                    | Strength and<br>postural stability<br>exercises vs.<br>isometric and<br>active range of<br>motion exercises                                                                                                                                                                                                                                                                                                               | Median HQ-12 scores<br>(pre/post intervention):<br>strengthening (21.0/16.0) vs.<br>control (19.0/17.5). Postural<br>stability (pre/post % of<br>unaffected side):<br>strengthening (66.1%/90.4%)<br>vs. control (76.3%/77.0%), p<br><0.05. Muscle strength also<br>improved in all groups tested<br>in strengthening group (p<br><0.05).                                                                                                                                                                                                                                                      | "An exercise<br>program<br>emphasizing<br>weight bearing<br>and postural<br>stability<br>significantly<br>improved muscle<br>strength, postural<br>stability, and self-<br>perceived<br>function in<br>patients 4 to 12<br>months after<br>THA."                                                    | Suggests<br>therapy<br>emphasizing<br>function<br>including<br>strengthening<br>and postural<br>stability is<br>efficacious in<br>patients who<br>may require<br>additional<br>rehabilitation<br>several<br>months after<br>surgery.                                                                       |
| Sherrington<br>2004<br>RCT          | 6.5             | N = 120<br>All had had<br>hip fracture<br>from a fall<br>average 6<br>months<br>earlier | Weight-bearing<br>home exercise<br>(sit to stand,<br>lateral step-up,<br>forward step-up-<br>and-over,<br>forward foot<br>taps, stepping<br>grid) vs. non-<br>weight-bearing<br>home exercise<br>(hip abduction,<br>flexion, hip and<br>knee flexion and<br>extension, range<br>of knee<br>extension, ankle<br>dorsiflexion and<br>plantarflexion)<br>vs. control<br>groups. Follow-<br>ups at 1 week, 1<br>and 4 months. | Balance improved in weight-<br>bearing group (pre/4 months):<br>weight bearing (7.0 $\pm$ 5.4/11.0 $\pm$<br>6.3 steps) vs. non-weight-<br>bearing (7.7 $\pm$ 7.1/9.4 $\pm$ 6.7) vs.<br>controls (8.3 $\pm$ 6.5/9.0 $\pm$ 7.3), p<br><0.001. Functional reach also<br>better in weight- bearing<br>group (17.5 $\pm$ 6.8/24.8 $\pm$ 8.8cm)<br>vs. non-weight-bearing<br>(18.4 $\pm$ 9.1/19.9 $\pm$ 8.1) vs.<br>controls (17.8 $\pm$ 8.7/<br>19.4 $\pm$ 10.0), p <0.05). No<br>differences in strength (p =<br>0.92). Timed sit to stand<br>improved more in weight-<br>bearing group (p <0.05). | "A weight-<br>bearing home<br>exercise program<br>can improve<br>balance and<br>functional ability<br>to a greater<br>extent than a<br>non-weight-<br>bearing program<br>or no intervention<br>among older<br>people who have<br>completed usual<br>care after a fall-<br>related hip<br>fracture." | Results<br>suggest weight<br>bearing<br>exercises are<br>superior to<br>non-weight<br>bearing<br>exercises.<br>Prior treatment<br>of patients not<br>well described,<br>but study<br>suggests<br>significant<br>morbidity<br>before<br>entering trial<br>after fracture<br>an average 6<br>months earlier. |
| Mangione<br>2005<br>RCT             | 6.0             | N = 41<br>7-50 weeks<br>after hip<br>fracture,<br>with ORIF,<br>partial or              | Aerobic (target<br>65-75% heart<br>rate max. for 20<br>minutes) vs.<br>resistance<br>training (hip<br>extensors,                                                                                                                                                                                                                                                                                                          | 6-minute walk distance<br>(pre/post): aerobic<br>(232.4±122.0/321.1±101.7)<br>vs. resistance<br>(197.1±104.2/278.9±114.6)<br>vs. control<br>(180.6±104.3/266.2±82.4).                                                                                                                                                                                                                                                                                                                                                                                                                          | "High-intensity<br>exercise<br>performed in the<br>home is feasible<br>for people with<br>hip fracture.<br>Larger sample                                                                                                                                                                            | Small sample<br>size. High<br>dropout rate<br>for resistance<br>training group.                                                                                                                                                                                                                            |
|                                     |                 | total                                                                                   | abductors, knee                                                                                                                                                                                                                                                                                                                                                                                                           | iviaximum lower extremity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | sizes may be                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                            |

|                      |     | arthroplasty                                                                                                                      | extensors,<br>plantar flexors, 3<br>sets of 8<br>repetitions) vs.<br>wait-list controls.<br>Exercise<br>sessions 30-40<br>minutes, 2<br>"overload"<br>sessions a week<br>first 2 months,<br>then 1 a week for<br>1 more month.                                                                            | force: aerobic<br>(55.6±17.4kg/67.1±22.3) vs.<br>resistance<br>(48.5±12.6/59.6±18.2) vs.<br>control (64.1±24.6/67.7±22.2).                                                                                                                                                                                             | necessary to<br>determine<br>whether the<br>exercise regimen<br>is effective in<br>reducing<br>impairments and<br>improving<br>function."                                                                                                                                                    |                                                                                                                                                                                                              |
|----------------------|-----|-----------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Hauer<br>2002<br>RCT | 5.0 | N = 28<br>Admitted<br>for injurious<br>falls or hip<br>fracture or<br>arthroplasty<br>, 6-8 weeks<br>after<br>rehabili-<br>tation | Twelve-week<br>trial of<br>progressive<br>lower extremity<br>resistance<br>training,<br>progressive<br>functional and<br>balance training<br>vs. "placebo<br>motor activity"<br>(calisthenics,<br>games, memory<br>tasks). Intensity<br>at 70-90%<br>maximum<br>workload, 3<br>times a week, 12<br>weeks. | Walking velocity (pre/post/3<br>months): exercise<br>(0.54±0.21/0.73±0.21/0.72±0.<br>28m/s) vs. controls<br>(0.50±0.18/0.44±0.20/0.49±0.<br>15m/s). Total activity:<br>exercise<br>(9.9±4.8/20.2±3.5/11.0±6.5)<br>vs. controls<br>(6.5±2.3/7.9±3.5/6.5±3.2).                                                           | "[P]rogressive<br>resistance<br>training and<br>progressive<br>functional<br>training are safe<br>and effective<br>methods to<br>increase strength<br>and functional<br>performance<br>during<br>rehabilitation in<br>patients after hip<br>surgery and a<br>history of<br>injurious falls." | Heterogeneity<br>of patients<br>may preclude<br>robust<br>conclusions.<br>Age over 75,<br>all female.<br>Most results<br>did not persist,<br>suggesting<br>lack of<br>adherence to<br>behavioral<br>changes. |
| Unlu<br>2007<br>RCT  | 4.0 | N = 26<br>1-2 years<br>after hip<br>arthroplasty                                                                                  | Group 1 (home<br>exercise<br>program) vs.<br>group 2 (PT<br>supervised<br>hospital based<br>program) vs.<br>group 3 (control)                                                                                                                                                                             | Improvements in gait speed<br>(pre/post): group 1<br>( $67.8\pm23/74.4\pm24$ ) vs group 2<br>( $48.5\pm4/56.7\pm5$ ) vs. group 3<br>( $58.0\pm12/59.8\pm14$ ). Maximum<br>isometric abduction torque<br>group 1 ( $30\pm12/38\pm11$ ft-lbs.)<br>vs. group 2 ( $18\pm10/30\pm9.8$ ) vs<br>group 3 ( $18\pm10/19\pm8$ ). | "[B]oth home and<br>supervised<br>exercise<br>programmes are<br>effective one<br>year after total<br>hip arthroplasty.<br>Home exercise<br>programmes with<br>close follow-up<br>could be<br>recommended."                                                                                   | Small sample<br>sizes.<br>Suggests<br>improvements<br>in either home<br>exercise or<br>supervised<br>training<br>groups. No<br>clear<br>functional<br>advantage of<br>supervised<br>program.                 |

#### **POST-OPERATIVE ACTIVITIES AND SPORTS**

There are three primary methods to assess appropriate sports or activities for hip arthroplasty and hip fracture patients: epidemiological studies, biomechanical models, and experimental studies.(1390) The available studies from these different methods produce substantial conflicts that are not readily resolved. Since the evidence conflicts and the epidemiological studies are the gold standard for the development of quality guidance,(1391-1393) this review emphasizes epidemiological studies.

Exercise recommendations are developed largely without epidemiological data. The following activities have been recommended: bicycling, ballroom dancing, croquet, golf, horseshoes, shooting, shuffleboard, swimming, doubles tennis, and walking.(1390, 1394) Activities recommended with appropriate experience included low-impact aerobics, road bicycling, bowling, canoeing, hiking, horseback riding and cross-country skiing. Activities recommended against included baseball, basketball, football, jogging, singles tennis, and volleyball. There was no conclusion regarding square dancing, fencing, ice skating,

speed walking, downhill skiing, or weight lifting.(1390, 1394) However, these recommendations do not necessarily conform with epidemiological evidence.

It has been argued that high-impact loading activities should be prohibited in hip arthroplasty patients; (1336) however, increased risk of loosening has been reported among patients who were *not* skiing compared with skiers. (1055) The same researchers also reported a longer term trend of accelerated wear in the more physically active group. (1055) Another study found an approximately 9-fold greater risk for loosening among patients engaged in no sporting activity compared with those engaged in sports (e.g., hiking, climbing, skiing, swimming, running, cycling, and tennis). (1395) Uncemented prostheses have been reported to have less radiographic loosening in active golfers. (1056) Another study found no apparent deteriorating effect of intensive recreational activities. (1054) Higher rates of aseptic loosening are reported among men in registry studies and case series; (1047, 1396) however, whether that is related to force is unknown. Currently, the balance of the epidemiological literature does not support the argument that activity results in loosening.

Studies on prosthetic wear rates have been used to imply appropriate work limitations for the postarthroplasty patient; however, no quality studies have been reported that address the appropriateness of work limitations. Additionally, the avocational studies reviewed above do not provide quality evidence in support of activity limitations. Thus, although reduced return-to-work status has been reported among patients with more physically demanding work(1397) there is not a strong rationale for work restrictions in the post-surgical hip population.

Recommendation: Post-Operative Vocational or Avocational Activities There is no recommendation for or against specific vocational or avocational pursuits postoperatively.

#### Strength of Evidence - No Recommendation, Insufficient Evidence (I)

#### Rationale for Recommendation

Quality evidence does not sufficiently support evidence-based guidance and therefore there is no recommendation for or against specific vocational or avocational activities.

#### Evidence for the Use of Vocational or Avocational Activities

There are no quality studies evaluating the use of vocational or avocational activities.

# **PSYCHOLOGICAL SERVICES**

Psychological issues appear to be substantially less prevalent among patients with osteoarthrosis compared with spine disorders for unclear reasons. Thus, psychological services are rarely needed for hip pain patients (see Chronic Pain chapter for further discussion of psychological evaluation).

#### 1. Recommendation: Psychological Evaluation for Chronic Hip Pain

A psychological evaluation is recommended as part of the evaluation and management of patients with chronic hip pain with any of the below indications in order to assess whether psychological factors will need to be considered and treated as part of the overall treatment plan.

*Indications* – 1) Hip pain or dysfunction that persists longer than typical for the condition; 2) disability or impairments thought to be disproportionate to usual or expected findings; 3) demonstration or suspicion of significant psychosocial dysfunction; 4) medication issues and/or drug problems;(1398-1401) 5) current or premorbid major psychiatric symptoms or disorder thought to be impacting disorder; 6) non-compliance with the prescribed treatment regimen; or 7) experiencing delayed functional recovery.

Strength of Evidence – Recommended, Insufficient Evidence (I)

2. Recommendation: Cognitive Behavioral Therapy (CBT) for Patients with Subacute or Chronic Hip Pain

# Cognitive-behavioral therapy is recommended as an adjunct to an interdisciplinary program for treatment of subacute or chronic hip pain.

Indications – Specific indications for CBT in chronic pain conditions are:

- 1. Management of clinically significant behavioral aberrations and/or anxiety during opiate weaning or detoxification;
- 2. A component therapy integrated into an interdisciplinary or other functional restoration program;
- Clinically significant problems of noncompliance or non-adherence to prescribed medical or physical regimens;
- 4. Vocational counseling for resolution of psychosocial barriers in return to work (requires a current or imminent medical release to return to work);
- 5. Resolution of interpersonal, behavioral, or occupational self-management problems in the workplace, during/after return to work, where such problems are risk factors for loss of work or are impeding resumption of full duty or work consistent with permanent restrictions.

*Frequency/Duration* – Therapy provided for the above indications should be limited to 6 sessions or less. When therapy is provided as a component of an interdisciplinary or functional restoration program, the number of sessions is based on the needs of the program to provide relevant treatment objectives.

*Indications for Discontinuation* – Noncompliance, failure to obtain functional or behavioral improvement, or resolution of problems.

#### Strength of Evidence - Recommended, Insufficient Evidence (I)

#### Rationale for Recommendations

There are no quality studies specifically addressing hip pain as nearly all studies evaluated low back pain patients (see Chronic Pain and Low Back Disorders chapters). Psychological assessments are routinely accomplished for the purposes given above, including treatments for which various levels of evidence are provided herein, e.g., functional rehabilitation or interdisciplinary pain programs, candidacy for certain procedures, or chronic use of opioid medications. Evaluations are moderate cost and, when done appropriately, present little risk of harm.

#### Evidence for the Use of Psychological Evaluations/Cognitive-Behavioral Therapy

There are no quality studies evaluating the use of psychological evaluations for patients with chronic hip pain. However, there are quality studies evaluating spine patients (see Low Back Disorders and Chronic Pain chapters).

# **REHABILITATION FOR DELAYED RECOVERY**

#### BIOFEEDBACK

Biofeedback is a behavioral medicine method providing automated information and training to improve control of certain physiologic processes which are normally inaccessible to a subject's perception. Biofeedback most commonly involves surface EMG input to a monitor with audible or visual feedback of the degree to which there is muscle activity.(1402) Through this feedback, the patient may learn to control the degree of muscle contraction.

Recommendation: Biofeedback for Chronic Hip Pain There is no recommendation for or against the use of biofeedback for chronic hip pain.

#### Strength of Evidence - No Recommendation, Insufficient Evidence (I)

#### Rationale for Recommendation

Biofeedback is not invasive, has no complications, and is moderately costly. However, there are other efficacious treatment strategies.

#### Evidence for the Use of Biofeedback

There are no quality studies for use of biofeedback for treatment of hip pain patients.

#### FUNCTIONAL RESTORATION

Functional restoration is both a type of interdisciplinary pain management and rehabilitation program and a general approach to medical care. Fundamental elements of a functional restoration approach include assessment of the patient's dynamic physical and functional status including traditional tests for strength, sensation, and range of motion. Psychosocial strengths and stressors must also be assessed including the patient's support system; evidence of mood disorders; assessment of education and skills; medication use; presence of litigation; and work capacity. Following this evaluation, the emphasis is on expectation management, directed conditioning and exercise, cognitive behavioral therapy, setting functional goals and decreased medication use. An ongoing assessment of patient participation and compliance (with documentation of complicating problems and progress toward specific goals, including reduction in disability and medical utilization) is needed.

In functional restoration, the treatment team members are educators. Passive therapies and invasive interventions are de-emphasized while home exercise/self-management efforts are stressed. There should be a shift of health, function, and well-being responsibility (locus of control) from physicians and therapists to the patient. A functional restoration approach may include the limited/adjunctive use of medications and interventional measures (where specifically indicated) however, these should not be viewed as ongoing solutions. It may also involve institution of preventive measures, education for relapse prevention, proper activity and work pacing, ergonomic accommodation, and when appropriate, transitional return to employment.

Functional restoration's goals are returning to a productive life despite having a chronic pain problem and mitigation of a patient's suffering. If an individual fails to recover within the appropriate biological healing time frame, the acute care paradigms of specific diagnosis and treatment change to biopsychosocial approaches that address pain, function, work, and psychological factors impeding progress. Treatment programs focus on restoration of work-related function. These programs include work conditioning and work hardening, interdisciplinary pain rehabilitation programs and functional rehabilitation. Because functional restoration is an approach, not just a specific program, the approaches taken both overlap on a continuum.

#### WORK CONDITIONING, WORK HARDENING, AND EARLY INTERVENTION PROGRAMS

Work conditioning and work hardening programs are often recommended for patients who are not able to return to work because of persistent symptoms and functional limitations following acute care and rehabilitation. Early intervention functional restoration programs are sometimes recommended during the first 3 to 6 months if the injured worker is noted to have increased risk factors and evidence of delayed recovery. These risks and delays suggest that a more coordinated functional restoration approach with a psychosocial emphasis is needed beyond conditioning or hardening alone.

#### Work Conditioning and Work Hardening Programs

Differentiating work conditioning from work hardening is problematic as the terms are sometimes used interchangeably. The American Physical Therapy Association (APTA) defines work conditioning as "an intensive, work-related, goal-oriented conditioning program designed specifically to restore systemic neuromusculoskeletal functions (e.g., joint integrity and mobility, muscle performance (including strength, power, and endurance), motor function (motor control and motor learning), range of motion (including muscle length), and cardiovascular/pulmonary functions (e.g., aerobic capacity/endurance, circulation, and ventilation and respiration/gas exchange)."(1403) APTA classifies work conditioning as a single-discipline program and work hardening program as interdisciplinary. The Commission on Accreditation of Rehabilitation Facilities (CARF) defines occupational rehabilitation as work conditioning, and comprehensive occupational rehabilitation as work hardening. Although not universally accepted, some physicians consider work conditioning as a generalized endurance and strengthening program that includes work simulation activities, whereas work hardening is a program where a specific job has been

identified and stresses involvement in sets of occupationally-related tasks and functional activities that are directly related to a patient's work. Work conditioning and work hardening programs in the U.S. are heterogeneous and are often provided by a single-therapy discipline, either physical or occupational therapy.(1404-1406)

Work conditioning and work hardening programs generally involve structured programs of gradually increased levels of exertion to bridge a significant gap between the patient's current physical or perceived capabilities and the requirements needed to return to everyday activities and work. Regardless of the terminology used, the most successful programs involve a detailed appreciation of the worker's capabilities, a detailed knowledge of the job physical requirements (if possible, obtained from on-site analysis or familiarity), and individualization of the program to address specific deficits that are barriers to return to work. These programs can be somewhat heterogeneous with varying components and there is some overlap with multidisciplinary programs.

Work conditioning and work hardening programs focus on increasing physical efforts, using fear avoidance belief training if necessary. These programs may also use a cognitive-behavioral model and overlap with early intervention programs. In the majority of return-to-work situations, work conditioning or work hardening programs are not required as the gap between worker abilities and capabilities are not sufficiently large to justify either the time or expense. These programs are generally utilized for workers involved in significant materials handling tasks that commonly involve high-force expenditures or highly repetitious activities. Not infrequently, work conditioning or work hardening programs are the next step after conventional physical or occupational therapy is exhausted and a gap remains to return the patient back to work, particularly in the subacute pain setting. These programs are also utilized for patients who have tried to return to work but failed due to either the gap between abilities and capacities or the lack of modified duty in physically demanding occupations. These programs are not invasive and have low adverse effects, but are moderate to high cost depending on program length.

Patients who may benefit from work conditioning or hardening include those who: 1) remain completely off work or are on modified duty for 6 to 12 weeks; 2) have not responded to less costly interventions including a 4 to 6 week physical or occupational therapy program or a graded therapy program of at least 6 to 8 weeks that includes aerobic and strengthening exercise components; 3) have a stated strong interest and expectation to return to work; 4) involve cooperation of the employer; 5) are supervised by a qualified physical or occupational therapist; 6) have had a careful assessment of their occupational demands; 7) have a FCE that indicated appropriate performance effort and consistency at a level of work lower than that to which they need or wish to return; and 8) are in a program that includes a cognitive-behavioral approach with a focus on function rather than pain, a conditioning or aerobic exercise component and simulated graded work tasks, and is tailored to their needs and identifies gaps between current capabilities and job demands.

#### Early Intervention (Functional Restoration) Programs

Early identification and appropriate management of patients exhibiting signs of delayed recovery is believed to decrease the likelihood that they will go on to develop chronic pain.(1407) These patients may benefit from a limited but intense program of physical restoration with a strong emphasis on education that identifies barriers to recovery and return to work. They may require an abbreviated early intervention interdisciplinary rehabilitation program (IPRP), preferably using functional restoration principles, rather than a longer program utilized for more complex cases. Early intervention programs are an alternative to work conditioning and work hardening programs for subacute or patients with early chronic pain who have evidence for delayed recovery with an increased need for education and psychological assessment and intervention. These programs are usually appropriate in cases of work incapacity lasting 3 to 6 months. The interdisciplinary functional restoration program used for early intervention contains the features of a functional restoration IPRP, but involves lower intensity and duration of services than a program for patients with greater chronicity of disability. The type, intensity, and duration of services is dictated by the patient's unique rehabilitation needs and may be used for those who fail work conditioning and work hardening programs, usually within 6 months of onset of

disability post-injury. The time frame of 3 to 6 months post-injury is vital for intervening with the most effective treatment possible in order to avoid the negative sequelae that come with increasing duration of disability. During this time, normal musculoskeletal healing generally occurs, eliminating any remaining physical barriers to intensive rehabilitation. Such programs are appropriate for prevention, before the patient is entrenched in a chronic pain syndrome or before severe pain and illness behavior evolves.

# Recommendation: Work Conditioning, Work Hardening, or Early Intervention Programs for Chronic Hip Pain Syndromes

# Work conditioning, work hardening, and early intervention programs are recommended for treatment of chronic hip pain syndromes.

*Frequency/Duration* – Three (3) to 5 times a week for work conditioning and early intervention programs; daily for work hardening. Weekly evaluations demonstrating sufficient levels of physical effort and consistency, compliance with the plan of care, and functionally significant progress toward the return-to-work goal must be documented to justify continuation. Program length and intensity is dictated by each patient's unique rehabilitation needs.

#### Strength of Evidence – Recommended, Insufficient Evidence (I)

#### Rationale for Recommendation

There are no quality studies of hip pain patients and limited evidence that work conditioning, work hardening, or early intervention programs are effective for chronic spinal pain, nevertheless there is a longstanding belief and experience that they are highly effective. While there is potential for overlap, work conditioning, work hardening, and early intervention are distinct programs and are not intended for sequential use, although this might be appropriate in certain situations depending on program components. In acute cases, where delayed recovery is not an issue, these programs are inappropriate. In more chronic cases, particularly with pain and illness behavior and a high level of reported dysfunction, a more intense IPRP should be considered. Although less costly, work conditioning, work-hardening, and early intervention programs do not need to be attempted before moving to an IPRP as long as a quality interdisciplinary program with proven outcomes is accessible to the patient. Program choice depends on availability and matching patient needs to the services offered to provide the most cost-effective and beneficial outcome. Hence, these programs might provide the greatest potential impact when used to manage patients during the subacute phases of injury, although they might also be appropriate for use in those with chronic pain who do not, after evaluation, have significant psychosocial factors contributing to their clinical presentation.

*Evidence for the Use of Work Conditioning, Work Hardening, and Early Intervention Programs* There are no quality studies evaluating the use of work conditioning, work hardening, and early intervention programs for chronic hip pain.

# INTERDISCIPLINARY PAIN REHABILITATION PROGRAMS

An interdisciplinary pain rehabilitation program (IPRP) is a type of chronic pain management program that uses a biopsychosocial paradigm (preferably employing a functional restoration approach), that can enhance function, reduce pain and illness behavior, and mitigate chronic pain associated disability. These programs are intended to manage psychological, social, physical and occupational factors and are discussed in detail in the Chronic Pain chapter. All IPRP programs involve an integrated team of professionals who provide intensive, coordinated care. This team may include physical and occupational therapists, psychologists, vocational counselors, nurses, and case managers. Quality programs emphasize functional recovery and active, progressive physical activity and generally involve intensive 5days-a-week treatment regimens that should be individualized. **All medical and therapy services must be supervised by a physician who is directly involved with the program and regularly interviews and examines the patient for relevant parameters.** For reasons that are unclear, there appear to be few hip pain patients who require these programs. Nevertheless, a minority of patients may derive benefits (see Chronic Pain chapter for on program components, criteria for admission, treatment objectives, inpatient care, and follow-up).

#### Recommendation: IPRPs for Chronic Hip Pain

#### A multidisciplinary or interdisciplinary program (IPRP) with a focus on behavioral or cognitivebehavioral approaches combined with conditioning exercise is recommended for patients who due to chronic hip pain, demonstrate partial/total work incapacity.

*Indications* – Chronic hip pain in patients who are not working, or unable to return to full duty, and have significant, pain-related limitations in activities of daily living. Patients should have failed other standard approaches (e.g., physical therapy, occupational therapy, interventions, medication) and have reasonable probability of recovery.

*Frequency/Duration* – Median 20 days, with trial of the first 10 days to assess patient compliance, attendance, and progress. Program duration is variable due to the patient's needs, the rehabilitation strategies used, and the demonstrated program outcomes. IPRP treatment is generally provided 5 full days per week, though slightly fewer hours and longer calendar durations are utilized in some programs. Complicating problems involving activities of daily living (such as coordinating part-time employment, transportation, or child care needs) or limitations imposed by co-morbid medical conditions which preclude the patient from participating in the program full-time (thus preventing them an assessment at 10 days) are considerations that might necessitate program modification.

*Indications for Discontinuation* – Failure to improve, noncompliance, resolution of symptoms and disability, exhaustion of reasonable program duration for a specific condition.

#### Strength of Evidence – Recommended, Insufficient Evidence (I)

#### Rationale for Recommendation

Participation in an IPRP to treat chronic hip pain patients has not been evaluated in quality studies. These programs may be helpful if there is medical need to wean the patient from opioids or other medications and/or if the patient has shown demonstrable clinical progress with less intense rehabilitation but "pain limitation" has impeded adequate recovery. Development of entrenched psychosocial barriers to recovery and a chronic pain syndrome as sequelae of the original physical components of the injury may be associated with this group of patients. Functional restoration might be appropriate, as well as vocational re-entry in positions not requiring the same job physical characteristics when all previous treatments have failed. With the possible exception of workplace-based interventions, most successful multidisciplinary programs appear to utilize either a cognitive-behavioral approach or involve psychologists.(1408-1411) While exercise is a major focus in many of these successful programs,(1408-1412) the one trial that compared a graded exercise approach with a participatory ergonomics approach found exercise inferior.(1413) This suggests that of the options available, the participatory ergonomics approach may be superior to other approaches.(1414) These heterogeneous studies also suggest that multidisciplinary programs that focus on functional improvements are superior.

IPRPs of the types described in the literature are not invasive, have few adverse effects, but are high cost. Some U.S.-based programs involve significant interventions, but there is no documentation of superior outcomes from such programs which can cost \$20,000 to \$50,000. IPRPs are indicated for select, more severely affected patients, including those who have failed appropriate conservative management (e.g., appropriate medications, specific exercises, etc.). Generally, these referrals are most indicated in the early chronic pain management timeframe (3 to 6 months). However, there are times when earlier referral in the mid- to late-subacute interval is indicated. (Physicians should be aware that there is a belief that earlier referral results in higher probability of successful treatment, but that supposition has not been rigorously tested and is prone to a strong spectrum bias whereby all patients tend to do worse the longer they have a acute, subacute, or chronic pain condition.) Referrals beyond 6 months might also be indicated if there has been failure to progress with numerous interventions and there is reasonable expectation for potential benefits. Referrals during the subacute phase best occur when there is a quality program with proven outcome efficacy is available, the patient has documented delayed recovery, yet there is interdisciplinary assessment that the patient is likely to benefit from the program.

# **APPENDIX 1. ANESTHETIC ISSUES FOR HIP SURGERY PATIENTS**

### ANESTHESIA/ANALGESIA TECHNIQUES

Major hip/knee surgery is most commonly performed under anesthesia delivery through one or more techniques, including general anesthesia, intrathecal (spinal) block or epidural block. Selection of the best anesthesia technique is usually individualized based on underlying patient medical history and practitioner preferences.

Post-operative pain control is achieved through a wide number of techniques, including parenteral opioid administration through patient controlled anesthesia delivery systems (PCA), single dose or continuous infusion of local anesthetic and/or opioids through intrathecal or epidural indwelling catheters, adjuvant regional blocks such as caudal block, femoral 3-in-1 block, psoas compartment block, facia iliaca compartment block, lumbar plexus block, local infusion at the surgical site, and finally through administration of oral medications such as opioids, non-steroidal anti-inflammatories and acetaminophen (see anesthesia evidence table for RCTs reviewed related to major hip/knee surgery and anesthetic/analgesic technique for post-operative pain control).

Post-operative analgesia that attenuates pain and improves patient satisfaction in the immediate recovery period is the most common outcome measure found in quality literature. Poor pain control is thought to restrict rehabilitation and functional recovery. Two moderate-quality studies have shown a reduced hospital stay with adequate pain control versus comparison groups.(1415, 1416) However, these studies were conducted in other health care systems and may not be applicable in the United States. In contrast, another quality study examining analgesia quality and functional improvement showed no difference in recovery of physical independence despite improved pain relief.(1417) The significance of pain control and long-term rehabilitation and functional outcomes measures appears somewhat uncertain, requiring further research.

#### **Regional Blocks**

1. Recommendation: Regional Blocks – Caudal Block with Buprenorphine A caudal block with buprenorphine is moderately recommended.

#### Strength of Evidence – Moderately Recommended, Evidence (B)

#### Rationale for Recommendation

A high-quality study comparing the addition of buprenorphine to bupivacaine caudal block provided increased duration of analgesia on average 8 hours (2 versus 10 hours).(1418)

2. Recommendation: Fascia Iliaca Compartment Block (FICB) for Emergency Room Management of Hip Fractures

Fascia iliaca compartment block (FICB) is moderately recommended for emergency room management of hip fractures.

#### Strength of Evidence – Moderately Recommended, Evidence (B)

#### Rationale for Recommendation

A high-quality study demonstrated that a fascia iliaca compartment block with bupivacaine provided superior pain relief compared with IM morphine injection in the emergency room for patients with suspected hip fracture.(1419)

3. Recommendation: Posterior Lumbar Plexus Block Posterior lumbar plexus block is moderately recommended. Strength of Evidence – Moderately Recommended, Evidence (B)

#### Rationale for Recommendation

A high-quality study demonstrated lumbar plexus block improving pain control and reducing PCA morphine requirements up to 4 hours after surgery over sham block. Long-term reduction of morphine (24 hours) and reduced hospital stay trended positive, but the study lacked statistical power to reach significance.(1420) A moderate-quality study comparing posterior lumbar plexus block in general

anesthesia patients demonstrated reduced postoperative analgesic requirements and reduced blood loss in both postoperative (170ml versus 310ml) and intraoperatively (420ml versus 538ml).(1421) Another moderate-quality study demonstrated improved patient satisfaction and analgesia with a continuous lumbar plexus block compared with PCA morphine alone.(1422) Therefore, there is evidence that lumbar plexus block is effective for short-term pain control and may have the added benefit of reducing blood loss, although of limited clinical significance in most patients. Continuous lumbar plexus block may be an effective alternative to epidural or spinal analgesia.

 Recommendation: Psoas Compartment Block (PCB) with or without IV Clonidine There is no recommendation for or against the use of Psoas compartment block (PCB) with or without IV clonidine.

Strength of Evidence - No Recommendation, Insufficient Evidence (I)

#### Rationale for Recommendation

A moderate-quality study comparing psoas block to PCA morphine demonstrated no added benefit for psoas block except in the immediate 4 hours post-operative.(1423) Another moderate-quality study demonstrated clonidine administered IV prolonged the duration of analgesia compared to perineural block and placebo.(1424) However, despite improvement in duration, there were no differences in analgesic requirements or pain scores, making the result of uncertain clinical significance.

# 5. Recommendation: Surgical Wound Infiltration with Local Anesthetic Surgical wound infiltration with local anesthetic is recommended.

#### Strength of Evidence – Recommended, Evidence (C)

#### Rationale for Recommendation

A moderate-quality study investigated if wound infiltration of ropivacaine prolongs the analgesia provided by bupivacaine/fentanyl spinal block compared with PCA morphine and ketorolac analgesia.(1416) The study demonstrated significant reduction of pain, reduced rescue medication usage, and a nearly 2.5 day reduction in hospital stay.

6. Recommendation: Femoral Nerve Block Femoral nerve block is not recommended.

#### Strength of Evidence – Not Recommended, Evidence (C)

#### Rationale for Recommendation

A moderate-quality study comparing 3-in-1 femoral nerve block with a sham block in patients that underwent general anesthesia found no difference in pain scores or analgesic requirements.(1425) Another moderate-quality study compared femoral nerve block with PCA anesthesia,(1423) demonstrating no added benefit and recommended against this intervention. A high-quality study showed adequate analgesia after psoas compartment block, with no added benefit of tramadol IV or perineurally.(1426) The results however are obscured by co-interventions, including lumbar plexus block. Therefore, there is limited evidence that femoral nerve block is inadequate for long-term pain relief of hip arthroplasty.

#### **Opioids (Oral, Parenteral, Iontophoresis)**

lontophoresis is a method of transdermal administration of ionized drugs in which electrically charged molecules are propelled through the skin by an external electrical field.

1. Recommendation: Pre-operative Oral Morphine **Pre-operative use of oral morphine is recommended.** Strength of Evidence – **Recommended, Evidence (C)** 

#### Rationale for Recommendation

A high-quality study demonstrated that pre-operative oral administration of morphine sulfate did not reduce pain scores post-operatively, but did reduce post-operative consumption of opioids.(1427)

Prophylaxis with buprenorphine administered orally and IM, as well as IM morphine, did not provide any benefit over placebo.(1428) Oral opioids are inexpensive, have few adverse effects in pretreatment doses, and may provide added benefit despite their short half-life. Therefore, limited evidence supports pre-operative prophylaxis with oral morphine.

2. Recommendation: Oral Opioids for Post-operative Pain Control

Scheduled oral morphine (20mg every 4 hours) is recommended for post-operative pain control.

Strength of Evidence – Recommended, Evidence (C)

3. Recommendation: Oral Opioids for Post-operative Pain Control Oral opioids are moderately recommended for post-operative pain control.

# Strength of Evidence – Moderately Recommended, Evidence (B)

# Rationale for Recommendations

A high-quality study demonstrated oral morphine (20mg) administered every 4 hours provided statistically significant reduction in PCA morphine use versus lower dose oral morphine (10mg) and placebo.(1429) However, patients in all groups were similarly satisfied with pain control quality of treatment, suggesting limited clinical significance. A moderate-quality study presented equivocal results of meperidine versus tramadol in post-operative pain relief, as both provided only partial analgesia.(1430) Oral Tramadol provided no benefit over paracetamol and codeine in another study.(1431) Moderate-quality studies of oxymorphone(1432) and oral transmural fentanyl citrate(1433) and a low quality of controlled release oxycodone(1415) demonstrated these synthetic opioids provided analgesic relief over placebo. However, many of the patients in the intervention group withdrew from the treatment arm, or had better but not excellent pain control. A moderate-quality study compared oral morphine (20mg) to IM morphine (10mg), and found no difference in quality of pain control.(1434) Therefore, the available evidence supports the use of oral opioids for treating post-operative pain in patients who undergo general anesthesia. The quality of analgesia from oral opioids is inferior to epidural and spinal analgesics as detailed in recommendation summaries for epidural and spinal anesthesia.

4. Recommendation: Patient-controlled Analgesia (PCA) Opioids The use of patient-controlled opioids is strongly recommended.

Strength of Evidence – Strongly Recommended, Evidence (A)

# Rationale for Recommendation

Patient-controlled analgesia (PCA) is commonly used to deliver parenteral opioid medications. Many of the reviewed interventional studies for anesthesia/analgesia techniques utilize PCA delivery of opioids as an objective measure (gold standard) for effectiveness. There are no quality studies of PCA opioid versus placebo, as parenteral opioid is the gold standard for analgesic relief. However, in a majority of studies reviewed, PCA morphine or other opioid is used as the rescue medication. As an example, comparison of epidural diamorphine to PCA morphine demonstrated both were effective, with no advantage to either technique.(1435) Thus, each study using PCA confirms the effectiveness of intervention. Evidence for the use of one opioid over another via PCA is limited.

Few quality studies compared opioids used in PCA. A moderate-quality study comparing PCA morphine with PCA meptazinol showed no differences in pain control or adverse effects, thereby providing no advantage over morphine.(1436) There were also no differences found between morphine and diamorphine.(1437) A moderate-quality study comparing variable-dose PCA versus a fixed-dose PCA of morphine, did not find any advantage of one over the other.(1438) Tramadol used in a PCA also provides adequate anesthesia but with higher incidence of nausea and vomiting and lower quality analgesia scores than PCA morphine, and thus should be considered a second-line alternative to morphine or other opioids.(1439)

# 5. Recommendation: Opioid Iontophoresis

#### There is no recommendation for or against the use of opioid iontophoresis.

#### Strength of Evidence - No Recommendation, Insufficient Evidence (I)

#### Rationale for Recommendation

There are two moderate-quality studies of iontophoresis for systemic opioid delivery. Iontophoresis of morphine demonstrated sufficient systemic delivery of morphine to provide early postoperative analgesia.(1440) Iontophoresis of fentanyl was also shown to be effective in postoperative analgesia, comparable to PCA morphine.(1441) Both studies have limitations, as there were significant differences in baseline comparability in the first, and the co intervention of rofecoxib in the latter, making the results of uncertain application. Thus, although this technique may provide an alternative to parenteral or oral opioid delivery, there is insufficient evidence to recommend it as a 1st-line therapy.

#### **NSAIDS for Pain Management**

1. Recommendation: Prolonged Pre-operative Prophylaxis with NSAIDs Prolonged pre-operative prophylaxis with NSAIDs is not recommended.

#### Strength of Evidence – Not Recommended, Evidence (C)

#### Rationale for Recommendation

A high-quality study(1442) compared ibuprofen 600mg TID versus placebo for 2 weeks pre-operatively in patients undergoing hip replacement. The ibuprofen group had statistically significant differences in blood loss in the intraoperative (700mL versus 416mL) and post-operative periods (461mL versus 380mL), with total blood loss 1,161mL versus 796mL (p <0.01). There were no differences in post-operative pain scores or morphine consumption. A moderate-quality study(1443) tested ibuprofen 800mg plain and with 60mg codeine versus placebo in a single prophylactic dose, demonstrating both had a small effect reducing opioid consumption in the first 5 hours. Blood loss was not mentioned in the study. Therefore, pretreatment with ibuprofen, and inferred to other NSAIDS, is not recommended, as it has an adverse effect on hemostasis, and any postoperative effect on pain can likely be gained through other techniques.

2. Recommendation: IV Acetaminophen and Propacetamol

#### IV acetaminophen and propacetamol are moderately recommended.

Strength of Evidence – Moderately Recommended, Evidence (B)

#### Rationale for Recommendation

A high-quality study demonstrated that IV acetaminophen (1gm) or propacetamol (2gm, equivalent to 1gm acetaminophen) administered over a 24-hour period provided more effective relief of pain than placebo measured by reduced morphine usage (38.3±35.1 versus 40.8±30.2 versus 57.4±52.3) and longer duration to rescue medication (3 hours versus 0.8 hours).(1444)

# 3. Recommendation: Ketorolac During Post-operative Period Ketorolac is strongly recommended during the post-operative period.

Strength of Evidence – Strongly Recommended, Evidence (A)

#### Rationale for Recommendation

There are 5 high-quality studies demonstrating ketorolac as an effective analgesic in the post-operative period. Ketorolac 30mg IV provided faster onset of relief (10 minutes), lower percentage of patients requiring rescue medications (48% versus 73% placebo), and using significantly lower doses of rescue medication.(1445) Ketorolac 30mg IV with 5mg an hour infusion had less severe pain ratings at 4 hours and 35% less requirement for morphine.(1446) Ketorolac 60mg IV compared to diclofenac and placebo showed both NSAIDS having significantly lower pain scores and morphine usage over 24 hours.(1447) Ketorolac 30mg IM at the start of the operation, and 4 scheduled doses every 6 hours, also demonstrated powerful analgesia over 24 hours.(1448) A single oral dose of 10mg was shown to be as effective as two fenazon (Doleron) tablets.(1449) Ketorolac 60 mg in post-operative pain relief,

although of uncertain benefit in post-hip arthroplasty patients.(1450) Therefore, there is strong evidence to recommend ketorolac (IV, IM, and oral preparations) for post-operative pain control. Caution however is warranted particularly in elderly and other patients with reduced glomerular filtration rates in whom the kidneys may be dependent on prostacylcin for renal blood flow.

#### 4. Recommendation: COX-2 Selective NSAIDs During Post-operative Period

# COX-2 selective NSAIDs are strongly recommended during the post-operative period but only when bone healing is not required.

*Indications* – COX-2 selective NSAIDs have evidence of efficacy, however, there are also concerns that they might inhibit bone healing and therefore, should be used with caution, or avoided altogether, in the acute post-operative period in situations where bone healing is required, such as in fracture repair or in hip replacements where cementless acetabular and/or femoral components are utilized.(316)

*Indications for Discontinuation* – Patients taking anti-coagulation regimens as concomitant use with non-selective COX inhibitors may increase the risk of hemorrhaging.

#### Strength of Evidence – **Strongly Recommended, Evidence (A)** Rationale of Recommendation

#### There are 3 high- and one moderate-quality studies supporting the efficacy of cyclooxygenase 2 (COX-2) inhibitors for post-operative analgesia. Lumiracoxib 400mg once daily was demonstrated to be more effective than placebo, with similar efficacy as naproxen 500mg BID.(1451) Valdecoxib (Bextra®) was found effective in both 20mg and 40mg doses, (1452) reducing the amount of morphine required by 34% over placebo. Parecoxib (Prexige<sup>®</sup>), the prodrug of valdecoxib, was most effective in the 40mg dose.(1453) Rofecoxib (Vioxx<sup>®</sup>) reduced pain scores over placebo. The study also measured inflammatory markers from the wound drain site. The authors suggest "that upregulation of prostaglandin E<sub>2</sub> and interleukin 6 at central sites is an important component of surgery induced inflammatory response in patients and may influence clinical outcome." (1454) Of this class of NSAIDS, one drug, celecoxib (Celebrex<sup>®</sup>) is currently on the U.S. market. By inference, it will likely show similar effects of providing postoperative analgesia. It should be noted that concomitant use of non-selective COX inhibitors and anti-coagulation regimens may increase the risk of hemorrhage. There is also concern that COX inhibitors, particularly COX-2 inhibitors, may inhibit bone healing. Therefore, these agents should be used with caution or avoided altogether in acute post-operative period where bone healing is required, such as in fracture repair or in hip replacements where cementless acetabular and/or femoral components are utilized.(316)

5. Recommendation: Non-selective and Less-selective COX-inhibiting NSAIDs During Post-operative Period

Non-selective and less-selective COX-inhibiting NSAIDs are moderately recommended during the post-operative period.

Strength of Evidence – Moderately Recommended, Evidence (B)

#### Rationale for Recommendation

There are multiple studies evaluate the post-operative analgesic use of NSAIDs that have included ketoprofen, piroxicam, and diclofenac. One moderate- and one low-quality study support the use of ketoprofen for post-operative analgesia. Intravenous ketoprofen was demonstrated to be as efficacious as epidural morphine with fewer adverse effects (pruritus, urinary retention, respiratory depression) in a 13-hour follow-up.(1455) Ketoprofen administered IM was demonstrated to be as efficacious as 6mg morphine IM in a weak study with low sample size.(1456) Two moderate-quality studies demonstrated piroxicam reduced post-operative morphine consumption by 50%(1457) and buprenorphine by 42%(1458) – both studies showed reduced pain scores over placebo without significant adverse effects. Another moderate-study of piroxicam with epidural opioids vs. systemic morphine was conducted, but because of multiple interventions conclusions regarding piroxicam are weak.(1459) Two moderate-quality studies from the same author demonstrated indomethacin delivered via suppository provided improved analgesia over placebo by reduction of morphine requirements and improving pain scores,

without significant adverse effects.(1460, 1461) Thus, there is evidence that indomethacin is effective in post-operative analgesia. One high-quality study demonstrated excellent analgesia from IV diclofenac equivalent to ketorolac without significant adverse effects.(1447) Two moderate-quality studies demonstrated diclofenac delivered IM provided improved analgesia over papaveretum (opioid) by reduction of morphine requirements and improving pain scores, without significant adverse effects.(1462) Thus, there is evidence that from multiple trials of multiple NSAIDs that these medications are effective in post-operative analgesia.

#### 6. Recommendation: Tricyclic Antidepressants (TCAs) During Post-operative Period **Tricyclic antidepressants are moderately not recommended during the post-operative period.** Strength of Evidence – **Moderately Not Recommended, Evidence (B)**

#### Rationale for Recommendation

A high-quality study demonstrated post-operative treatment with amitriptyline 50mg QHS for 3 nights provided no statistically significant benefit in any of the outcomes measures.(1463) Although TCAs have been found helpful in chronic pain, there is no evidence of benefit in the studied population.

### 7. Recommendation: Nefopam During Post-operative Period Nefopam is recommended during the post-operative period.

#### Strength of Evidence – Recommended, Evidence (C)

#### Rationale for Recommendation

Nefopam is a centrally acting nonopioid analgesic agent with anti-shivering effects that is structurally related to antihistamines and anti-Parkinsonian drugs. In combination with PCA morphine, oral nefopam demonstrated significant morphine-sparing with lower immediate post-operative pain scores without major adverse-effects. The analgesic effect seemed to be particularly notable for patients with intense preoperative pain. Based on limited evidence, nefopam is recommended for post-operative analgesia.

#### **Epidural Anesthesia/Analgesia**

1. Recommendation: Epidural – Single Injection-Extended Release Epidural Morphine

There is quality evidence that single epidural injection of extended release morphine is more effective than parenteral or oral opioid medications for post-operative analgesia in this group of patients. However, epidural catheters and injections in the presence of DVT prophylaxis are associated with potentially severe adverse effects. Therefore, it is recommended for highly select use in patients who are without contraindications and who are closely monitored. Extended release morphine provides longer term analgesia than morphine.

Strength of Evidence – Recommended, Insufficient Evidence (I)

#### Rationale for Recommendation

There is one high-quality study which shows significant pain relief over placebo for 48 hours with a single epidural injection of extended release epidural morphine.(1464) This technique has a primary advantage of eliminating the indwelling epidural catheter. There is no quality data comparing extended release epidural morphine to other opioid or opioid-local combination continuous infusions. There was a statistically significant increase in vomiting and pruritus versus placebo. There were an increased number of patients with respiratory depression, although not statistically significant. Another moderate-quality study(1465) demonstrated a single epidural bolus of 2mg morphine (non-extended release) was superior to a single IM morphine 10mg injection. Another moderate-quality study also suggests an additional benefit of pre-operative epidural opioid (morphine 75µg/kg) injection in reducing physiological stress to surgery reflected by lower serum cortisol levels.(1466) However, either injections or catheters utilized when there is DVT prophylaxis have also been associated with major adverse effects. Thus, use of injections and catheters when patients are treated for DVT prophylaxis should be carefully considered and balanced with the adverse risks and highly select use is recommended with careful monitoring of adverse effects.

#### 2. Recommendation: Continuous Epidural Opioids

There is quality evidence that opioid epidural analgesia is more effective than parenteral or oral opioid medications for post-operative analgesia in this group of patients. However, epidural catheters and injections in the presence of DVT prophylaxis are associated with potentially severe adverse effects. Therefore, it is recommended for highly select use in patients who are without contraindications and who are closely monitored.

Strength of Evidence – Recommended, Insufficient Evidence (I)

#### Rationale for Recommendation

Three moderate-quality RCTs support the use of epidural opioid analgesia over parenteral or oral opioid analgesia. A moderate-quality RCT showed continuous epidural of both morphine or fentanyl was effective in pain control with minimal adverse effects.(1467) Another moderate-quality RCT showed epidural pethidine (meperidine) to be superior to IM pethidine.(1468) However, either injections or catheters utilized when there is DVT prophylaxis have also been associated with major adverse effects. Thus, use of injections and catheters when patients are treated for DVT prophylaxis should be carefully considered and balanced with the adverse risks and highly select use is recommended with careful monitoring of adverse effects.

3. Recommendation: Epidural Local Anesthetics with Opioids

There is quality evidence that continuous epidural infusions of local anesthetics (bupivacaine, levobupivacaine) in combination with opioids are effective in providing post-operative analgesia. However, epidural catheters and injections in the presence of DVT prophylaxis are associated with potentially severe adverse effects. Therefore, it is recommended for highly select use in patients who are without contraindications and who are closely monitored.

Strength of Evidence – Recommended, Insufficient Evidence (I)

#### Rationale for Recommendation

A high-quality study of bupivacaine and morphine continuous infusion(1469) versus placebo demonstrated superior analgesia without any significant differences in rehabilitation and functional recovery compared to placebo. A moderate-quality study demonstrated excellent analgesic relief of bupivacaine in combination with fentanyl or morphine, with no difference in analgesic effect between the two. Patients receiving morphine demonstrated a statistically significant decrease in SpO<sub>2</sub> which was clinically insignificant in the population.(1470) Another moderate-quality study of the efficacy of bupivacaine with 5 different opioids (fentanyl, morphine, methadone, diamorphine, and meperidine) demonstrated that all combinations provided adequate pain relief with no differences in analgesic quality between opioids. The adverse effect profiles showed significant differences, each with specific characteristics, with no conclusion on which opioid is superior. (1471) There is one moderate-quality study comparing the efficacy of epidural morphine versus bupivacaine, which demonstrated longer analgesia (28 versus 4.3 hours) in the morphine group.(1472) A study of epidural tramadol added to lidocaine anesthesia did not provide any clinical benefit for post-operative analgesia. (1473) However, either injections or catheters utilized when there is DVT prophylaxis have been associated with major adverse effects. Thus, use of injections and catheters when patients are treated for DVT prophylaxis should be carefully considered and balanced with the adverse risks; highly select use is recommended with careful monitoring of adverse effects.

4. Recommendation: Continuous Epidural Local Anesthetics Only

There is quality evidence that continuous epidural infusion of local anesthetics in the absence of opioids provides effective post-operative analgesia, and theoretically may provide an alternative to opioid analgesia for patients who have contraindications. However, epidural catheters and injections in the presence of DVT prophylaxis are associated with potentially severe adverse effects and a high adverse effect profile for hypotension has been reported.(1417) Therefore, there is no recommendation for or against use of continuous epidural local anesthesia.

Strength of Evidence - No Recommendation, Insufficient Evidence (I)

#### Rationale for Recommendation

A high-quality study demonstrated adequate post operative pain relief without detectable motor blockade using a high concentration of levobupivacaine (0.25%).(1417) A moderate-quality study showed continuous infusion of bupivacaine provided significantly better analgesia than PCA morphine, and allowed patients to be discharged sooner from the post-anesthesia care unit.(1474) Another moderate-quality study demonstrated epidural ropivacaine at multiple rates of infusion was superior to PCA morphine in all doses, and suggested an optimal dose of 10 ml/hr of 0.2% to limit adverse effects of urinary retention and hypotension.(1475) There are no quality studies comparing local anesthetic infusions to combination local-opioid infusions, or to other local anesthetic agents (i.e., bupivacaine versus levobupivacaine). Therefore, there is no recommendation for the use of one agent or technique over another. However, injections or catheters utilized when there is DVT prophylaxis have also been associated with major adverse effects. Thus, use of injections and catheters when patients are treated for DVT prophylaxis should be carefully considered and balanced with the adverse risks and highly select use is recommended with careful monitoring of adverse effects. As the adverse effects of this intervention have included hypotension, there is no recommendation for or against use of anesthetics alone delivered by continuous epidural.

5. Recommendation: Epidural Local with Clonidine

As epidural catheters and injections in the presence of DVT prophylaxis are associated with potentially severe adverse effects, an epidural local with clonidine it is recommended for highly select use in patients who are without contraindications and who are closely monitored.

Strength of Evidence – Recommended, Insufficient Evidence (I)

#### Rationale for Recommendation

Clonidine is an  $\alpha$  adrenoceptor agonist and is believed to have antinociceptive properties.(1476) A moderate-quality study comparing extradural clonidine alone and in combination with morphine versus morphine alone demonstrated less PCA morphine requirement and longer time to first use in the clonidine (50µg) group and in the morphine/clonidine combination group, but with no difference between these two.(1477) Epidural clonidine provided improved analgesia and anesthesia in a combination intrathecal/epidural clonidine study.(1478) These studies suggest that clonidine is effective in immediate postoperative pain in epidural analgesia, both alone and in combination with opioids. However, either injections or catheters utilized when there is DVT prophylaxis have also been associated with major adverse effects. Thus, use of injections and catheters when patients are treated for DVT prophylaxis should be carefully considered and balanced with the adverse risks and highly select use is recommended with careful monitoring of adverse effects.

#### Intrathecal Anesthesia/Analgesia

Spinal administration of local anesthetic and other medications is another technique for delivery of operative anesthesia and postoperative analgesia. Controlled trials of intrathecal (IT) administration of local anesthetics, opioids, and combinations of the two are available. Intrathecal analgesia, while effective, has a high incidence of manageable adverse effects, primarily pruritus, nausea, vomiting, urinary retention and respiratory depression. However, epidural catheters and injections in the presence of DVT prophylaxis are associated with potentially severe adverse effects. Therefore, it is recommended for highly select use in patients who are without contraindications and who are closely monitored for adverse effects.

1. Recommendation: Spinal/Local Anesthetic Only Spinal/local anesthetic is recommended for highly select use in patients who are without contraindications and who are closely monitored.

Strength of Evidence – Recommended, Insufficient Evidence (I)

Rationale for Recommendation

There are no quality studies of local anesthetic vs. saline placebo. However, many of the studies reviewed include intrathecal local anesthesia as a control arm. Intrathecal anesthesia generally with bupivacaine or ropivacaine provides post-operative analgesia for approximately 6 hours. Intrathecal anesthesia in most cases is enhanced by the use of opioid adjuvants. Therefore, intrathecal anesthesia with bupivacaine is effective in postoperative pain relief, but another technique is usually added to enhance duration and quality after the immediate post-operative period.

2. Recommendation: Spinal Continuous/Local Anesthetic Spinal continuous/local anesthetic is recommended for select use in patients who are without contraindications and who are closely monitored.

Strength of Evidence – Recommended, Insufficient Evidence (I)

 Recommendation: Spinal/Continuous Opioid Infusion Spinal/continuous opioid infusion is recommended for highly select use in patients who are without contraindications and who are closely monitored.

Strength of Evidence – Recommended, Insufficient Evidence (I)

#### Rationale for Recommendations

There is high-quality evidence that intrathecal opioids provide superior analgesia of postoperative lower extremity surgery compared to parenteral opioids. The primary opioids studied are morphine, sufentanil, fentanyl and meperidine. There is insufficient evidence to recommend one opioid over another as they each have different adverse effect profiles. Careful selection by the practitioner is warranted. A highguality study of intrathecal sufentanil compared with parenteral sufentanil(1479) showed the continuous spinal route of administration with more rapid, better quality, and longer duration analgesia compared with the intravenous route. A moderate-quality study comparing continuous spinal anesthesia vs. single shot showed continuous anesthesia to have the advantage of providing better postoperative analgesia over PCA morphine, with better hemodynamic stability during general anesthesia induction.(1480) There are no quality studies comparing continuous infusion to placebo. There is one moderate-quality study comparing continuous intrathecal morphine versus epidural bupivacaine, which reported a high level of technical complications with catheters, recommending against indwelling intrathecal catheters. (1481) Two high-quality studies and one moderate-quality study compare the efficacies between opioids. No difference between intrathecal morphine-6-glucuronide and morphine sulfate as measured by objective measures (PCA pain relief) were found.(1482) A moderate-quality study described excellent results in pain relief with no recommendation between intrathecal suferitanil or fentanyl (40µg).(1483) Another moderate-guality study comparing intrathecal fentanyl infusion (120µg/24 hours) versus intrathecal morphine (bolus or infusion) found the fentanyl infusion to be inadequate, but the morphine bolus or infusion to be equally effective in the first 18 hours. (1484) However, either injections or catheters utilized when there is DVT prophylaxis have also been associated with major adverse effects. Thus, use of injections and catheters when patients are treated for DVT prophylaxis should be carefully considered and balanced with the adverse risks and highly select use is recommended with careful monitoring of adverse effects.

#### 4. Recommendation: Spinal – Combination Local/Opioid Anesthetic Spinals with combination local/opioid anesthetic are recommended for highly select use in

patients who are without contraindications and who are closely monitored.

Strength of Evidence – Recommended, Insufficient Evidence (I)

#### Rationale for Recommendation

There is one moderate-quality study of local spinal anesthesia without opioids compared to spinal anesthesia with opioids. However, many of the studies reviewed for other adjuvant therapies include intrathecal local anesthesia with and without opioid as control arms, which have demonstrated enhancement of the spinal block by the use of opioids. A high-quality study comparing IT bupivacaine alone with IT bupivacaine with morphine did not address pain relief, but demonstrated a delay in gastric emptying in the morphine group.(1485) Intrathecal bupivacaine was less effective as the control arm

versus IT bupivacaine with opioid(1486) in a moderate-quality study. Another moderate-quality study demonstrated a significant improvement in duration of analgesia with the addition of diamorphine to bupivacaine.(1487) There are two other moderate-quality studies comparing single IT injections of morphine to another opioid. In the first study,(1488) morphine 1.0mg was more effective than diamorphine 0.75mg in reducing PCA rescue analgesia. In a second study,(1489) nalbuphine was more effective at reducing PCA use with faster onset of pain relief than morphine (.160mg). Caution must be taken in making inferences regarding opioid preference because of the wide difference in morphine dosages. However, either injections or catheters utilized when there is DVT prophylaxis have also been associated with major adverse effects. Thus, use of injections and catheters when patients are treated for DVT prophylaxis should be carefully considered and balanced with the adverse risks and highly select use is recommended with careful monitoring of adverse effects.

 Recommendation: Spinal – Clonidine in Combination with Local Anesthetics Spinals with clonidine are recommended for highly select use in patients who are without contraindications and who are closely monitored.

Strength of Evidence – Recommended, Insufficient Evidence (I)

6. Recommendation: Spinal – Clonidine Alone or in Combination with Opioids Spinals with clonidine are moderately not recommended.

#### Strength of Evidence – Moderately Not Recommended, Evidence (B)

#### Rationale for Recommendation

Clonidine, an alpha-adrenoreceptor agonist, has been used as an adjuvant or opioid substitute in intrathecal anesthesia. There is conflicting quality evidence for support of clonidine, with the balance opposing routine use of clonidine. Clonidine provides no additional benefit to concomitant use of intrathecal opioids in the dosages studied. However, clonidine with opioid may be considered an effective substitute when bupivacaine is contraindicated. A high-quality study comparing administration of 75µg clonidine with IT morphine (0.5mg) versus intrathecal morphine (0.5mg) alone versus placebo showed no added benefit, as both were profoundly better than placebo. Further, the incidence of emesis was similar to the morphine group and patients receiving clonidine had a significantly lower mean arterial blood pressure. (1490) A similar moderate-quality study comparing 75µg clonidine to 1.0mg morphine demonstrated weak effect for clonidine and strong effect for morphine.(1491) A moderate-quality study comparing a clonidine (75µg)/meperidine combination versus morphine (0.5mg) as an adjuvant to IT bupivacaine provided no added benefit and again resulted in hypotension.(1486) Intrathecal clonidine was shown to cause less bladder distension compared with morphine in a moderate-quality study.(1492) In another moderate-quality study, IT clonidine dose-response was evaluated, showing significant analgesia improvement over placebo. The authors recommend clonidine 150µg, which was double that used in other described trials.(1493) Clonidine was shown to be an effective adjunct with bupivacaine in a combination intrathecal/epidural local anesthetic with clonidine study.(1478) Based on available evidence, clonidine does not appear to be effective alone as an intrathecal agent or in combination with opioids. There is limited evidence suggesting clonidine can act as an adjunct with intrathecal bupivacaine. However, either injections or catheters utilized when there is DVT prophylaxis have also been associated with major adverse effects. Thus, use of injections and catheters when patients are treated for DVT prophylaxis should be carefully considered and balanced with the adverse risks and highly select use is recommended with careful monitoring of adverse effects.

 Recommendation: Spinal Infusion – Ziconotide Spinal infusion with ziconotide is moderately not recommended.

#### Strength of Evidence – Moderately Not Recommended, Evidence (B)

#### Rationale for Recommendation

Continuous intrathecal infusion of ziconotide, an N-type calcium channel blocker, versus placebo was studied in a high-quality RCT in two different doses (7µg/h versus 0.7µg/h).(1494) The high dose was demonstrated to be significantly more effective than placebo in analgesia. However, there was a high

adverse effect profile that resulted in discontinuation of the higher dose. The lower dose was not statistically different than placebo. Therefore, ziconotide spinal infusion is not recommended at either of the doses in this study. Future studies may determine if there is an effective dose that balances adverse effects.

### **Prevention of Adverse Effects**

1. Recommendation: Tropisetron for Control of Adverse Effects of Spinal Opioid Anesthesia Tropisetron is not recommended for patients receiving spinal anesthesia with local anesthetic and morphine.

### Strength of Evidence – Not Recommended, Evidence (C)

#### Rationale for Recommendation

Tropisetron is a selective 5-HT3 receptor antagonist used for control of nausea and emesis. A moderatequality study of tropisetron given to patients receiving spinal infusion of bupivacaine/morphine was compared with saline placebo.(1495) The addition of tropisetron showed no significant difference in postanesthesia rates of nausea, emesis, or pain control. Therefore, there is moderate evidence against the use of tropisetron to control adverse effects related spinal anesthesia in this patient population.

 Recommendation: Spinal – Naloxone for Control of Respiratory Depression The addition of intravenous naloxone infusion in combination with local/opioid intrathecal infusion is not recommended.

### Strength of Evidence – Not Recommended, Evidence (C)

#### Rationale for Recommendation

A moderate-quality study compared the ventilation in patients given intrathecal bupivacaine and morphine with and without IV naloxone. At 8 and 24 hours postoperatively, there were no significant differences between the comparison groups in ventilation.(1496)

3. Recommendation: Propofol Infusion for Control of Nausea and Emesis Propofol infusion is not recommended for control of nausea and emesis.

Strength of Evidence – Not Recommended, Evidence (C)

 Recommendation: Phenothiazines for Control of Nausea and Emesis There is no recommendation for or against the use of phenothiazines. Strength of Evidence – No Recommendation, Insufficient Evidence (I)

#### Rationale for Recommendations

A high-quality study demonstrated propofol infusion (30mg/hour) compared to inert lipid emulsion did not provide significant relief of post-operative nausea, emesis, or pruritus.(1497) Therefore, propofol in low dose is not recommended for this use. A low-quality study compared symptomatic relief of cyclizine, perphenazine, prochlorperazine, droperidol, and metoclopramide and domperidone for antiemetic effects. The phenothiazines (perphenazine, prochlorperazine) demonstrated a significant improvement in patient report of nausea.(1498) However, study details were sparse and design unclear, making application of the results difficult.

5. Recommendation: Nicardipine to Induce Hypotension Nicardipine to induce hypotension is not recommended.

#### Strength of Evidence – Not Recommended, Evidence (C)

#### Rationale for Recommendation

A moderate-quality study demonstrated nicardipine to have no advantage over nitroprusside inducing deliberate hypotension during hip surgery to reduce blood loss.(1499) Nicardipine had cumulative and persistent effects after discontinuation. Therefore, nicardipine to induce hypotension is not recommended.

Evidence for the Use of Anesthesia/Analgesia

There are 25 high-quality and 47 moderate-quality RCTs incorporated in this analysis. There are 2 lowquality RCTs(1456, 1498) included in the treatment of adverse anesthesia effects section below for completeness but they were not relied upon to develop guidance.

| Author/Year     | Scor   | Sampl      | Comparison                     | Results                                              | Conclusion        | Comments                                     |
|-----------------|--------|------------|--------------------------------|------------------------------------------------------|-------------------|----------------------------------------------|
| Study Type      | е      | e Size     | Group                          |                                                      |                   |                                              |
|                 | (0-11) |            |                                |                                                      |                   |                                              |
|                 | 1      | Epi        | dural Anesthesia a             | Ind Analgesia for Hip/Knee Art                       | throplasty        |                                              |
| Viscusi<br>2005 | 9.5    | N =<br>200 | Extended release epidural      | Mean post-op fentanyl<br>consumption significantly   | "EREM<br>provided | May be particularly<br>beneficial in post-op |
|                 |        |            | morphine                       | lower in all groups receiving                        | significant       | rehabilitation as no                         |
| RCT             |        |            | (EREM) 15mg,                   | EREM vs. placebo (p                                  | postoperative     | indwelling epidural                          |
|                 |        |            | 20mg, or 25mg                  | <0.0001). Median time to                             | pain relief over  | catheter is required                         |
|                 |        |            | vs. epidurai<br>saline placebo | fentanyl 3.6 hours in                                | a 40-n penou      | in this often anti-                          |
|                 |        |            |                                | placebo group vs. 21.3                               | surgery, without  | coagulated conort.                           |
|                 |        |            |                                | hours for all patients                               | the need for      |                                              |
|                 |        |            |                                | receiving EREM (p                                    | indwelling        |                                              |
|                 |        |            |                                | <0.0001). Patients receiving                         | epidural          |                                              |
|                 |        |            |                                | increase in vomiting and                             | Callielers.       |                                              |
|                 |        |            |                                | pruritus vs. placebo.                                |                   |                                              |
|                 |        |            |                                | Numerically, more EREM                               |                   |                                              |
|                 |        |            |                                | patients with respiratory                            |                   |                                              |
|                 |        |            |                                | statistically significant                            |                   |                                              |
| Murdoch         | 9.5    | N =        | Continuous                     | Epidural infusion of                                 | "Levobupivacain   | Alternative to opioid                        |
| 2002            |        | 105        | epidural infusion              | levobupivacaine                                      | e as a            | pain control. Side                           |
| PCT             |        |            | of<br>Iovobunivoooino          | administered at 0.0625% vs.                          | continuous        | effect profile high                          |
| RUI             |        |            | at three different             | ml/hour 24 hours Total                               | provided          | (60%)                                        |
|                 |        |            | concentrations                 | normalized dose of                                   | adequate          | (0070).                                      |
|                 |        |            | for post-op pain               | morphine, number of                                  | postoperative     |                                              |
|                 |        |            | relief in patients             | patient-controlled analgesia                         | analgesia. The    |                                              |
|                 |        |            | undergoing knee                | requests, overall post-op                            | 0.25%             |                                              |
|                 |        |            | arthroplasty.                  | significantly lower for 0.25%                        | provided          |                                              |
|                 |        |            |                                | group vs. other two. No                              | significantly     |                                              |
|                 |        |            |                                | difference between groups                            | longer analgesia  |                                              |
|                 |        |            |                                | in maximal motor blockade.                           | than 0.125% or    |                                              |
|                 |        |            |                                | among 3 groups, Rescue                               | levobupivacaine   |                                              |
|                 |        |            |                                | analgesia: no morphine:                              | without any       |                                              |
|                 |        |            |                                | (3%) vs. (11%) vs. (47%)                             | significant       |                                              |
|                 |        |            |                                | (hour): 8 1 vs 9 5 vs 16 7                           | detectable motor  |                                              |
|                 |        |            |                                | Rescue morphine dose                                 | blockade          |                                              |
|                 |        |            |                                | (mg/h): 1.5 vs. 1.0 vs. 0.2.                         | relative to the   |                                              |
|                 | 0.0    | NL 00      | Deet en cretture               | "Enidunel en elso sis sussidad                       | 0.125% group."    | Other and the second second                  |
| F0SS<br>2005    | 8.0    | N = 60     | Post-operative                 | Epidural analgesia provided                          | epidural          | Study examines                               |
|                 |        |            | continuous                     | during all basic physical                            | analgesia after   | analgesia and                                |
| RCT             |        |            | epidural 4                     | functions, and patients were                         | hip fracture      | functional recovery                          |
|                 |        |            | ml/hour infusion               | significantly less restricted                        | surgery           | outcomes. Absence                            |
|                 |        |            | 0 125% and                     | by pain, which was the dominating restricting factor | provides          | or improved                                  |
|                 |        |            | morphine (50µa)                | in the placebo group. Motor                          | analgesia         | control is an                                |
|                 |        |            | vs. saline                     | blockade was not a                                   | attenuating pain  | important finding in                         |
|                 |        |            | placebo                        | restricting factor during                            | as a restricting  | light of the                                 |
|                 |        |            |                                | epidural analgesia. Despite                          | factor during     | numerous studies                             |
|                 |        |            |                                | for recovery of physical                             | without motor     | post-operative pain                          |
|                 |        |            |                                | independence were not                                | dysfunction.      | control method is                            |
|                 |        |            |                                | different between groups."                           | However,          | most effective.                              |

|                       |     |            |                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | superior<br>analgesia did<br>not translate<br>into enhanced<br>rehabilitation.<br>Future studies<br>with multimodal<br>rehabilitation<br>are required to<br>establish<br>whether<br>superior<br>analgesia can<br>be translated<br>into enhanced<br>rehabilitation<br>and reduced<br>morbidity in hip<br>fracture<br>patients "                      |                                                                                                                                                     |
|-----------------------|-----|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|
| Berti<br>1998<br>RCT  | 7.5 | N = 30     | Post-operative<br>anesthesia by<br>continuous<br>epidural infusion<br>of bupivacaine<br>0.125% at<br>4ml/hour) in<br>combination with<br>either fentanyl<br>(0.005mg/ml) vs.<br>morphine<br>(0.05mg/ml)                                                                    | "No differences in pain relief,<br>sedation, or non-respiratory<br>side effects were observed<br>between the two groups.<br>Rescue analgesics were<br>required in three patients in<br>the fentanyl group (20%)<br>and in two receiving<br>morphine (13.3%) (P:NS).<br>Two patients in the fentanyl<br>group and three in the<br>morphine group required<br>oxygen due to SpO2 < 90%<br>(P:NS)." Both opioid/<br>bupivacaine mixtures<br>decreased hemoglobin<br>oxygen saturation compared<br>with pre-op values. Mean +/-<br>SD SpO2 values measured<br>at 3, 6, 12, 24 hours: 94.4<br>+/- 1, 92.6 +/- 0.9, 92 +/- 0.8,<br>and 92.8 +/- 1 in morphine<br>group, 95.3 +/- 0.5, 95 +/-<br>0.5, 94.6 +/- 1.2, and 95.6<br>+/- 1 in fentanyl group (p<br><0.05). | "Continuous<br>epidural infusion<br>of bupivacaine-<br>morphine or<br>bupivacaine-<br>fentanyl<br>mixtures<br>provided similar<br>pain relief.<br>Patients<br>receiving<br>morphine<br>showed a more<br>marked<br>decrease in<br>SpO2 than<br>those receiving<br>fentanyl.<br>However, the<br>average SpO2<br>remained ><br>90% in both<br>groups." | Equivocal results in<br>pain management.<br>Questionable<br>clinical significance<br>of oxygen saturation<br>difference.                            |
| Gedney<br>1998<br>RCT | 7.0 | N =<br>160 | Study groups<br>received epidural<br>infusions of<br>bupivacaine (6-<br>8ml an hour) in<br>combination with<br>morphine (0.05<br>mg/ml) vs.<br>fentanyl (2.0<br>µg/ml) vs.<br>methadone (0.1<br>mg/ml) vs.<br>diamorphine<br>(0.05 mg/ml) vs.<br>pethidine (1.0<br>mg/ml). | "The incidence of nausea<br>and vomiting was<br>significantly greater with<br>morphine than fentanyl ( $p = 0.0097$ ) and pethidine ( $p = 0.0021$ ). The incidence of<br>pruritus was significantly<br>greater with morphine and<br>diamorphine than with<br>methadone (P=0.12) and<br>pethidine (P=0.027).<br>Morphine was also<br>associated with a<br>significantly greater<br>incidence of urinary<br>retention than pethidine<br>(P=0.012) and methadone<br>(P=0.025)."                                                                                                                                                                                                                                                                                  | "Fentanyl had<br>the lowest<br>incidence of<br>severe nausea<br>and vomiting.<br>Methadone the<br>lowest<br>incidence of<br>pruritus,<br>methadone and<br>pethidine the<br>lowest overall<br>incidence of<br>urinary<br>catheterization<br>and pethidine<br>the lowest<br>overall<br>incidence of                                                   | Pethidine is also<br>known as<br>meperidine<br>(Demerol). There is<br>no clear conclusion<br>by these authors as<br>to which opioid is<br>superior. |

|                         |     |            |                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | side effects.<br>Pethidine is<br>known to have<br>local anesthetic<br>properties which<br>may reduce the<br>total dose<br>required and<br>contribute to the<br>low incidence of<br>side-effects<br>observed "                                                                                                                                                                                                                                      |                                                                                                                                                                      |
|-------------------------|-----|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| White<br>1992<br>RCT    | 7.0 | N = 68     | Bolus followed<br>by continuous<br>epidural infusion<br>of morphine vs.<br>fentanyl.<br>(dosages were<br>variable)                                                                                                      | Pain relief similar in both<br>groups. In morphine group,<br>PaCO2 elevation and<br>nausea occurred over 12<br>hours (p <0.05). In fentanyl<br>group, there was no PaCO2<br>elevation. Nausea more<br>severe (p <0.01) at 6 hours<br>and more frequent (24 hour<br>cumulative incidence, 53 vs.<br>28%, p <0.05) in morphine<br>group. There was a<br>quadratic increase in<br>pruritus over time (p<br><0.001), and it was more<br>severe in the morphine<br>group (p <0.001). | "Side effects of<br>both groups<br>were less on the<br>second day of<br>infusion with the<br>notable<br>exception of<br>pruritus. Side<br>effects were<br>generally less in<br>the fentanyl<br>group. The<br>continuous<br>epidural infusion<br>of opioids, after<br>the initial bolus-<br>related side<br>effects, appears<br>to be a safe<br>technique to<br>provide<br>prolonged and<br>steady pain<br>relief with<br>minimal side<br>effects." | Methodology issues<br>related to treatment<br>(variable bolus and<br>infusion dosages<br>without explanation)<br>make comparison to<br>other studies<br>challenging. |
| Carabine<br>1992<br>RCT | 6.0 | N =<br>100 | Extradural<br>clonidine (25µg/<br>mL/hour) vs.<br>extradural<br>clonidine (50µg/<br>mL/hour) vs.<br>extradural<br>morphine<br>(0.1mg/ mL/hour)<br>vs. clonidine plus<br>morphine (50µg/<br>mL/hour and<br>0.1mg/mL/hr). | Mean arterial blood<br>pressures were lower in<br>clonidine groups. Patients<br>more likely to be awake in<br>clonidine 25µg and<br>combination groups at 30<br>minutes compared with<br>morphine group (p<0.05).<br>PCA morphine doses were<br>14.5/10.5/15.9/9.3mg<br>respectively. Times to first<br>PCA use: 144/286/109/283<br>minutes respectively.                                                                                                                       | The<br>requirements for<br>systemic<br>analgesia were<br>least in the<br>combination<br>and larger dose<br>clonidine group.                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                      |
| Wulf<br>1999<br>RCT     | 5.5 | N = 90     | Ropivacaine<br>epidural<br>anesthesia and<br>analgesia vs.,<br>general<br>anesthesia and<br>PCA morphine                                                                                                                | "On the day of operation,<br>9% of patients in the<br>epidural anesthesia and<br>analgesia (EDA) group<br>received morphine. In the<br>GA/PCA group, 67% of<br>patients received morphine<br>in addition to PCA morphine.<br>Patients with wound pain at<br>rest EDA vs. GA/PCA n(%):<br>2h after arrival in the PACU:<br>1(2.3) vs. 27(60.0) 10h after<br>arrival in the PACU:                                                                                                 | "Compared with<br>general<br>anesthesia and<br>postoperative IV<br>patient-<br>controlled<br>analgesia with<br>morphine,<br>epidural<br>anesthesia and<br>analgesia with<br>the new local<br>anesthetic                                                                                                                                                                                                                                            | No blinding of<br>patient, providers,<br>or assessors.                                                                                                               |

|                           |     |            |                                                                                                                                                            | 9(20.9%) vs. 17(37.8) 48h<br>after arrival in the PACU:<br>4(9.3) vs. 7(15.6)."                                                                                                                                                                                                                                                                                            | ropivacaine<br>enables patients<br>to be<br>discharged<br>sooner from a<br>postanesthesia<br>care unit and<br>provides<br>superior pain<br>relief during the<br>first 24 h after<br>hip<br>replacement "                                                                                                                 |                                                                                                                                                                                              |
|---------------------------|-----|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Gustafsson<br>1986<br>RCT | 5.5 | N = 21     | 1 mg/kg of<br>pethidine IM<br>vs.20mg of<br>pethidine IM vs.<br>60mg of<br>extradural<br>pethidine                                                         | "At 0.25-1.5 h after<br>administration VAS scores<br>were lower in patients<br>treated with extradural<br>doses of pethidine than in<br>those given the drug imp."                                                                                                                                                                                                         | "The present<br>study shows<br>that extradural<br>pethidine<br>produces short-<br>lived analgesia,<br>in contrast to<br>the long-lasting<br>effect of<br>morphine found<br>in other<br>studies."                                                                                                                         | Blinding unclear,<br>small sample size.                                                                                                                                                      |
| Reiz<br>1981<br>RCT       | 5.5 | N = 33     | Single epidural<br>morphine (2mg)<br>injection vs.<br>morphine (10mg)<br>IM injection after<br>hip replacement<br>surgery using<br>epidural<br>anesthesia  | Epidural pain score dropped<br>from 5.3±1.6 to 0.7±0.2 (p<br><0.001) vs. IM morphine<br>5.2±1.2 to 2.7±1.0 (p <0.01).<br>"After the first dose of ED<br>morphine, 5 of the 15<br>patients were totally pain-<br>free, compared to 1 of the<br>18 patients in the IM group."                                                                                                | "The quality of<br>pain relief was<br>substantially<br>higher and the<br>duration of<br>action markedly<br>longer after<br>epidural<br>morphine."                                                                                                                                                                        | Lack of clear<br>statistical analysis<br>weakens<br>inferences.                                                                                                                              |
| Turner<br>1996<br>RCT     | 5.0 | N =<br>151 | PCA morphine<br>vs. epidural<br>ropivacaine<br>(0.2%) infusion<br>at rates of 6, 8,<br>10, 12, or<br>14ml/hour post-<br>operative for<br>knee/hip surgery. | "Median total morphine<br>consumption during the<br>study was 36mg in the<br>control group, 13mg in the<br>6-ml h-1 group. 11mg in the<br>12ml h-1 group and 3mg in<br>the 14-lm h-1 group. Median<br>VAS scores in the control<br>group were 18-30 for the<br>first 10 h whereas VAS<br>scores for the ropivacaine<br>groups did not exceed 8<br>during the same period." | "The overall<br>incidence of<br>side effects was<br>similar, with the<br>exception of a<br>higher incidence<br>of urinary<br>retention and<br>hypotension in<br>the groups<br>receiving the<br>higher rates of<br>ropivacaine.<br>The quality of<br>treatment<br>scores were<br>similar for all<br>treatment<br>groups." | Study suggests<br>10ml/hr group as<br>best dose for<br>analgesia and<br>limited side effects.<br>The results are<br>weakened by lack<br>of blinding and<br>presence of co-<br>interventions. |
| Modig<br>1981<br>RCT      | 5.0 | N = 32     | Epidural<br>morphine vs.<br>0.5%<br>bupivacaine with<br>epinephrine                                                                                        | Mean duration of analgesia<br>was 28 hours in morphine<br>group vs. 4.3 hours for<br>bupivacaine (p <0.001).<br>Epidural morphine group<br>tended to have lower<br>frequency of reduced blood<br>pressures.                                                                                                                                                                | "Epidural<br>morphine<br>certainly has a<br>role in the<br>management of<br>postoperative<br>pain.<br>Administration<br>both by the<br>lumbar and by<br>the thoracic                                                                                                                                                     |                                                                                                                                                                                              |

| Kilickan<br>2000<br>RCT   | 4.0 | N = 60 | Pre-dermal<br>incision<br>intravenous<br>morphine<br>(0.15mg/kg) vs.<br>pre-emptive<br>epidural (75<br>µg/kg) morphine<br>vs. IV saline in<br>hip and knee<br>arthroplasty | "The pre-i.v. group used<br>significantly less morphine<br>than the pre-epi group (p <<br>0.0003). In all groups,<br>plasma cortisol levels<br>increased as compared to<br>pre-op values, but plasma<br>cortisol increased more<br>significantly in the pre-i.v.<br>and control groups within 4<br>hrs of surgery and was still<br>significantly elevated at 7<br>am of the first postoperative<br>morning compared to the<br>pre-epi group (p <0.001) and<br>the increase persisted to the<br>next morning in patients pre-<br>i.v. and control groups. In<br>pre-epi group, VAS pain<br>scores at rest and on<br>movement at 3, 6, 12, 24,<br>and 48hours were<br>significantly less than in the<br>pre-i.v. groups and control<br>groups (p <0.001)" | route resulted in<br>satisfactory pain<br>relief in all<br>patients, without<br>sympathetic<br>block. The time<br>of onset of<br>analgesia was<br>somewhat<br>slower with<br>morphine than<br>with<br>bupivacaine, but<br>its duration was<br>much longer.<br>The quality of<br>postoperative<br>analgesia<br>obtained by<br>epidural<br>morphine was<br>less profound<br>than that<br>following<br>bupivacaine and<br>was not<br>accompanied by<br>sensory,<br>proprioceptive<br>or motor loss,<br>as in the latter<br><u>case.</u> "<br>"Although pre-<br>emptive<br>epidural<br>morphine has<br>failed to<br>decrease<br>postoperative<br>analgesic<br>consumption, it<br>has been able<br>to suppress the<br>surgical stress<br>more<br>significantly<br>than<br>intravenous<br>morphine and a<br>saline control." | Lack of blinding,<br>concealment of<br>treatment allocation.                                                                       |
|---------------------------|-----|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|
| A                         | 0.5 | Intra  | thecal Anesthesia                                                                                                                                                          | and Analgesia for Hip/Knee A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <b>T</b> I · · · ·                                                                                                                 |
| Atanassott<br>2000<br>RCT | 8.5 | N = 30 | continuous<br>intrathecal<br>infusion post-<br>operatively of<br>placebo vs.<br>ziconotide (an N-<br>type calcium                                                          | Use of morphine equivalents<br>for pain relief from all<br>sources of administration<br>(PCA, injection, Ketorolac)<br>compared. High-dose of<br>ziconotide group (7µg/hour)<br>used 6.6±7.7mg of morphine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | rne nigh dose<br>group required<br>significantly less<br>narcotic and<br>non-steroidal<br>medication than<br>placebo as                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | rnis was a phase II<br>trial with<br>discontinuation of<br>the higher dose<br>infusion, and no<br>difference in<br>placebo vs. low |

|                      |     |        | channel blocker)<br>7µg/hour vs.<br>0.7µg/hour                                                                                                                                                                                               | equivalent compared with $26.2\pm20.3$ mg for placebo group (pairwise comparison $p = 0.01$ ), while low-dose ziconotide group $(0.7\mu g/h)$ used $20.7\pm17.7$ mg of morphine equivalent (pairwise comparison vs. placebo $p = .487$ ; vs. high-dose $p = 0.081$ ). No statistical significances in adverse events, although 4 of 6 patients in high dose group developed dizziness, blurred vision, nystagmus, and sedation, which contributed to study drug being discontinued after 24 hours. Symptoms resolved after discontinuation of ziconotide infusion. | shown by<br>decreased PCA<br>morphine<br>equivalent<br>consumption<br>and lower<br>VASPI scores.<br>The low dose<br>group required<br>less morphine,<br>but was not<br>statistically<br>significant.<br>Because of a<br>favorable trend<br>of decreased<br>morphine<br>consumption<br>with an<br>acceptable<br>side-effect<br>profile in the<br>low-dose<br>ziconotide<br>group, 0.7 µg/h<br>may be closer<br>to the ideal<br>dose than<br>7µg/h."       | dose therapy group.                  |
|----------------------|-----|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|
| Grace<br>1995<br>RCT | 8.5 | N = 75 | Intrathecal co-<br>administration of<br>clonidine<br>hydrochloride<br>(75µg) and<br>morphine sulfate<br>(0.5mg) vs.<br>intrathecal<br>morphine<br>(0.5mg) vs.<br>saline placebo in<br>spinal anesthesia<br>for hip<br>replacement<br>surgery | Patient-controlled analgesia<br>(PCA) morphine<br>requirements significantly<br>reduced (p <0001) post-<br>operation by both<br>comparison groups vs.<br>placebo. No significant<br>additional reduction shown<br>in clonidine-morphine group<br>compared to morphine-alone<br>group. Mean arterial blood<br>pressure significantly lower<br>in clonidine/morphine group<br>than others. Incidence of<br>emesis similar to morphine-<br>alone group, and<br>significantly higher than<br>control group.                                                            | "Co-<br>administration<br>of clonidine 75<br>µg and<br>morphine 0.5<br>mg provided<br>profound<br>analgesia after<br>total hip<br>replacement<br>under IT<br>anesthesia, but<br>this combination<br>conferred no<br>additional<br>analgesic<br>benefit over IT<br>morphine 0.5<br>mg alone, and,<br>furthermore, it<br>was associated<br>with marked<br>reductions in<br>mean arterial<br>pressures<br>between 2-5<br>hours after IT<br>administration." | No added benefit of<br>IT clonidine. |

| Fournier<br>2005<br>RCT  | 8.5 | N = 40 | Intrathecal (7.5<br>µg) vs.<br>intravenous<br>sufentanil (1.25<br>mg) for<br>postoperative<br>pain relief after<br>total-hip<br>replacement<br>where total<br>spinal anesthesia<br>was used. | "Post-operatively, patients<br>administered one of the<br>treatment protocols upon<br>reaching VAS pain scale of<br>3. Intrathecal sufentanil<br>treated patients had<br>significantly faster relief of<br>pain than intravenous group.<br>More patients needed<br>rescue bupivacaine in<br>intravenous group (7 of 20<br>vs. 0 of 20, p <0.008),<br>significantly more in<br>intrathecal group reached a<br>pain score of 0 (20 of 20 vs.<br>9 of 20, p <0.001). Time to<br>first analgesic intervention<br>for pain score greater than 3<br>significantly longer in<br>intrathecal group (224 +/-<br>100 vs. 98 +/- 60 minutes, p<br><0.001). Pruritus observed<br>in 5 patients of intrathecal<br>group (p <.047), whereas<br>peripheral oxygen saturation<br>under 95% observed only in<br>6 patients in intravenous<br>group (p <.045)." | "After total-hip<br>replacement,<br>intrathecal route<br>of sufentanil<br>administration<br>rapidly offers<br>excellent<br>analgesia of<br>better quality<br>and longer<br>duration when<br>compared with<br>the intravenous<br>route."                                                                 | Effective pain<br>management<br>strategy in patients<br>undergoing<br>continuous<br>intrathecal<br>anesthesia. In this<br>study, all patients<br>were age 75 or<br>older.                                            |
|--------------------------|-----|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Grace<br>1996<br>RCT     | 8.5 | N = 75 | Intrathecal<br>morphine-6-<br>glucuronide<br>(M6G) at 100µg<br>and 125µg vs.<br>intrathecal<br>morphine sulfate<br>(500µg) for post-<br>operative hip<br>replacement pain<br>control         | Analgesia excellent and<br>similar to that obtained after<br>intrathecal administration of<br>morphine. VAS pain scores<br>recorded post-op low<br>(median = 0) and similar in<br>all groups. Compared to<br>control morphine group,<br>significantly more patients in<br>M6G125 group reported<br>pain as 0 at 6 and 10 hours,<br>while significantly more in<br>M6G 100 group reported 0<br>pain at 24 hours. No<br>significant difference in<br>consumption of post-<br>operative analgesia (PCA)<br>or onset of time to first PCA<br>demand. Incidences of<br>nausea and vomiting high in<br>all groups with no significant<br>differences.                                                                                                                                                                                               | Intrathecal M6G<br>provides<br>excellent<br>postoperative<br>analgesia. More<br>subjects in the<br>intrathecal M6G<br>groups were<br>pain free at 4,<br>10, and 24<br>hours than the<br>morphine<br>sulfate group.<br>Side effects<br>were high in all<br>groups but not<br>significantly<br>different. | Pain relief as<br>measured by<br>subjective pain<br>scale was improved<br>in treatment group,<br>but no clinical<br>difference was<br>observed by<br>objective measures<br>of patient-controlled<br>analgesia (PCA). |
| 1999<br>RCT              | 0.0 | N = 24 | bupivacaine<br>(17.5mg) vs.<br>combination of<br>intrathecal<br>morphine<br>(0.6mg) and<br>bupivacaine<br>(17.5mg) in<br>spinal anesthesia<br>for hip<br>arthroplasty                        | quantified by acetaminophen<br>administration and blood<br>concentration studies were<br>reduced in both groups pre-<br>and postoperatively,<br>respectively; the magnitude<br>of the reduction was greater<br>in the group given morphine.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | combination of<br>intrathecal<br>morphine (0.6<br>mg) and<br>intrathecal<br>bupivacaine<br>(17.5 mg)<br>delays gastric<br>emptying<br>postoperatively.                                                                                                                                                  | inferences in the<br>association of<br>morphine and<br>common side<br>effects of nausea<br>and vomiting, but<br>does not address<br>implications related<br>to effectiveness of<br>opioid treatment.                 |
| Fournier<br>2000<br>Acta | 7.5 | N = 40 | Morphine 160µg<br>vs. nalbuphine<br>400µg                                                                                                                                                    | VAS pain scores decreased<br>more rapidly in nalbuphine<br>group with time to pain                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | After total hip replacement, administration                                                                                                                                                                                                                                                             | Study prematurely<br>terminated due to<br>slow onset of action                                                                                                                                                       |

| Anaesthesiol<br>Scand<br>RCT |     |        |                                                                                                                                                                             | score<3 of 8±6 vs. 31±32<br>minutes, p <0.001 and<br>similar results for time to<br>lowest pain score (18±11 vs.<br>66±75 minutes, p <0.001).                                                                                                                                                                                 | of intrathecal<br>nalbuphine<br>resulted in a<br>significantly<br>faster onset of<br>pain relief and<br>shorter duration<br>of analgesia<br>than intrathecal<br>morphine.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | in morphine group.<br>Dosage of morphine<br>is significantly lower<br>than other studies,<br>making comparison<br>difficult. |
|------------------------------|-----|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|
| Fogarty<br>1993<br>RCT       | 7.5 | N = 90 | Intrathecal<br>clonidine 75µg<br>(100µg if over<br>76kg) vs.<br>morphine 1mg<br>vs. saline                                                                                  | Post-operative morphine<br>consumption much lower in<br>intrathecal morphine group<br>and diverged within 4 hours<br>(graphic representation).<br>Time to first post-operative<br>analgesia 278 vs. 497 vs.<br>153 minutes (p <0.05 for<br>morphine). Total morphine<br>used 27.9 vs. 5.5 vs. 31mg<br>(p <0.05 for morphine). | "Both<br>intrathecal<br>clonidine and<br>intrathecal<br>morphine<br>prolonged the<br>time to first<br>analgesia<br>compared with<br>saline (mean<br>278 (SD 93.2)<br>min, 498<br>(282.4) min and<br>54 (61.9 (min.,<br>respectively)<br>(P< 0.001).<br>Total morphine<br>consumption on<br>the first night<br>after operation<br>was significantly<br>less in the<br>intrathecal<br>morphine<br>group. There<br>were no<br>differences<br>between the<br>clonidine and<br>the control<br>group.<br>Intrathecal<br>clonidine<br>prolonged the<br>duration of<br>spinal<br>analgesia, but<br>was markedly<br>inferior to the<br>intrathecal<br>morphine in<br>providing<br>subsequent<br>post-operative<br>analgesia." | This demonstrated<br>a weak effect of<br>intrathecal clonidine<br>and a strong effect<br>of morphine.                        |
| Pitkanen<br>1993<br>RCT      | 7.0 | N = 54 | Tropisetron 5mg<br>(5-HT3-receptor<br>antagonist) vs.<br>saline placebo in<br>patients<br>undergoing<br>intrathecal<br>bupivacaine<br>(0.5%)/ morphine<br>(0.3mg) block for | No significant differences<br>found between number of<br>patients experiencing<br>nausea/ vomiting for<br>tropisetron (17/11) vs. saline<br>(20/13). No significant<br>differences in pain relief or<br>consumption of analgesic<br>medications between the<br>two groups.                                                    | "Tropisetron<br>has no effect on<br>postoperative<br>nausea,<br>emesis, or pain<br>control in<br>patients who<br>underwent<br>spinal<br>anesthesia with                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Negative study.                                                                                                              |

|                                            |     |        | lower extremity<br>surgery                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | bupivacaine<br>and morphine."                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                           |
|--------------------------------------------|-----|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|
| Fournier<br>Anesth<br>Analg<br>2000<br>RCT | 7.0 | N = 42 | Intrathecal<br>sufentanil (7.5µg)<br>vs. fentanyl<br>(40µg) in<br>bupivacaine<br>spinal anesthesia                                                                           | There were no significant<br>differences between the<br>groups in pain scores,<br>rescue analgesia, adverse<br>effects, elapsed time for pain<br>relief, time to lowest pain<br>score and duration of pain<br>relief.                                                                                                                                                                                                                                                                                                                                                                                        | "After total hip<br>replacement,<br>both lipid<br>soluble opioids<br>produce<br>excellent<br>analgesia with<br>comparable<br>onset, duration<br>of action, and<br>low incidence of<br>minor adverse<br>effects."                                                                                                                                                                                                                                                             | No recommendation<br>of one over the<br>other from this<br>study. Both effective<br>in post-operative<br>pain management. |
| Niemi<br>1993<br>RCT                       | 7.0 | N = 60 | Post-op<br>intrathecal<br>fentanyl infusion<br>(120µg/24 hour)<br>vs. intrathecal<br>morphine<br>infusion<br>(200µg/24 hour)<br>vs. intrathecal<br>morphine bolus<br>(200µg) | "The number of patients<br>given IM administered opioid<br>was larger in fentanyl<br>infusion (18 patients) than in<br>morphine infusion (8<br>patients) ( $p < 0.01$ ). The IM<br>opioid was requested sooner<br>in fentanyl group (18<br>patients, mean 480 min)<br>after the intrathecal injection<br>than in morphine bolus<br>group (13 patients, mean<br>786 min) ( $P < 0.01$ ). Patients<br>in morphine bolus had<br>significantly higher incidence<br>of urinary bladder<br>catheterization than the<br>other two groups. Nausea<br>and pruritus occurred<br>equally often in all three<br>groups." | "Intrathecal<br>infusion of<br>fentanyl at 5<br>pg/h, instituted<br>together with<br>bupivacaine<br>spinal block,<br>was inadequate<br>for<br>postoperative<br>analgesia after<br>hip surgery in<br>elderly patients.<br>Intrathecal<br>morphine (200<br>µg) as a single<br>dose or as a<br>continuous<br>infusion<br>provided better<br>analgesia, and<br>the quality of<br>analgesia after<br>the two modes<br>of<br>administration<br>was similar for<br>the first 18 h." | Fentanyl infusion<br>(without bolus) is<br>less effective in this<br>population than<br>morphine infusion.                |
| Grace<br>1994<br>RCT                       | 7.0 | N = 90 | 11 bupivacaine<br>vs. IT<br>bupivacaine with<br>morphine sulfate<br>(0.5mg) vs. IT<br>pethidine<br>(0.75mg/kg) and<br>clonidine (75µg)                                       | Pethidine-clonidine (PC)<br>anesthesia comparable in<br>quality with that obtained<br>with conventional isobaric<br>bupivacaine. PC was<br>associated with greater<br>hypotension. PC inferior to<br>bupivacaine with morphine.<br>Incidence of side effects did<br>not differ between groups.                                                                                                                                                                                                                                                                                                               | "The<br>combination did<br>not offer any<br>major<br>advantage over<br>conventional<br>agents. The<br>greater<br>incidence or<br>hypotension<br>and the lack of<br>additional<br>analgesia<br>suggest the<br>technique is not<br>indicated for<br>routine use."                                                                                                                                                                                                              | May be useful in<br>rare occasions<br>when a patient is<br>allergic to<br>bupivacaine.                                    |

| Gentili<br>1996<br>RCT | 6.5 | N = 40 | Intrathecal<br>morphine<br>(0.2mg) vs.<br>clonidine (75µg)<br>in combination<br>with bupivacaine<br>spinal anesthesia<br>(15mg) for hip<br>surgery                                                           | All in morphine group, and 5<br>in clonidine group had<br>bladder distension at 12<br>hours. At 24 hours, present<br>in 7 and 1 patient in<br>morphine and clonidine<br>groups, respectively (p <<br>0.001). Naloxone given in 16<br>of morphine and 1 clonidine<br>group. Catheter placed in 1<br>and 6 in morphine and<br>clonidine groups<br>respectively (p < 0.001).                                                                                                           | "We conclude<br>that spinal<br>clonidine<br>impaired<br>bladder function<br>to a lesser<br>extent than<br>morphine."                                                                                                                                                                                                   | No description<br>provided on<br>methodology of<br>measuring bladder<br>distension. Study<br>did not include any<br>measures for<br>symptomatic<br>distension. |
|------------------------|-----|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Fogarty<br>1995<br>RCT | 6.0 | N = 60 | Intrathecal<br>diamorphine<br>0.75mg vs.<br>intrathecal<br>morphine 1.0mg                                                                                                                                    | The cumulative post-<br>operative morphine<br>consumption diverged within<br>4 hours post-operatively with<br>higher consumption in<br>diamorphine group and<br>remained throughout 24-<br>hour observation period<br>(graphic representation).<br>Cumulative morphine<br>consumption was<br>13.0±14.25 vs. 5.8±7.56mg.<br>Adverse effects not<br>demonstrated.                                                                                                                     | "This study<br>demonstrated<br>that in the<br>doses used<br>intrathecal<br>morphine<br>provided<br>superior<br>postoperative<br>analgesia to<br>that after<br>intrathecal<br>diamorphine<br>with no increase<br>in side effects."                                                                                      |                                                                                                                                                                |
| Maurer<br>2003<br>RCT  | 6.0 | N = 68 | Continuous<br>spinal anesthesia<br>and post-<br>operative<br>analgesia vs.<br>single-shot spinal<br>anesthesia                                                                                               | "From 3 hours<br>postoperation, VAS score<br>were significantly lower in<br>the continuous spinal<br>anesthesia group than in the<br>single-shot spinal<br>anesthesia group (P<0.05).<br>Mean arterial pressure<br>dropped less in the<br>continuous vs. single shot<br>group during induction<br>(P<0.05). Postoperative<br>nausea and vomiting was<br>lower in continuous group<br>(P<0.05)."                                                                                     | "Continuous<br>spinal<br>anesthesia/anal<br>gesia is a very<br>practicable<br>method<br>providing better<br>postoperative<br>analgesia and<br>better<br>hemodynamic<br>stability during<br>anesthesia<br>induction than<br>SPA followed<br>by morphine<br>PCA analgesia<br>after total hip<br>replacement<br>surgery." | Results suggest<br>continuous spinal<br>anesthesia provides<br>advantages over<br>single shot<br>anesthesia with<br>PCA analgesia.                             |
| Strebel<br>2004<br>RCT | 6.0 | N = 75 | Spinal<br>anesthesia with<br>bupivacaine<br>(18mg) in<br>combination with<br>saline placebo,<br>clonidine<br>(37.5µg),<br>clonidine (75µg)<br>or clonidine<br>(150µg) (Groups<br>1, 2, 3, 4<br>respectively) | "Time to regression of spinal<br>anesthesia below level L1,<br>was 228±62 min Group 1<br>(control), 311±101 min<br>(+8%) in Group2, 325±69<br>min (+13%) in Group 3, and<br>337±78 min (+17%) in<br>Group 4 (estimated<br>parameter for dose 0.23<br>[95% CI, - 0.05-0.50]). Time<br>interval between spinal<br>anesthesia and first request<br>for supplemental PCA<br>morphine was significantly<br>longer in all clonidine<br>groups. 295±80 min in<br>Group 1 (control), 343±75 | "We conclude<br>that small doses<br>of intrathecal<br>clonidine (≤150<br>µg) significantly<br>prolong the<br>anesthetic and<br>analgesic<br>effects of<br>bupivacaine in a<br>dose-dependent<br>manner and<br>that 150 µg of<br>clonidine seems<br>to be the<br>preferred dose,<br>in terms of                         | Blinding unclear.                                                                                                                                              |

|                        |     |        |                                                                                                                                                                       | min (+16%) in Group 2,<br>$381\pm117$ min (+29%) in<br>Group 3, and 445±136, in<br>(+51%) in Group 4<br>(estimated parameter for<br>dose 1.02 [95% Cl 0.59-<br>145])."                                                                                                                                                                                                                                                                                       | effect versus<br>unwarranted<br>side effects,<br>when<br>prolongation of<br>spinal<br>anesthesia is<br>desired."                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                       |
|------------------------|-----|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|
| Johnson<br>1992<br>RCT | 5.5 | N =3 0 | IT bupivacaine<br>(20 mg) vs. IT<br>bupivacaine + IT<br>morphine (0.3<br>mg) vs. IT<br>bupivacaine<br>(20mg) + IT<br>morphine<br>(0.3mg) + IV<br>naloxone<br>infusion | "There was no statistical<br>difference in ventilation<br>between the three groups<br>pre-operatively, 8 and 24h."                                                                                                                                                                                                                                                                                                                                           | "Naloxone<br>infusion<br>seemed to<br>reduce the risk<br>of developing<br>respiratory<br>depression from<br>the use of<br>postoperative<br>opioids.<br>Furthermore,<br>one third of the<br>elderly had a<br>poor response<br>to hypoxemia<br>before surgery."                                                                                                                                                                                      | Study suggests<br>intrathecal<br>morphine had no<br>effect on ventilatory<br>function in<br>population that 1/3<br>had hypoxemia<br>prior to surgery. |
| Reay<br>1989<br>RCT    | 5.0 | N = 60 | Intrathecal<br>bupivacaine +<br>diamorphine<br>0.25mg or 0.5mg<br>vs. bupivacaine<br>anesthesia                                                                       | Duration of analgesia<br>measured by time from<br>injection to first<br>administration of post-<br>operative analgesic<br>significantly greater in both<br>intrathecal diamorphine<br>groups (p <0.001), but not<br>different between the two<br>diamorphine groups.<br>Analgesic requirements in<br>first 24 hours were<br>significantly different<br>between control and both<br>intervention groups (p,<br>0.001), but not between<br>diamorphine groups. | "Small<br>intrathecal<br>doses of<br>diamorphine<br>provide good<br>postoperative<br>analgesia for<br>periods up to 24<br>h and that<br>0.25mg is as<br>effective as 0.5<br>mg. Although<br>there was no<br>evidence of late<br>respiratory<br>depression, the<br>frequency of<br>adverse effects,<br>in particular<br>urinary<br>retention,<br>nausea and<br>vomiting, was<br>high in both<br>groups<br>receiving<br>intrathecal<br>diamorphine." | Baseline differences<br>present, method<br>details sparse.                                                                                            |
| Niemi<br>1994<br>RCT   | 4.0 | N = 55 | Continuous<br>intrathecal<br>morphine<br>(8.3µg/hour) vs.<br>epidural catheter<br>(200µg/hour<br>+0.25 %<br>bupivacaine<br>4ml/hour) for hip<br>arthroplasty          | Spinal vs. epidural: need for<br>additional opioids – number<br>of patients: 9/20 vs. 4/20;<br>number of doses: 17 vs. 5;<br>time to first IM. oxycodone<br>(mean, minute): 716±SD 271<br>vs. 1082±SD 377.                                                                                                                                                                                                                                                   | "The combined<br>spinal-epidural<br>technique for<br>post-operative<br>pain relief was<br>technically more<br>often successful<br>than a<br>continuous<br>spinal catheter<br>technique after<br>hip arthroplasty.                                                                                                                                                                                                                                  | There were high<br>rates of technical<br>problems not<br>reported in other<br>studies.                                                                |
|                    |     |        |                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                | Because of<br>technical<br>problems and<br>the frequent<br>occurrence of<br>side effects,<br>spinal opioid<br>therapy via<br>intrathecal<br>catheters cannot<br>be<br>recommended<br>for pain control<br>after hip<br>arthroplasty."                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                          |
|--------------------|-----|--------|-------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|
| Bogoch             | 9.5 | N =    | Lumbar                                                                                                                                          | Morphine use lower in                                                                                                                                                                                                                                                                                                                                                          | Block group                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Results suggest                                                                                                          |
| 2002<br>RCT        |     | 115    | paravertebral<br>nerve block<br>compared with<br>sham procedure                                                                                 | immediate postoperative<br>period of 0-4 hours<br>(11.6 $\pm$ 9.7 versus<br>21.5 $\pm$ 10.7mg, p = 0.001).<br>Morphine use trended<br>towards less use over 24<br>hours, but was not<br>significant. Pain ratings<br>trended towards favoring the<br>blocks. Length of hospital<br>stay trended in favor of the<br>blocks (7.0 $\pm$ 2.9 vs. 8.0 $\pm$ 3.3<br>days, p = 0.09). | required<br>approximately<br>10mg less<br>morphine for<br>pain control<br>than controls<br>first 4 hours<br>post-op (p <<br>0.001). No<br>significant<br>differences in<br>morphine use<br>between groups<br>4 to 24 hours<br>post-op. "Visual<br>analog scale<br>pain score<br>measurements<br>at 4, 8, and 24<br>hours did not<br>differ<br>significantly<br>between<br>groups.<br>Paravertebral<br>nerve block of<br>lumbar plexus is<br>an invasive<br>procedure with<br>some risk.<br>Considering the<br>added risk and<br>minimal<br>benefits, routine<br>use of this<br>procedure is not<br>supported." | lack of power for<br>statistical<br>significance,<br>including for a<br>shorter hospital<br>stay.                        |
| Gao<br>1995<br>RCT | 8.5 | N = 30 | Bupivacaine vs.<br>bupivacaine with<br>buprenorphine in<br>caudal block for<br>post-operative<br>pain relief in hip<br>and knee<br>arthroplasty | The duration of analgesia<br>was much longer (mean 606<br>minutes vs. 126 minutes p<br><0.001) in those receiving<br>added buprenorphine; mean<br>morphine consumption in<br>the first 24 hours was halved<br>(14mg vs. 28mg) and patient<br>satisfaction greatly<br>increased.                                                                                                | No significant<br>differences in<br>incidence of<br>complications<br>although group<br>which had<br>added<br>buprenorphine<br>had a lower<br>incidence of<br>vomiting.                                                                                                                                                                                                                                                                                                                                                                                                                                         | Relatively low cost<br>to add<br>buprenorphine to<br>caudal black<br>increasing<br>analgesic time on<br>average 8 hours. |

| Foss<br>2007<br>RCT                       | 8.0 | N = 48 | Patients with<br>suspected hip<br>fracture given<br>fascia iliaca<br>compartment<br>block (FICB) with<br>1.0%<br>mepivacaine on<br>affected side,<br>with saline<br>injection placebo<br>on contralateral<br>vs. saline<br>injected FICB<br>placebo with<br>0.1mg morphine<br>injection on<br>contralateral side | "Maximum pain relief was<br>superior in the FICB group<br>both at rest (P<0.01) and on<br>movement (P=0.02). The<br>median total morphine<br>consumption for rescue pain<br>was significantly higher in<br>the placebo group. More<br>patients were sedated in the<br>morphine group at 180<br>minutes after block as<br>compared with the FICB<br>group."                                                                                                                                                                                                                          | "Pain relief was<br>superior at all<br>times and at all<br>measurements<br>in the FICB<br>group."                                                                                                                                                                                                                                                                                                                                                          | The study suggests<br>FICB is a superior<br>pain management<br>technique to<br>morphine IM<br>injection in the<br>emergency<br>department for<br>patients suspected<br>to have a hip<br>fracture.              |
|-------------------------------------------|-----|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Mannion<br>Anesth<br>Analg<br>2005<br>RCT | 7.0 | N = 36 | Psoas<br>Compartment<br>Block (PCB) with<br>0.4 ml/kg of 0.5%<br>levobupivacaine<br>in combination<br>with intravenous<br>saline vs.<br>intravenous<br>clonidine<br>(1µg/kg) vs.<br>clonidine<br>(1µg/kg) in PCB                                                                                                 | "The interval from time of<br>completion of block injection<br>to first supplementary<br>analgesic administration was<br>longer in IV clonidine group<br>compared with placebo<br>(mean ±sd.13.4 ±6.1 versus<br>7.3 ±3.6h; P=0.03). There<br>was no difference between<br>IV and PCB clonidine. Pain<br>scores at rest or on<br>movement were similar<br>among groups except at rest<br>on 24 h when IV clonidine<br>group had a lower pain<br>score than placebo, P= 0.02.<br>There were no significant<br>differences among groups<br>regarding postoperative<br>adverse events." | "IV, but not<br>perineural,<br>administration<br>of clonidine (1<br>µg/kg)<br>prolonged the<br>duration of<br>analgesia of<br>PCB with 0.5%<br>levobupivacaine<br>in patients<br>undergoing hip<br>fracture<br>surgery."                                                                                                                                                                                                                                   | Despite increasing<br>duration of post-op<br>analgesia, there<br>were no differences<br>in analgesic<br>requirements or<br>pain scores, leading<br>this result to be of<br>uncertain clinical<br>significance. |
| Biboulet<br>2004<br>RCT                   | 6.5 | N = 45 | PCA morphine<br>vs. femoral nerve<br>block versus<br>psoas<br>compartment<br>block                                                                                                                                                                                                                               | VAS pain scores lower in<br>both block groups.<br>Cumulative morphine<br>consumption over 48 hours<br>were median 17 vs. 21 vs.<br>8mg, however the results<br>were not significant other<br>than in the initial<br>assessments.                                                                                                                                                                                                                                                                                                                                                    | "PCA morphine<br>associated with<br>proparacetamol<br>and<br>indomethacin,<br>was a safe and<br>effective<br>analgesic<br>technique, after<br>(4th post-<br>operative hour).<br>Systematic<br>administration of<br>morphine at the<br>end of the<br>intervention has<br>been proposed<br>to improve<br>immediate<br>postoperative<br>analgesia. The<br>addition of a<br>FNB provided<br>no analgesic<br>advantage,<br>except just after<br>the extubation. | The results suggest<br>a lack of power to<br>detect a beneficial<br>effect of psoas<br>compartment blocks<br>on total post-<br>operative opioid<br>consumption.                                                |

|                         |     |        |                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | The PCB was<br>an effective<br>analgesic<br>technique but<br>only during the 4<br>postoperative<br>hours, and this<br>benefit could be<br>offset by a high<br>rate of<br>potentially<br>dangerous<br>epidural<br>diffusion.<br>According to<br>these results,<br>FNB and PCB<br>should not used<br>routinely after<br>THA." |                                                                                                                 |
|-------------------------|-----|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|
| Bianconi<br>2003<br>RCT | 6.5 | N = 37 | Patients<br>undergoing hip<br>replacement with<br>bupivacaine/<br>fentanyl spinal<br>block and<br>receiving either<br>morphine<br>(0.5mg/hour)<br>plus ketorolac<br>(3.6mg/hour) i.v.<br>infusion with<br>saline wound<br>infusion vs.<br>saline i.v.<br>infusion with<br>ropivacaine<br>irrigation and<br>wound instillation<br>(0.2% at<br>5ml/hour) | Ropivacaine wound<br>instillation group showed a<br>significant reduction in post-<br>operative pain at rest and on<br>mobilization (p <0.05);<br>rescue medication<br>requirements greater in<br>morphine group.<br>Ropivacaine group had<br>significant reduction in<br>length of hospital stay<br>compared with morphine<br>group (6.34 (0.67) and 8.79<br>(1.39) days respectively; p<br><0.05). Total ropivacaine<br>plasma concentration<br>remained below toxic<br>concentrations and no<br>adverse effects occurred. | "Infiltration and<br>wound<br>instillation with<br>ropivacaine<br>0.2% is more<br>effective in<br>controlling<br>postoperative<br>pain than<br>systemic<br>analgesia after<br>major joint<br>replacement<br>surgery."                                                                                                       | Positive association<br>between pain<br>control and better<br>clinical outcome<br>(shortened hospital<br>stay). |
| Fournier<br>1998<br>RCT | 6.5 | N = 40 | General<br>anesthesia (GA)<br>with sham block<br>vs. general<br>anesthesia with a<br>"3-in-1" femoral<br>nerve block<br>(FNB)                                                                                                                                                                                                                          | "There was no difference in<br>anesthetic requirements<br>during surgery. The time<br>from extubation to 1st<br>analgesic intervention (min):<br>61±44 vs. 298±39 P<0.05.<br>Pain scores and the<br>analgesic requirements in<br>the postoperative periods<br>(24 and 48 hr) were similar."                                                                                                                                                                                                                                  | "There is a<br>short-term<br>benefit during<br>the first few<br>postoperative<br>hours in using a<br>single shot "3-in-<br>1" femoral nerve<br>block to<br>complement<br>general<br>anesthesia for<br>elective hip<br>surgery."                                                                                             | Technique appears<br>inadequate for long<br>term pain relief for<br>hip replacement<br>surgery.                 |
| Siddiqui<br>2007<br>RCT | 6.0 | N = 32 | Continuous<br>lumbar plexus<br>block combined<br>with PCA vs.<br>PCA only                                                                                                                                                                                                                                                                              | Intra-operative fentanyl use<br>trended to favoring lumbar<br>plexus block ( $423\pm180$ vs.<br>$315\pm159\mu$ g, p = 0.07).<br>Estimated blood loss<br>trended similarly (707 $\pm360$<br>vs. 1,031 $\pm569$ , p = 0.07).<br>Morphine requirements:<br>$62\pm34$ vs. $37\pm27$ mg, p =<br>0.02. Pain lower 36 hours                                                                                                                                                                                                         | Continuous<br>perioperative<br>lumbar plexus<br>block provides<br>superior<br>analgesia, and<br>reduces opioid<br>requirements<br>and opioid-<br>related adverse                                                                                                                                                            |                                                                                                                 |

| Stevens<br>2000<br>RCT | 6.0 | N = 60 | General<br>anesthesia vs.<br>general<br>anesthesia with<br>posterior lumbar<br>plexus block<br>(bupivacaine) | follow-up in umbar plexus<br>block (approximately VAS 5<br>vs. 3 at 20 hours, graphic<br>representation). Patient<br>satisfaction also favored<br>blocks ( $p = 0.02$ ).<br>Plexus vs. control:<br>supplemental fentanyl (no.<br>of patients requiring): 6 vs.<br>20 $p = 0.001$ ; blood loss (ml)<br>intraoperative: 420±187 vs.<br>538±254 $p = 0.04$ ; blood<br>loss (ml) post-operative (48<br>hour): 170±125 vs. 310±204<br>p = 0.003. | effects<br>compared with<br>systemic<br>opioids after hip<br>arthroplasty.<br>"Posterior<br>lumbar plexus<br>block provides<br>effective<br>analgesia for<br>total hip<br>arthroplasty,<br>reducing intra-<br>and<br>postoperative<br>opioid<br>requirements.<br>Moreover, blood<br>loss during and<br>after the<br>procedure is<br>diminished.<br>Epidural<br>anesthetic<br>distribution<br>should be<br>anticipated in a<br>minority of | Suggestive of<br>attractive option for<br>postoperative pain<br>management.                                                                                                            |
|------------------------|-----|--------|--------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                        |     |        |                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                             | cases."                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                        |
|                        | 1   | 1      | Parenteral/Oral Ar                                                                                           | nesthesia for Hip/Knee Arthro                                                                                                                                                                                                                                                                                                                                                                                                               | plasty                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                        |
| Manoir<br>2006<br>RCT  | 8.5 | N = 63 | Oral morphine<br>10mg, 20mg vs.<br>placebo every 4<br>hours for 24<br>hours post total<br>hip arthroplasty   | Amount of morphine<br>administered via patient-<br>control analgesia over 24<br>hours reduced in 20mg<br>group compared with<br>placebo (19±2.7 vs. 33±5.5).<br>No significant effect<br>observed in 10mg group. No<br>significant differences<br>across groups in pain<br>scores, quality of pain relief,<br>or incidences of nausea,<br>urinary retention and                                                                             | Despite a<br>limited<br>absorption of<br>oral morphine<br>postoperatively,<br>high doses of<br>oral morphine<br>have a<br>significant<br>analgesic effect<br>after total hip<br>arthroplasty.                                                                                                                                                                                                                                             | Unspecified clinical<br>significance of<br>reducing PCA<br>analgesia (not<br>stopping). Patients<br>in all groups<br>similarly satisfied<br>with pain control<br>quality of treatment. |
| Reiter                 | 0.5 | NL 00  | <b>D</b>                                                                                                     | pruritus.                                                                                                                                                                                                                                                                                                                                                                                                                                   | " <b>T</b> I                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                        |

| Tarradell<br>1996<br>RCT               | 6.5 | N = 48 | Single doses of<br>100mg<br>meperidine vs.<br>100mg tramadol<br>vs. saline after<br>general<br>anesthesia for<br>hip/knee<br>arthroplasty | Thirty minutes after<br>treatment, patients who<br>requested additional<br>analgesia rescued with<br>75mg diclofenac and<br>morphine as required.<br>Meperidine produced a<br>significant depression of<br>ventilation revealed by an<br>increase in PaCO2 and<br>decrease in tidal volume,<br>respiratory rate and %02<br>saturation lasting<br>approximately 1 hour. Onset<br>for meperidine analgesia 10<br>minutes; >30 minutes<br>tramadol. Both opioids<br>produced similar degree of<br>analgesia in patients not<br>rescued. | "In the present<br>study,<br>meperidine and<br>tramadol<br>produced<br>comparable<br>analgesia, with<br>a different time<br>course profile,<br>but meperidine<br>induced<br>sedation and<br>respiratory<br>depression<br>while tramadol<br>did not."                       | Both treatments at<br>the given dosage<br>provided only partial<br>analgesia.                                                                                   |
|----------------------------------------|-----|--------|-------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Frater<br>1989<br>RCT                  | 6.0 | N = 49 | Meptazinol vs.<br>morphine<br>through PCA<br>post general<br>anesthesia for<br>total hip<br>replacement                                   | Episodic hypoxemia seen in<br>both groups. In meptazinol<br>group, 80% of patients<br>(21/26) had Sa02 <90% at<br>some time and 23% (6/26)<br>had Sa02 <85%. In<br>morphine group,<br>corresponding figures were<br>95% (22/23) and 47%<br>(11/23). Mean linear<br>analogue scores for pain<br>and nausea significantly<br>greater in meptazinol group<br>at 8 hours only (p <0.05).                                                                                                                                                 | "Meptazinol and<br>morphine in<br>equianalgesic<br>doses had<br>similar effects<br>on ventilation in<br>the<br>postoperative<br>period."                                                                                                                                   | Results suggest<br>meptazinol does not<br>provide any<br>advantage for pain<br>control or GI<br>adverse effects.                                                |
| Robinson<br>Anaesthesia<br>1991<br>RCT | 6.0 | N = 40 | Morphine vs.<br>diamorphine<br>administered via<br>PCA following<br>hip replacement<br>surgery                                            | Mean (SD) (95% confidence<br>interval) dose of morphine<br>(mg) given during surgery<br>and in recovery room; no<br>significant differences.<br>Morphine vs. diamorphine:<br>Recovery: 2.6 (3.6) vs. 3.5<br>(3.7)                                                                                                                                                                                                                                                                                                                    | "There were no<br>significant<br>differences<br>between the two<br>groups with<br>regard to<br>postoperative<br>sedation,<br>nausea, well-<br>being, pain relief<br>and<br>requirements for<br>antiemetic<br>drugs."                                                       | Details of<br>methodology and<br>results sparse.                                                                                                                |
| Ashburn<br>1993<br>RCT                 | 6.0 | N = 38 | Oral Transmural<br>Fentanyl Citrate<br>(OTFC) (7-<br>10µg/kg) vs.<br>placebo                                                              | OTFC group made 10±15<br>vs. 25±26 PCA attempts and<br>received 6.4±6.4mg vs.<br>14.6±6.6mg.                                                                                                                                                                                                                                                                                                                                                                                                                                         | "OTFC can<br>provide<br>analgesia to<br>patients<br>following major<br>orthopedic<br>surgery. The<br>specific role, if<br>any, OTFC will<br>play in the<br>management of<br>acute pain has<br>yet to be<br>defined. One<br>milligram of<br>OTFC appears<br>to be as potent | The dropout rate<br>was 39.1%. The<br>results were<br>reported in the text<br>as statistically<br>negative and in the<br>abstract as<br>statistically positive. |

| Bourke<br>2000        | 5.0 | N = 39 | Oral morphine<br>20mg and a<br>placebo IM                                                                                         | Pain scores assessed by<br>VAS and verbal scales at<br>rest and with movement low<br>in both groups no statistical                                                                                                       | as 5mg of<br>intravenous<br>morphine. The<br>incidence and<br>severity of<br>opioid-induced<br>side effects not<br>increased by<br>use of OTFC."<br>"Oral,<br>sustained-<br>release<br>morphine is a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Lack of blinding,<br>concealment of<br>treatment allocation. |
|-----------------------|-----|--------|-----------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|
|                       |     |        | placebo with<br>morphine sulfate<br>10mg IM<br>injection on<br>scheduled basis<br>post bupivacaine<br>(15mg) spinal<br>anesthesia | significance between<br>groups. Mean patient<br>controlled analgesia<br>consumption significant only<br>at 36 hour post-op, favoring<br>IM group with less morphine<br>used. No differences in side<br>effects observed. | suitable<br>alternative to<br>the IM opiates<br>in this<br>population<br>undergoing total<br>hip replacement<br>under spinal<br>anesthesia."                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                              |
| Murphy<br>1984<br>RCT | 4.5 | N = 30 | Epidural<br>buprenorphine<br>60µg vs.<br>intramuscular<br>morphine<br>0.15mg/kg                                                   | Mean pain score reductions<br>were comparable between<br>groups.                                                                                                                                                         | "Both forms of<br>analgesia<br>produced<br>excellent pain<br>relief as<br>assessed by the<br>linear analogue<br>scoring system.<br>In both quality<br>and duration of<br>pain relief, no<br>significant<br>difference was<br>found between<br>the two forms of<br>analgesia, but<br>the total dose of<br>epidural<br>buprenorphine<br>requires was 5<br>times less than<br>equivalent dose<br>of intramuscular<br>morphine. No<br>side effects<br>attributable to<br>epidural<br>buprenorphine<br>administration<br>found. Authors<br>conclude that<br>low dose<br>epidural<br>buprenorphine<br>provides an<br>excellent<br>alternative to<br>intramuscular<br>opiates for pain<br>relief after hip<br>surgery." | Equivocal results in pain management.                        |

| Ashburn<br>1992<br>RCT | 4.5  | N = 38  | Iontophoretically<br>delivered<br>morphine HCI vs.<br>iontophoretic<br>lactated ringers                            | In 6-hour baseline period,<br>morphine group requested<br>PCA 23.8 $\pm$ 36.9 times vs.<br>8.8 $\pm$ 9.2 times for LR (p =<br>0.032). Baseline amount of<br>meperidine received also<br>higher in morphine group<br>(93.6 $\pm$ 41.8 vs. 57.7 $\pm$ 39.8).<br>During subsequent 6-hour<br>iontophoretic<br>administrations, number of<br>PCA requests were<br>approximately 12 for LR<br>group vs. 5 for MS group<br>(interpretation of graphic<br>data, p <0.05) and<br>meperidine administered<br>also lower for MS group<br>(interpretation of graphic<br>data, approximately 82 vs.<br>44mg, p <0.05). | Iontophoresis<br>can deliver<br>morphine<br>systemically in<br>sufficient<br>quantities to<br>provide early<br>postoperative<br>pain relief in<br>patients<br>undergoing total<br>knee<br>replacements or<br>total hip<br>arthroplasties.          | Significant baseline<br>differences result in<br>difficulties in<br>interpreting results,<br>and baseline PCA<br>requests differed<br>between text and<br>graphic<br>representation.  |
|------------------------|------|---------|--------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                        |      |         | Treatment o                                                                                                        | of Adverse Anesthesia Effects                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                    |                                                                                                                                                                                       |
| Sinatra<br>2005<br>RCT | 10.5 | N = 156 | IV<br>acetaminophen<br>(1gm) vs.<br>propacetamol<br>(2gm, equivalent<br>to 1gm<br>acetaminophen)<br>versus placebo | Total morphine use was<br>38.3±35.1 vs. 40.8±30.2 vs.<br>57.4±52.3. Mean pain relief<br>scores were 2.0 vs. 2.0 vs.<br>0.9 (p <0.005). The time to<br>rescue medication was 3 vs.<br>2.6 vs. 0.8 hours (p <0.001).                                                                                                                                                                                                                                                                                                                                                                                         | "Intravenous<br>acetaminophen<br>, 1g,<br>administered<br>over a 24-hour<br>period in<br>patients with<br>moderate to<br>severe pain<br>after orthopedic<br>surgery<br>provided rapid<br>and effective<br>analgesia and<br>was well<br>tolerated." | Data suggests IV<br>acetaminophen is a<br>useful adjunct to<br>other treatments,<br>but may be<br>inadequate alone<br>given continued<br>need for opioid<br>rescue.                   |
| Chan<br>2005<br>RCT    | 9.0  | N = 180 | Lumiracoxib<br>400mg QD vs.<br>naproxen 500mg<br>BID vs. placebo                                                   | Patients requiring rescue<br>medication 70% lumiracoxib<br>patients vs. 78.3% naproxen<br>and 90.0% placebo patients.<br>Mean rescue doses 12.1 vs.<br>17.6 vs. 22.0mg. Data at 1 to<br>3 hours of follow-up all<br>favored naproxen over<br>lumiracoxib (p <0.05).<br>Median times to rescue<br>medication 3.8 hours vs. 3.9<br>hours vs. 2.0 hours.                                                                                                                                                                                                                                                      | "Lumiracoxib is<br>an effective<br>alternative to<br>traditional non-<br>selective non-<br>steroidal anti-<br>inflammatory<br>drugs (NSAIDs)<br>for the<br>treatment of<br>post-operative<br>pain."                                                | Data suggests<br>naproxen superior<br>to lumiracoxib for<br>initial post-op hours.<br>Rescue medication<br>doses and pain<br>intensity differences<br>appear to favor<br>lumiracoxib. |
| Malan<br>2003<br>RCT   | 9.0  | N = 201 | Parecoxib 20mg<br>vs. 40mg vs.<br>placebo                                                                          | Total morphine consumed at<br>36 hours 56.5 vs. 43.1 vs.<br>72.5mg (p <0.01 for both<br>parecoxib doses). Data<br>trended towards lowest<br>morphine use at all follow-up<br>intervals for the parecoxib<br>40mg dose. Percentages of<br>patients not requiring PCA<br>morphine at 36 hours were<br>9.8 vs. 30.9 vs. 9.2%. Less<br>fever and vomiting in 40mg<br>group (p <0.05).                                                                                                                                                                                                                          | "Administration<br>of parecoxib<br>sodium with<br>PCA morphine<br>resulted in<br>significantly<br>improved post-<br>operative<br>analgesic<br>management<br>as defined by<br>reduction in<br>opioid<br>requirement,                                | Study suggests<br>parecoxib 40mg<br>superior to 20mg.                                                                                                                                 |

| Grattidge<br>1998<br>RCT | 8.5 | N = 82  | Propofol infusion<br>(10mg/ml at<br>3ml/hour) vs.<br>inert lipid<br>emulsion infusion<br>in patients<br>undergoing hip<br>or knee<br>arthroplasty<br>using spinal<br>anesthesia and<br>IT morphine | "Postoperative nausea and<br>vomiting in the intervention<br>group was 40% vs. 59% in<br>the controls (P=0.1, not<br>significant). Pruritus occurred<br>in 34%, with a similar rate in<br>both groups."                                                                                                        | lower pain<br>score, reduced<br>time on PCA<br>morphine, and<br>higher global<br>evaluation<br>ratings."<br>"These results<br>suggest that<br>routine use of<br>postoperative,<br>sub hypnotic<br>propofol<br>infusion as<br>postoperative<br>nausea and<br>vomiting<br>prophylaxis is<br>not justified in<br>this patient<br>population." | Study focus not<br>pain but side effects<br>of anesthesia,<br>particularly<br>morphine. Propofol<br>infusion not<br>effective in<br>controlling post-op<br>nausea and<br>vomiting. |
|--------------------------|-----|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Zhou<br>2001<br>RCT      | 8.5 | N = 172 | Propacetamol 2g<br>vs. ketorolac<br>15mg versus<br>30mg vs.<br>placebo                                                                                                                             | Times to onset of analgesia:<br>(placebo/propacetamol/ketorol<br>ac 15mg/30mg): 16 minute/8<br>minute/14 minute/10 minute.<br>Patients receiving rescue<br>medication 73%/72%/61%/<br>48%. Times to remedication<br>1.9/3.5/4.0/6.0 hours.<br>Rescue morphine doses<br>6.2±7.2/7.0±<br>9.0/7.5±16.1/2.7±4.0mg. | "Propacetamol<br>(2g IV)<br>possesses a<br>similar<br>analgesic<br>efficacy to<br>ketorolac (15 or<br>30 mg IV) after<br>total hip or<br>knee<br>replacement<br>surgery."                                                                                                                                                                  | Study suggests<br>ketorolac provides<br>greater pain relief<br>than propacetamol.                                                                                                  |
| Etches<br>1995<br>RCT    | 8.5 | N=174   | Ketorolac (30mg<br>IV, followed by<br>5mg per hour for<br>24 hours) vs.<br>placebo                                                                                                                 | Combined pain intensity<br>ratings at 4 hours post-<br>operatively that were<br>moderate, severe or very<br>severe were 39% vs. 62%, p<br>= 0.0036. Cumulative<br>morphine was 35% less for<br>those receiving ketorolac<br>(37.3±3.9 vs. 57.2±4.6mg, p<br>= 0.03).                                            | Patients<br>receiving<br>ketorolac less<br>sedated and<br>required fewer<br>antiemetics. No<br>difference in<br>blood loss.<br>Patients<br>receiving<br>ketorolac<br>reported better<br>analgesia and<br>used less<br>morphine (35%<br>hips/44%<br>knees) than<br>placebo.                                                                 |                                                                                                                                                                                    |
| Alexander<br>2002<br>RCT | 8.5 | N = 102 | Diclofenac<br>sodium 75mg vs.<br>ketorolac<br>tromethamine<br>60mg vs.<br>placebo                                                                                                                  | Pain scores were higher<br>among placebo group at<br>almost all intervals over 24<br>hours for both active<br>medications (graphic<br>representations). Morphine<br>usage was 36.3 vs. 47.2 vs.<br>51.6mg respectively.                                                                                        | "Preoperative<br>administration<br>of intravenous<br>diclofenac 75<br>mg or ketorolac<br>60 mg<br>significantly<br>reduces<br>morphine<br>requirements<br>and associated<br>side effects<br>after major<br>orthopedic                                                                                                                      | Study supports<br>diclofenac and<br>ketorolac IV<br>administration.                                                                                                                |

|                                                         |     |         |                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                         | surgery."                                                                                                                                                                                                                                                                                                                                                                                                      |                                                           |
|---------------------------------------------------------|-----|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|
|                                                         |     |         |                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                |                                                           |
| Fogarty<br>Acta<br>Anaesthesiol<br>Scand<br>1995<br>RCT | 8.5 | N = 30  | Ketorolac vs.<br>saline injections<br>(30mg IM at<br>beginning of<br>surgery and Q6<br>hours for 4<br>doses)                                                      | VAS pain scores also<br>favored ketorolac at 10 hours<br>and at 0800 the next day<br>(3.7±8.2 vs. 11.5±16.7, p<br><0.05).                                                                                                                                                                                                                                                                                                               | "Non-steroidal<br>anti-<br>inflammatory<br>analgesics<br>drugs such as<br>ketorolac, when<br>used in<br>conjunction<br>with intrathecal<br>opioids,<br>improve<br>analgesia and<br>reduce post-<br>operative<br>analgesic<br>requirements.<br>Patients<br>suitable for<br>NSAID<br>medication<br>might benefit<br>from<br>combination of<br>a small dose of<br>IT morphine<br>and a NSAID,<br>i.e. Ketorolac." | Study supports<br>ketorolac IM<br>injections.             |
| Buvanendra<br>n<br>2006<br>RCT                          | 8.5 | N = 30  | Placebo vs.<br>rofecoxib                                                                                                                                          | Prostaglandin E2<br>concentrations at hip drain<br>site lowest for 5 day<br>rofecoxib, somewhat higher<br>concentrations often<br>significant for 1 day rofecoxib<br>and highest for placebo. Pain<br>scores over 30 hours from<br>surgery highest for placebo<br>(p <0.05), largely same for 2<br>regimens of rofecoxib except<br>at 25 hours where single<br>dose lower (p <0.05).<br>Cerebrospinal fluid IL-6<br>results comparable. | "These results<br>suggest that<br>upregulation of<br>prostaglandin<br>E2 and<br>interleukin 6 at<br>central sites is<br>an important<br>component of<br>surgery<br>induced<br>inflammatory<br>response in<br>patients and<br>may influence<br>clinical<br>outcome."                                                                                                                                            | Rofecoxib was<br>withdrawn from the<br>US market in 2004. |
| Johansson<br>1989<br>RCT                                | 8.0 | N = 115 | Single dose<br>ketorolac<br>tromethamine<br>10mg vs. 2<br>tablets doleron<br>(150mg<br>dextropropoxyph<br>ene napsylate,<br>350mg aspirin,<br>150mg<br>phenazone) | Treatment efficacy 80% vs.<br>82% (NS). Investigator<br>ratings of overall efficacy for<br>combined excellent, very<br>good and good ratings 51%<br>vs. 52%.                                                                                                                                                                                                                                                                            | "A single oral<br>dose of 10 mg<br>ketorolac was<br>shown to be as<br>effective and<br>safe as two<br>Doleron tablets<br>in the treatment<br>of moderate to<br>severe<br>orthopedic<br>post-operative<br>pain."                                                                                                                                                                                                | Study supports oral<br>formulation of<br>Ketorolac.       |

| Bugter<br>2003<br>RCT   | 8.0 | N = 50      | Ibuprofen 600mg<br>TID for 2 weeks<br>pre-operatively<br>vs. placebo                                          | Blood loss during surgery<br>700mL vs. 416mL (p <0.01);<br>blood loss after surgery<br>461mL vs. 380mL; total<br>blood loss 1,161mL vs.<br>796mL (p <0.01). Post-op<br>vomiting higher in ibuprofen<br>group (41.1% vs. 21.0%),<br>though not statistically<br>significantly. Morphine<br>consumption via PCA pump<br>22.1mg vs. 26.6mg, p = 0.52.<br>VAS pain scores did not<br>differ. | "Pretreatment<br>with ibuprofen<br>before major<br>hip surgery<br>does not<br>improve the<br>pain scores or<br>reduce<br>morphine<br>requirement but<br>significantly<br>increases blood<br>loss."                                                                                                                                                               | Study suggests pre-<br>treatment with<br>ibuprofen has<br>adverse effects of<br>blood loss and no<br>added benefit for<br>analgesia. |
|-------------------------|-----|-------------|---------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|
| Hommeril<br>1994<br>RCT | 7.5 | N = 32      | Ketoprofen<br>200mg IV then<br>12.5mg/hour for<br>13 hours vs.<br>extradural<br>morphine 4mg<br>for treatment | Pain scores did not differ<br>across 13-hour follow-up.<br>Epigastric discomfort in 5<br>ketoprofen vs. 1 morphine<br>patient. Vomiting more<br>common in morphine (9 vs.<br>4) as were urinary retention<br>(12 vs. 5, p <0.05) and<br>pruritus (5 vs. 0).                                                                                                                              | "Ketoprofen<br>may be an<br>efficient<br>alternative to<br>extradural<br>morphine after<br>hip and knee<br>arthroplasty."<br>Three patients<br>in morphine<br>group<br>experience<br>respiratory<br>depression.                                                                                                                                                  | Study details<br>somewhat sparse.                                                                                                    |
| Camu<br>2002<br>RCT     | 7.5 | N =<br>???? | 20mg vs. 40mg<br>valdecoxib vs.<br>placebo BID                                                                | No difference in total<br>morphine consumed<br>between 20 and 40mg<br>doses. Placebo utilized more<br>morphine ( $10.9\pm0.9$ /<br>$10.8\pm1.0$ / $16.3\pm1.0$ , p<br>< $0.001$ ). Joint mobilization at<br>48 hours<br>$7.5\pm0.6/7.5\pm0.6/6.6\pm0.6$<br>(NS).                                                                                                                         | "Valdecoxib<br>has significant<br>clinical utility for<br>acute pain<br>management in<br>orthopedic<br>surgery<br>patients."                                                                                                                                                                                                                                     | Study methodology details sparse.                                                                                                    |
| Segstro<br>1991<br>RCT  | 7.0 | N = 50      | Placebo<br>suppositories vs.<br>indomethacin<br>suppositories<br>100mg q.8h for 5<br>doses post-op            | "The use of rectal<br>indomethacin substantially<br>reduced narcotic<br>requirements after total hip<br>replacement without a high<br>incidence of side effects."                                                                                                                                                                                                                        | "Combination<br>of<br>indomethacin<br>and morphine<br>provided<br>superior pain<br>relief to<br>morphine<br>alone, even<br>though the<br>patients in the<br>control group<br>had liberal<br>access to<br>morphine via<br>the PCA pump.<br>This syner-<br>gistic effect<br>would make<br>indomethacin a<br>useful adjunct<br>to intra-<br>muscular<br>narcotics." |                                                                                                                                      |

| Dahl<br>1995<br>RCT     | 7.0 | N = 123 | Ibuprofen 800mg<br>vs. ibuprofen<br>800mg plus<br>codeine 60mg<br>vs. placebo<br>prophylactic<br>treatment                         | Placebo group required 45% more ketobemidone in the 5 hours compared with other 2 groups (p <0.001), but no differences between other 2 groups (6.8±3.1/4.7±2.0/4.7±2.5mg).                                                                                              | A prophylactic<br>dose of 800 mg<br>ibuprofen orally<br>has an opioid<br>sparing effect<br>with a tendency<br>of less pain<br>experience<br>during the first<br>hours after hip<br>arthroplasty.                                                                                                                    | Results suggest a<br>weak effect of<br>codeine, in addition<br>to positive results<br>with ibuprofen.                               |
|-------------------------|-----|---------|------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|
| Serpell<br>1989<br>RCT  | 6.0 | N = 24  | Placebo vs.<br>piroxicam                                                                                                           | Average total opioid use was<br>76mg in placebo group vs.<br>38mg in piroxicam group<br>(morphine IM use 9.6 vs.<br>3.5mg). Pain scores 2.6 vs.<br>2.0.                                                                                                                  | Those<br>receiving<br>piroxicam<br>required 50%<br>less morphine<br>than control<br>group.                                                                                                                                                                                                                          |                                                                                                                                     |
| Moiniche199<br>4<br>RCT | 5.5 | N = 42  | Epidural<br>bupivacaine/<br>morphine plus<br>piroxicam vs.<br>general<br>anesthesia with<br>systemic<br>morphine/<br>acetaminophen | Epidural patients had lower<br>post-operative pain scores at<br>rest (p = 0.001), as well as<br>with flexion and walking.<br>Knee surgery results similar,<br>though higher morphine<br>consumption present in both<br>groups.                                           | "Postoperative<br>epidural low-<br>dose<br>bupivacaine-<br>morphine plus<br>systemic<br>piroxicam<br>provided<br>efficient,<br>although not<br>optimal pain<br>relief after<br>major<br>orthopedic<br>surgery, but<br>without effects<br>on post-<br>operative<br>convalescence<br>parameters or<br>hospital stay." | Multiple<br>interventions impair<br>ability to infer<br>effects of any single<br>component of<br>interventions.                     |
| Buchanan19<br>88<br>RCT | 5.5 | N = 114 | Diclofenac 75mg<br>IM intra-<br>operatively vs.<br>papaveretum                                                                     | Surgeon assessment of pain<br>at 24 hours combining<br>uncomfortable but can cope<br>with very uncomfortable was<br>0 vs. 8 for papaveretum, p<br><0.001. Surgeon assessment<br>of wound tenderness<br>similarly favored diclofenac<br>at 24 and 48 hours (p<br><0.001). | "The use of<br>diclofenac given<br>as a post-<br>operative<br>analgesic is<br>rewarding,<br>particularly in<br>patients<br>undergoing<br>musculoskeletal<br>procedures.<br>Patients will be<br>more<br>comfortable and<br>will mobilize<br>better during<br>their whole<br>post-operative<br>course."               | Scaling of the<br>comparison<br>medication based<br>on three factors<br>may have<br>introduced a lack of<br>structure in the trial. |
| Segstro<br>1990<br>RCT  | 5.0 | N = 50  | Indomethacin<br>suppositories<br>100mg Q 8 hour<br>for 5 doses vs.<br>placebo for<br>treatment                                     | Pain scores statistically<br>better (graphic presentation<br>of data).                                                                                                                                                                                                   | "The use of<br>rectal<br>indomethacin<br>substantially<br>reduced<br>narcotic                                                                                                                                                                                                                                       | Study details<br>sparse.                                                                                                            |

| Bernard<br>1991<br>RCT    | 5.0 | N = 24  | Deliberate<br>hypotension with<br>nicardipine vs.<br>nitroprusside<br>during hip<br>replacement<br>surgery | Nicardipine vs. nitroprusside<br>mean±SEM: blood loss<br>(ml):415±70 vs. 428±120.                                                                                              | requirements<br>after total hip<br>replacement<br>without a high<br>incidence of<br>side effects."<br>"Nicardipine<br>can be used to<br>induce<br>deliberate<br>hypotension<br>during total hip<br>arthroplasty but<br>results in<br>cumulative<br>effects that<br>persist after the<br>discontinuation<br>of infusion, with<br>a possibility of<br>postoperative<br>hypotension." | Nicardipine not an<br>ideal agent to<br>control arterial<br>blood pressure.                                                                                                         |
|---------------------------|-----|---------|------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Boeckstyns<br>1992<br>RCT | 4.5 | N = 117 | Piroxicam (40mg<br>suppository<br>immediately<br>post-operatively,<br>then 20mg QD)<br>vs. placebo         | Buprenorphine consumption<br>higher in knee patients than<br>hip patients (0.74mg vs.<br>0.42mg), however both<br>favored piroxicam treatment<br>(graphic data presentations). | Patients<br>receiving<br>piroxicam<br>consumed less<br>buprenorphine.                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                     |
| Vathana<br>1998<br>RCT    | 3.0 | N = 50  | Ketoprofen<br>100mg vs.<br>morphine 6mg<br>for 12 hours and<br>6 hours<br>respectively                     | Intramuscular ketoprofen has<br>a similar efficacy compared<br>to intramuscular morphine.                                                                                      | "Minor side<br>effects can be<br>encountered<br>following<br>ketoprofen<br>injection. The<br>two times per<br>day<br>administration<br>of ketoprofen is<br>easier for the<br>patient and the<br>medical staff<br>than the four<br>times per day<br>administration<br>of morphine."                                                                                                 | Data are<br>heterogeneous and<br>details are sparse.                                                                                                                                |
| Barron<br>1984<br>RCT     | 1.5 | N = 500 | Cyclizine,<br>perphenazine,<br>prochlorperazine,<br>droperidol, and<br>metoclopramide<br>vs. domperidone   | The phenothiazines made<br>patients 'feel better' more<br>effectively than the other<br>drugs.                                                                                 | "In initial study,<br>emetic<br>symptoms<br>occurred in<br>about half of<br>untreated<br>patients: this<br>incidence was<br>not significantly<br>affected by<br>cyclizine; there<br>was a non-<br>significant trend<br>of reduction<br>with droperidol,<br>metoclo-<br>pramide and<br>domperidone.<br>Significant                                                                  | Study details sparse<br>and study design<br>unclear. It is<br>suggested to be a<br>crossover trial, but<br>number of patients<br>receiving each<br>intervention are not<br>uniform. |

|                        |     |        |                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | symptomatic<br>improvement<br>(P< 0.01) with<br>perphenazine<br>and prochlor-<br>perazine were<br>used."                                                                                                                                                          |
|------------------------|-----|--------|-------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                        |     |        | Hip                                                                           | : Tricyclic Analgesia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                   |
| Kerrick<br>1993<br>RCT | 8.5 | N = 28 | Amitriptyline<br>50mg QHS for 3<br>nights vs.<br>placebo post-<br>operatively | Mean scores in amitriptyline<br>group for pain NVS greater<br>( $p < 0.05$ ) (higher score =<br>greater pain) on Day 1 and<br>greater on Day 2 for pain<br>VAS. Mean scores for sense<br>of well-being greater ( $p <$<br>0.05) (higher score = better<br>sense of well-being) for<br>placebo group on Days 1<br>and 2. On Days 2 and 3,<br>sleep scale variable mean<br>scores worse in placebo<br>group ( $p < 0.025$ ). No other<br>statistically significant<br>differences between control<br>and active drug groups for<br>any outcome variables<br>measured. | "Amitriptyline at<br>the dose<br>prescribed is<br>no different<br>than placebo in<br>altering the<br>majority of<br>postoperative<br>symptom<br>variables<br>studied in the<br>sample study<br>population but<br>caused no<br>significant<br>adverse<br>effects." |

# **APPENDIX 2: LOW-QUALITY RANDOMIZED CONTROLLED TRIALS AND NON-RANDOMIZED STUDIES**

The following low-quality randomized controlled studies (RCTs) and other non-randomized studies were reviewed by the Evidence-based Practice Hip Panel to be all inclusive, but were not relied upon for purpose of developing this document's guidance on treatments because they were not of high quality due to one or more errors (e.g., lack of defined methodology, incomplete database searches, selective use of the studies and inadequate or incorrect interpretation of the studies' results, etc.), which may render the conclusions invalid. ACOEM's Methodology requires that only moderate- to high-quality literature be used in making recommendations.(213)

| Author/Year<br>Study Type | Score<br>(0-11) | Sample<br>Size     | Comparison<br>Group                | Results                                              | Conclusion                             | Comments                            |
|---------------------------|-----------------|--------------------|------------------------------------|------------------------------------------------------|----------------------------------------|-------------------------------------|
| Stevens<br>2003           | N/A             | N = 45             | X-ray and MRI at baseline. Helical | At 6 months, 12 fractures identified on x-ray, 18 on | "CT reveals more subchondral fractures | Study performed<br>to evaluate bone |
|                           |                 | All                | CT and MRI 2                       | CT and 6 on MRI. At 12                               | in osteonecrosis of the                | morphogenetic                       |
| Comparative               |                 | stages<br>I-II hip | weeks after<br>coring surgery.     | on CT and 11 on MRI. X-                              | temoral head than                      | protein. Blinded readings of        |
| Study                     |                 | AVN                | X-ray, CT and                      | ray sensitivity 71%,                                 | radiography or MR                      | radiological                        |
|                           |                 |                    | MRI at 6 and 12 months.            | specificity 97%, PPV 96% and NPV 77%, Values for     | imaging. The high-                     | studies not<br>performed, only      |
|                           |                 |                    |                                    | MRI 38, 100, 100, 60%.                               | T2-weighted MR                         | blinded to                          |
|                           |                 |                    |                                    |                                                      | images appears to<br>represent fluid   | treatment. On<br>rater read all     |
|                           |                 |                    |                                    |                                                      | accumulating in the                    | images. Data                        |
|                           |                 |                    |                                    |                                                      | subchondral fracture,                  | suggest MRI                         |
|                           |                 |                    |                                    |                                                      | breach in the overlying                | for this purpose.                   |
|                           |                 |                    |                                    |                                                      | articular cartilage."                  |                                     |

#### **OSTEONECROSIS: CT. MRI. AND X-RAYS**

#### HIP OSTEOARTHRITIS. EXERCISE

| Author/Year<br>Study Type | Score<br>(0-11) | Sample<br>Size       | Comparison<br>Group                   | Results                                             | Conclusion                                                                                                                                                                          | Comments                                |  |  |  |
|---------------------------|-----------------|----------------------|---------------------------------------|-----------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|--|--|--|
| Cochrane<br>2005          | 1.5             | N = 106              | Water exercises<br>vs. usual care for | 53.5% complied at 1-year.<br>Estimated effect sizes | "Group-based exercise<br>in water over 1 year                                                                                                                                       | Abstract only.<br>Compliance low,       |  |  |  |
| RCT                       |                 | and/or<br>knee<br>OA | treatment                             | 0.76 on WOMAC physical function.                    | reduction in pain and<br>improvement in<br>physical function in<br>older adults with lower<br>limb OA, and may be<br>useful adjunct in the<br>management to hip<br>and/or knee OA." | subsequent 6<br>month period to<br>18%. |  |  |  |

#### NSAIDS AND ACETAMINOPHEN

| Author/Yea<br>r<br>Study Type | Score<br>(0-11) | Sample<br>Size | Comparison<br>Group       | Results                                                                                                                                                                     | Conclusion                                                         | Comments                                                                                                                                                     |  |  |
|-------------------------------|-----------------|----------------|---------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Shephard<br>1981              | 7.0*            | N = 68         | Tolmetin<br>200mg QID vs. | Few data presented.<br>Decreased rest pain with                                                                                                                             | "Tolmetin is as<br>effective an anti-                              | Data sparse,<br>does not clearly                                                                                                                             |  |  |
| RCT                           |                 | ŬĂ             | 25mg QID for<br>4 weeks   | However, tolmetin results<br>not presented. Tolmetin<br>patients improved in pain<br>on rising from a chair (p<br><0.05), however<br>indomethacin results not<br>presented. | agent as is<br>indomethacin and<br>produces fewer side<br>effect." | head<br>comparisons,<br>thus despite<br>other<br>methodological<br>strengths is a<br>low-quality study.<br>Presented<br>results suggest<br>no clear efficacy |  |  |
|                               |                 | 1              |                           | 1                                                                                                                                                                           |                                                                    | 202                                                                                                                                                          |  |  |

| Williams<br>1989                      | 3.5 | N = 210<br>Knee or                  | Etodolac<br>600mg a day<br>vs. placebo for                                                                                                    | Overall patient<br>assessments (week 1/final<br>visit): etodolac (32/33) vs.                                                                                                                                                           | "[E]todolac was<br>superior to placebo in<br>several measures of                                                                                                                                          | of one treatment<br>– one better for<br>rest and weight<br>bearing, other<br>better for<br>walking, Global<br>assessments<br>comparable.<br>High dropout,<br>sparse details.<br>Suggests |
|---------------------------------------|-----|-------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| RCI                                   |     |                                     | 4 weeks                                                                                                                                       | placebo (18/17), p <0.001.<br>Joint tenderness/ swelling,<br>night pain, pain intensity<br>all significantly different.<br>Gl indigestion in 9<br>etodolac vs. 2 placebo.<br>Overall GI events not<br>different (p = 0.30).            | pain and function."                                                                                                                                                                                       | etodolac<br>effective.<br>Suggest hip and<br>knee OA equally<br>responsive to<br>treatment.                                                                                              |
| Lehn<br>1992<br>Crossover<br>Trial    | 3.5 | N = 98<br>Knee and/<br>or hip OA    | Enteric-coated<br>vs. non-enteric<br>coated<br>naproxen for 4<br>weeks each.<br>Dose range:<br>500, 750,<br>1,000mg a                         | Pain and functional<br>measures all NS except<br>daily activity at 4 weeks<br>which favored enteric<br>coated (p = 0.002).<br>Borderline results in favor<br>of enteric coated; 1st<br>treatment period (9 vs. 18,                     | "The study did not<br>show any clinical<br>significant difference in<br>tolerability or efficacy<br>between enteric-<br>coated and plain<br>naproxen tablets."                                            | Variability in<br>dosing weaken<br>results. Results<br>suggest no<br>consistent<br>findings in favor<br>of enteric<br>coating.                                                           |
|                                       |     |                                     | day.                                                                                                                                          | p = 0.10) for adverse GI<br>events.                                                                                                                                                                                                    |                                                                                                                                                                                                           |                                                                                                                                                                                          |
| Kaik<br>1991<br>RCT                   | 3.5 | N = 31<br>Knee and/<br>or hip OA    | Imidazole<br>salicylate<br>750mg TID vs.<br>ibuprofen<br>400mg TID for<br>60 days                                                             | Imidazole salicylate<br>improved in duration of<br>morning stiffness (p<br><0.01) and relief in<br>spontaneous pain (p<br><0.01). No differences<br>between treatments (p<br>>0.05).                                                   | "Both drugs were<br>effective in relieving<br>the severity of painful<br>symptoms as observed<br>by clinical<br>improvement."                                                                             | Comparison with<br>nonprescription<br>strength<br>ibuprofen. Lack<br>of study details.                                                                                                   |
| Doherty<br>1992<br>RCT                | 3.5 | N = 455<br>Hip or<br>knee OA        | Arthrotec<br>(diclofenac<br>50mg,<br>misoprostol<br>200µg) vs.<br>diclofenac<br>50mg BID or<br>TID at<br>physicians'<br>choice for 4<br>weeks | Patient global assessment<br>n (%) improved at 4<br>weeks: arthrotec 52 (27%)<br>vs. diclofenac 51 (25%),<br>NS. Other measures (e.g.,<br>physician's global<br>assessments, OA severity<br>indices) did not differ<br>between groups. | "Misoprostol does not<br>interfere with the<br>antiarthritic properties<br>of diclofenac."                                                                                                                | Dosing variable<br>according to<br>treating<br>physician<br>assessment; 25-<br>27% of patients<br>demonstrated<br>improvement in<br>outcomes<br>measures.                                |
| Cimmino<br>1982<br>Crossover<br>Trial | 3.5 | N = 30<br>Spine,<br>knee, hip<br>OA | Meclofenamat<br>e 100mg TID<br>vs. ibuprofen<br>300mg TID for<br>3 weeks each                                                                 | Rest pain did not differ<br>statistically but trended<br>towards efficacy.<br>Tenderness decreased on<br>active treatments (p<br><0.05), but did not differ<br>between groups.                                                         | "[C]onfirms the<br>therapeutic<br>effectiveness of<br>sodium<br>meclofenamate and<br>ibuprofen in OA, and<br>compares favourably<br>to previous reports on<br>sodium<br>meclofenamate<br>efficacy in OA." | Small sample<br>size with low<br>power.                                                                                                                                                  |

| Brackertz<br>1978<br>Crossover<br>Trial | 3.5 | N = 20<br>Knee or<br>hip OA          | Clofezone<br>1200mg daily<br>1st week; 600<br>mg 2nd week<br>vs. diclofenac<br>(150mg daily<br>1st week;<br>75mg 2nd<br>week) for 2<br>weeks each                    | Rest pain (placebo/after<br>clofezone/after<br>diclofenac):<br>1.0±0.94/0.2±0.42/0.1±0.3<br>Greater changes seen in<br>group given diclofenac<br>followed by clofezone than<br>opposite order.                                                                                                                                                                                                                                                                                                                                                                                    | "[C]lofezone has a<br>longer-lasting action<br>which wears off only<br>slowly after withdrawal<br>and substitution by a<br>placebo."                                                                                                                                        | High dropout<br>rate in short trial<br>with small<br>sample size.                                                                                                  |
|-----------------------------------------|-----|--------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Liyanage<br>1978<br>Crossover<br>Trial  | 3.5 | N = 20<br>Hip or<br>knee OA          | Salsalate 1gm<br>TID vs. ASA<br>1.2gm TID for<br>2 weeks each                                                                                                        | Pain at rest (baseline/1<br>week<br>placebo/salsalate/ASA):<br>26.1<br>±5.4/33.6±5.9/22.3±5.3/32<br>.7±6.3. No difference<br>between salsalate and<br>placebo in adverse<br>effects, but ASA had<br>increased adverse effects<br>compared to placebo (p<br><0.01); 14 had no<br>treatment preference, 5<br>salsalate, and 1 ASA.                                                                                                                                                                                                                                                  | "The more important<br>outcome of the trial is<br>the superiority of<br>salsalate over aspirin<br>with regard to side-<br>effects and faecal<br>occult blood loss."                                                                                                         | Small sample<br>size. Sparse<br>details. Short<br>duration of 2<br>weeks. Most<br>patients had no<br>preference<br>including<br>placebo.                           |
| Niccoli<br>2002<br>RCT                  | 3.5 | N = 90<br>Hand, hip<br>or knee<br>OA | Amtolmetin<br>600mg BID for<br>3 days then<br>600mg a day<br>for 11 days vs.<br>diclofenac<br>50mg TID vs.<br>Rofecoxib<br>25mg QD for 2<br>weeks total<br>treatment | Diclofenac reduced<br>creatinine clearance.<br>Rofecoxib gained body<br>weight, systolic blood<br>pressure, diastolic blood<br>pressure and serum<br>sodium with decrease in<br>daily urine volume. No<br>significant changes in<br>parameters with AMG.<br>Diclofenac more<br>efficacious than other 2<br>drugs (p <0.001).                                                                                                                                                                                                                                                      | "Diclofenac mainly<br>impaired blood renal<br>flow and the<br>glomerular filtration<br>rate, while rofecoxib<br>negatively influenced<br>the renal sodium-water<br>exchange. AMG<br>demonstrated a renal<br>sparing effect,<br>although the exact<br>mechanism is unclear." | Sparse study<br>details. Two<br>week trial. Data<br>suggest<br>diclofenac<br>superior.                                                                             |
| Ghosh<br>1981<br>RCT                    | 3.5 | N = 32<br>Hip and/or<br>knee OA      | Sulindac<br>200mg BID vs<br>ibuprofen<br>400mg TID for<br>12 weeks;<br>open label                                                                                    | Disease activity scores<br>decreased significantly<br>from Week 0 values in<br>both groups (p <0.05<br>ibuprofen; p <0.001<br>sulindac), but to greater<br>extent (p <0.001) in<br>sulindac group. At Week<br>12, both showed<br>statistically significant<br>improvement (p <0.001) in<br>all 3 parameters vs. Week<br>0. Significant difference (p<br><0.001) between 2 groups<br>in favor of sulindac, to<br>weight-bearing pain and<br>pain on active movement.<br>More in sulindac<br>compared to ibuprofen (p<br><0.01) categorized<br>outcome as "excellent" or<br>"good " | "Overall assessment of<br>response to treatment<br>also showed a<br>significant preference<br>for sulindac by patients<br>and physiciansNo<br>significant differences<br>were found in the<br>haematological or<br>biochemical profiles in<br>either group at week<br>12."  | Study details<br>sparse.<br>Comparisons<br>with OTC<br>ibuprofen dose<br>limits strength of<br>conclusions in<br>favor of sulindac.<br>No blinding,<br>open label. |

| Davies<br>1999<br>RCT               | 3.5 | N = 104<br>Knee or<br>hip OA                                                 | Ibuprofen<br>800mg TID vs.<br>placebo TID<br>for 4 weeks                                                                                                             | WOMAC pain scores<br>(baseline/Day 28):<br>ibuprofen<br>59.7±21.8/75.9±23.0 vs.<br>placebo<br>64.6±24.4/70.3±27.8.<br>Ibuprofen group showed<br>improvement in all<br>WOMAC scale scores<br>within 1st week.                                                                                                            | "[T]he pain, physical<br>function, and total<br>score from the<br>WOMAC and the bodily<br>pain scale from the SF-<br>36 were able to detect<br>response to therapy<br>with ibuprofen and<br>show differences<br>between active and<br>placebo treatment.<br>However, the WOMAC<br>proved to be more<br>efficient of the two<br>instruments."                                            | Inclusion criteria<br>did not require<br>radiographic<br>evidence of OA.<br>This 4 week trial<br>did not report<br>objective clinical<br>outcomes<br>(adverse events,<br>compliance etc.). |
|-------------------------------------|-----|------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Münzenber<br>g<br>1980<br>RCT       | 3.5 | N = 40<br>20 hip or<br>knee OA;<br>20 with<br>inflamm-<br>atory<br>disorders | Protacine<br>150mg TID vs.<br>indomethacin<br>50mg TID for<br>"average" of 10<br>days                                                                                | Pain scores for hip/knee<br>OA (baseline/final):<br>protacine<br>2.50±0.22/1.40±0.16) vs.<br>indomethacin<br>2.50±0.19/1.88±0.23 (NS).<br>More adverse effects for<br>indomethacin than<br>protacine; only drop-outs<br>were 2 taking<br>indomethacin.                                                                  | "[A]Ithough preliminary,<br>indicate that protacine<br>has an anti-<br>inflammatory and<br>analgesic action at<br>least as powerful as<br>that of indomethacin<br>and<br>oxyphenbutazone."                                                                                                                                                                                              | Lack of study<br>details; small<br>sample size.<br>Adverse events<br>greater in<br>indomethacin<br>group, but<br>sample size<br>small and may<br>not represent<br>population.              |
| Bain<br>1977<br>Crossover<br>trial  | 3.5 | N = 21<br>Hip OA                                                             | Feprazone<br>200mg TID vs.<br>ibuprofen<br>300mg TID for<br>4 weeks each                                                                                             | Eighteen (18) completed<br>both treatments with 5<br>without treatment<br>preference, 6 preferred<br>feprazone and 7 preferred<br>ibuprofen. Daytime pain<br>(much better or better):<br>feprazone 11/19 (57.9%)<br>vs. ibuprofen 10/18<br>(55.6%), NS.                                                                 | "[F]eprazone is as<br>effective as ibuprofen in<br>the treatment of<br>patients with<br>osteoarthritis of the hip,<br>although the number of<br>patients involved were<br>too small and the<br>treatment periods too<br>short to show any<br>statistically significant<br>differences from<br>baseline assessment or<br>between treatments in<br>the objective<br>parameters measured." | Small sample<br>size. Power too<br>low to detect<br>significant<br>differences.<br>Submaximal<br>ibuprofen dose<br>used for<br>comparison.                                                 |
| Doury<br>1977<br>Crossover<br>trial | 3.5 | N = 30<br>Hip OA<br>and<br>ankylosing<br>spondylitis                         | Flurbiprofen<br>200mg BID vs.<br>TID for 7 days                                                                                                                      | Flurbiprofen effective in<br>66% of 26 patients<br>completing trial; 24<br>patients had no dosing<br>preference. Tolerance<br>also assessed as being<br>satisfactory in 83% of all<br>patients.                                                                                                                         | "Comparison of the<br>two treatment periods<br>showed that 2 daily<br>doses of flurbiprofen<br>produced as good<br>results as the 3-times<br>daily regimen."                                                                                                                                                                                                                            | Sparse details.<br>Study included<br>ankylosing<br>spondylitis<br>patients mixed<br>with hip OA.<br>Comparable<br>efficacy for<br>dosing regimens<br>suggested.                            |
| Scott<br>2000<br>RCT                | 3.5 | N = 399<br>Moderate<br>or severe<br>hip or<br>knee OA                        | Two<br>randomized<br>group trials: 1)<br>nabumetone<br>1500mg/day<br>vs. diclofenac<br>SR 100mg/day<br>and 2)<br>nabumetone<br>(1500-<br>2000mg/day)<br>vs piroxicam | Nabumetone with fewer<br>ulcer and bleeding events<br>compared to patients<br>treated with comparator<br>NSAIDs [1.1% (4/348) vs.<br>4.2% (15/346), $p = 0.01$ ].<br>Diclofenac SR reduced<br>VAS score by statistically<br>greater amount than<br>nabumetone (-16±29 vs<br>8±27, p <0.05). Patients<br>withdrew due to | "[N]abumetone was<br>similar in efficacy by<br>most criteria to<br>diclofenac SR and<br>piroxicam in relieving<br>the symptoms of<br>osteoarthritis; however,<br>nabumetone's GI<br>safety profile was<br>generally superior to<br>that of both comparator<br>NSAIDs. In the pooled                                                                                                     | Sparse study<br>details including<br>allocation<br>methods,<br>blinding,<br>compliance, and<br>control for<br>cointervention.<br>Data may<br>suggest<br>nabumetone has<br>lower GI         |

|                                       |     |                                                    | (20-30mg/day)<br>for 6 months                                                                                           | treatment-related adverse<br>experiences less with<br>nabumetone (17/148 =<br>11%) vs. piroxicam<br>(30/147 = 20%), p <0.04.                                                                                                                                                                                               | analysis, nabumetone<br>was associated with a<br>significantly lower total<br>incidence of ulcers and<br>bleeding events, and a<br>significantly lower<br>incidence of<br>complications<br>associated with these<br>events."                                                                                                                                     | complications<br>and also suggest<br>diclofenac may<br>provide better<br>pain relief.<br>However the<br>quality score<br>tempers this<br>conclusion.                                                          |
|---------------------------------------|-----|----------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Kienapfel<br>1999<br>RCT              | 3.5 | N = 154<br>THA due<br>to OA                        | Radiation dose<br>of 600-cGy vs.<br>indomethacin<br>50mg BID for<br>42 days vs.<br>controls                             | There were significant<br>group difference (p<br><0.001). The 13 patients<br>classified Brooker 3 or 4<br>were all controls (26% of<br>controls).                                                                                                                                                                          | "[B]oth radiation and<br>indomethacin therapy<br>are effective in the<br>prevention of post-<br>operative (Heterotopic<br>ossification)."                                                                                                                                                                                                                        | Sparse details,<br>lack of blinding.<br>Data suggest<br>indometh-acin or<br>XRT may reduce<br>heterotopic<br>ossification.                                                                                    |
| McKenna<br>1998<br>RCT                | 3.5 | N=1824<br>RA or OA                                 | Combination<br>diclofenac/mis<br>oprostol vs.<br>diclofenac or<br>ibuprofen for<br>12 weeks                             | "The diclofenac<br>75/misoprostol group<br>showed fewer decreases<br>in hemaoglobin levels at<br>all time points compared<br>with diclofenac and was<br>associated with a<br>significantly lower mean<br>decrease in hemoglobin<br>levels between baseline<br>and final followup (-0.172<br>vs.<br>-0.311 g/dl; p=0.030)." | "Diclofenac50/misopro<br>stol and diclofenac75/<br>misoprostol are<br>effective in treating the<br>signs and symptoms of<br>RA and OA and are<br>well tolerated by the<br>majority of patients.<br>Both of these<br>formulations achieve a<br>significant reduction in<br>the incidence of both<br>gastric and duodenal<br>ulcers compared with<br>other NSAID." |                                                                                                                                                                                                               |
| Zgradie<br>1999<br>RCT                | 3.0 | N = 180<br>Hip, knee,<br>lumbar<br>spine OA        | Nimesulide<br>200mg BID vs.<br>diclofenac<br>sodium 50mg<br>TID                                                         | After 2 weeks nimesulide<br>therapy indicated<br>"evidently better"<br>response and after 4<br>weeks indicated<br>"significant improvement"<br>while those on diclofenac<br>described their condition<br>in same interval as "a little<br>better than before" and<br>then "evidently better."                              | "This trial confirmed<br>that both drugs were<br>efficacious while<br>nimesulide exerted<br>much better tolerability<br>profile."                                                                                                                                                                                                                                | Lack of blinding,<br>randomization in<br>details weakens<br>the study.                                                                                                                                        |
| Janke<br>1984<br>RCT                  | 3.0 | N = 95<br>Hip or<br>knee OA                        | Sulindac<br>200mg BID vs.<br>naproxen<br>250mg BID for<br>12 weeks                                                      | Disease activity (baseline/<br>Week 12): sulindac (2.32/<br>1.17) vs. naproxen (1.93/<br>1.00). Weight-bearing<br>pain: sulindac (2.42/1.32)<br>vs. naproxen (2.41/1.10).<br>No differences between<br>groups.                                                                                                             | "[N]o statistically<br>significant differences<br>between the effects of<br>the two drugs. Overall,<br>both drugs proved<br>beneficial and well<br>tolerated."                                                                                                                                                                                                   | Lack of blinding,<br>sparse study<br>details.                                                                                                                                                                 |
| Diamond<br>1976<br>Crossover<br>Trial | 3.0 | N = 34<br>Spine, hip,<br>knee or<br>shoulder<br>OA | Fenoprofen<br>200mg to<br>600mg Q6hour<br>vs. aspirin<br>325mg to<br>975mg Q6<br>hour for 6<br>weeks. Doses<br>titrated | Little difference in efficacy<br>between fenoprofen and<br>ASA. Data presented<br>were largely vs. placebo<br>and not well described.                                                                                                                                                                                      | "Fenoprofen in a dose<br>of 200-600 mg, four<br>times daily, showed<br>similar efficacy to 325<br>to 975 mg of ASA, four<br>times daily, in the<br>treatment of<br>osteoarthritis of the<br>spine and large joints.<br>The overall incidence<br>of side effects was<br>similar on the two<br>drugs."                                                             | Lack of study<br>details. Study<br>used placebos in<br>1-week washout<br>phases to<br>compare with<br>active<br>medications; but<br>duration may not<br>have been<br>sufficient and<br>unclear if<br>blinded. |

| Perpoint199<br>4<br>RCT | 3.0 | N = 117<br>Hip or<br>knee OA           | Sustained-<br>release<br>ketoprofen<br>200mg QAM<br>vs. QPM for 14<br>days                                                                                           | Adverse events were:<br>SRK morning 27/59<br>(45.8%) vs. 13/58<br>(22.4%), $p = 0.023$ . VAS<br>pain scores not different<br>( $p = 0.22$ ). Overall efficacy<br>assessments also not<br>different.                                                                                                                         | "[T]o increase its<br>acceptability, evening<br>administration of SRK<br>seems to be preferred<br>to morning<br>administration in<br>osteoarthritis. On the<br>contrary, the<br>chronoeffectiveness of<br>tenoxicam appears to<br>be associated with<br>morning or noon<br>dosing time."                                             | Sparse study<br>details, short<br>follow-up (2<br>weeks). Data<br>suggest evening<br>dosing may be<br>preferable<br>regarding<br>adverse effects.                    |
|-------------------------|-----|----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Crook<br>1981<br>RCT    | 3.0 | N = 47<br>Severe hip<br>OA             | Ibuprofen<br>400mg vs<br>diclofenac<br>25mg QID for<br>8 weeks. Dose<br>could be<br>titrated up first<br>4 weeks.<br>Double<br>dummy.                                | Assessments of condition:<br>diclofenac made condition<br>better for 6/17 (35.3%) vs.<br>6/20 (30%) for ibuprofen.<br>No differences between<br>groups in walking pain,<br>pain on rising from chair<br>or change in rheumatic<br>condition.                                                                                | "[N]o difference in the<br>efficacy or tolerability<br>of diclofenac or<br>ibuprofen in this group<br>of patients with severe<br>disease."                                                                                                                                                                                           | No washout<br>period at start of<br>study.<br>Methodology<br>details sparse.<br>Variable dosing.                                                                     |
| Puscas<br>1997<br>RCT   | 3.0 | N = 18<br>Healthy<br>volunteers        | Ebrotidine<br>800mg/d p.o.<br>vs.<br>indometacin<br>4mg/kg/d p.o.<br>in 3 divided<br>doses vs.<br>ebrotidine<br>800mg/d p.o.<br>plus<br>indometacin<br>4mg/kg/d p.o. | "[E]brotidine reduced total<br>gastric mucosal carbonic<br>anhydrase activity by<br>62%. [I]ndometacin<br>increased carbonic<br>anhydrase activity in<br>gastric mucosa by 138%.<br>[T]he combined treatment<br>with ebrotidine plus<br>indometacin decreased<br>gastric mucosal carbonic<br>anhydrase activity by<br>38%." | "[E]brotidine is the first<br>antiulcer agent with a<br>dual mechanism of<br>action: it is a H <sub>2</sub> -<br>receptor antagonist and<br>a carbonic anhydrase<br>inhibitor. The<br>contribution of anti-<br>ulcer drugs possessing<br>two mechanisms of<br>action could open up a<br>new era in the therapy<br>of ulcer disease." | Small sample<br>size. Short-term<br>study of 10 days.<br>Experimental<br>study of carbonic<br>anhydrase.                                                             |
| Fendrick<br>1998<br>RCT | 2.5 | N = 541<br>Patients<br>using<br>NSAIDs | Omeprazole<br>20 or 40mg<br>daily vs.<br>ranitidine<br>150mg twice<br>daily for 4-8<br>weeks                                                                         | The study found a<br>treatment success for<br>patients treated with<br>omeprazole 20mg daily<br>(80%), or with omeprazole<br>40mg daily (79%) when<br>compared with those<br>individuals in the ranitidine<br>group (63%) (p ≤0.001).                                                                                       | "[T]he data presented<br>provide adequate<br>evidence that<br>omeprazole is an<br>effective treatment,<br>because of its proven<br>efficacy regarding<br>healing and prevention<br>of documented lesions<br>and, maybe more<br>importantly, its<br>advantage in<br>controlling symptoms."                                            | Two RCTs; 4-6<br>week treatment<br>and 6 month<br>Sparse data as<br>reported support<br>omeprazole as<br>superior to<br>ranitidine,<br>misoprostol or<br>placebo.    |
| Admani<br>1983<br>RCT   | 2.0 | N = 30<br>Hip or<br>knee OA            | Sulindac<br>200mg BID vs.<br>ibuprofen<br>400mg TID for<br>12 weeks                                                                                                  | Weight-bearing pain, pain<br>on active movement, pain<br>on passive movement all<br>improved compared with<br>baseline in sulindac but not<br>ibuprofen (graphic data).<br>Percentages feeling<br>improved were: sulindac<br>(12.0%) vs. ibuprofen<br>(13.3%).                                                              | "Patients acceptance<br>of sulindac regimen<br>appeared to be better<br>than that of ibuprofen<br>because of the smaller<br>tablets and the twice<br>daily compared with 3-<br>times daily dosage."                                                                                                                                  | Small sample;<br>lack of details;<br>baseline<br>differences on<br>some outcomes<br>measures.<br>Submaximal<br>ibuprofen dose.<br>Unusually small<br>response rates. |

\*Methodology contains sufficient criteria to warrant moderate quality score, but sparse results merit low-quality rating.

#### GLUCOSAMINE, CHONDROITIN, AND METHYLSULFONYLMETHANE

| Author/Year | Score  | Sample | Comparison | Results | Conclusion | Comments |
|-------------|--------|--------|------------|---------|------------|----------|
| Study Type  | (0-11) | Size   | Group      |         |            |          |

| Qiu        | 3.5 | N = 178 | Glucosamine         | GS and IBU progressively and      | Study confirms GS is a     | No placebo group.    |
|------------|-----|---------|---------------------|-----------------------------------|----------------------------|----------------------|
| 1998       |     |         | sulfate             | significantly reduced knee pain   | selective drug for         | Allocation,          |
|            |     | Knee OA | (1500mg/day) vs.    | (p <0.0001). In 4 weeks, GS       | osteoarthritis, as         | randomization, and   |
| RCT        |     |         | ibuprofen           | reduced knee pain 57% and         | effective on symptoms of   | baseline             |
|            |     |         | (1,200mg a day)     | IBU 51%. GS trend of greater      | disease as NSAIDs but      | characteristics      |
|            |     |         | for 4 weeks         | pain relieving efficacy, but      | significantly better       | unclear.             |
|            |     |         |                     | difference vs. IBU not            | tolerated. For these       |                      |
|            |     |         |                     | statistically significant. GS and | properties, GS seems       |                      |
|            |     |         |                     | IBU progressively, significantly  | particularly indicated in  |                      |
|            |     |         |                     | reduced knee swelling (p          | the long-term treatments   |                      |
|            |     |         |                     | <0.0001).                         | needed in osteoarthritis.  |                      |
| D'Ambrosio | 3.0 | N = 30  | Glucosamine         | Overall symptom score             | "The results indicate that | Lack of              |
| 1981       |     |         | sulfate (400mg) vs. | decreased 58% during              | this new preparation       | randomization,       |
|            |     | OA      | piperazine/         | injectable glucosamine            | containing pure            | allocation details.  |
| RCT        |     |         | chlorbutanol        | treatment, and further 13%        | glucosamine sulfate is an  | No data on arthritis |
|            |     |         | (400mg) daily 7     | with oral maintenance             | effective and well-        | type or baseline     |
|            |     |         | days IV or IM, then | therapy. Decrease                 | tolerated treatment for    | comparability.       |
|            |     |         | 2 following weeks   | significantly larger than that    | arthrosis."                |                      |
|            |     |         | oral glucosamine    | measured during reference         |                            |                      |
|            |     |         | capsules (500mg     | initial treatment and placebo     |                            |                      |
|            |     |         | TID) vs. placebo    | maintenance. No definitely        |                            |                      |
|            |     |         | for non-specific OA | drug-related intolerance          |                            |                      |
|            |     |         |                     | symptoms evident in either        |                            |                      |
|            |     |         |                     | group.                            |                            |                      |

#### HERBAL AND OTHER PREPARATIONS

| Author/Year<br>Study Type | Score<br>(0-11) | Sample<br>Size | Comparison<br>Group | Results                   | Conclusion             | Comments      |  |  |
|---------------------------|-----------------|----------------|---------------------|---------------------------|------------------------|---------------|--|--|
| Warholm                   | 3.0             | N = 100        | Rose-hip powder     | Pain declined in active   | "Hyben Vitalreduces    | Conference    |  |  |
| 2003                      |                 |                | 5g a day vs.        | treatment group compared  | osteoarthritic pain in | abstract with |  |  |
| DOT                       |                 | Hip or         | placebo for 4       | with placebo, p<0.035 (no | the hip and also       | limited data. |  |  |
| RUI                       |                 | ΛΔ             | monuns              | data provided).           | significant            |               |  |  |
|                           |                 | ON             |                     |                           | improvement in         |               |  |  |
|                           |                 |                |                     |                           | energy, motivation for |               |  |  |
|                           |                 |                |                     |                           | their daily activities |               |  |  |
|                           |                 |                |                     |                           | and sleep during       |               |  |  |
|                           |                 |                |                     |                           | active therapy."       |               |  |  |

#### DIACEREIN

| Author/Year                              | Score | Sample<br>Size     | Comparison<br>Group                                                                                                                                                     | Results                                                                                                                                                                                                                                                                                | Conclusion                                                                                                                                                                                                                                                         | Comments                                                                                                                                                                                     |
|------------------------------------------|-------|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Marcolongo<br>1988                       | 3.0   | N = 46<br>knee OA  | Diacerein 50mg<br>BID vs. naproxen                                                                                                                                      | Data suggest comparable<br>pain reduction, pain on                                                                                                                                                                                                                                     | "The results of the<br>present trial confirm the                                                                                                                                                                                                                   | Methods not well<br>described. Unclear<br>if randomized                                                                                                                                      |
| Possible<br>Controlled<br>Clinical Trial |       | N = 49 hip<br>OA   | months followed by<br>2 months of<br>placebo washout                                                                                                                    | during active treatment with<br>either, but prolonged effect<br>after cessation of diacerein.                                                                                                                                                                                          | treatment of<br>osteoarthrosis; this<br>efficacy is generally<br>manifested later than<br>that of naproxen, but is<br>of longer duration. Also,<br>the tolerability of DAR<br>was extremely good."                                                                 | Sub-maximal<br>naproxen dose<br>may have<br>modestly biased<br>study in favor of<br>diacerein.                                                                                               |
| Fagnani                                  | 3.0   | N = 207            | Standard therapy                                                                                                                                                        | Analgesic consumption at                                                                                                                                                                                                                                                               | "The costs resulting from                                                                                                                                                                                                                                          | Non-blinded, no                                                                                                                                                                              |
| RCT                                      |       | Knee and<br>hip OA | vs. diacerein 50mg<br>BID plus standard<br>therapy (NSAIDs,<br>physiotherapy,<br>exercise,<br>injections) for 6<br>months, followed<br>by 3 month<br>monitoring period. | Day 15 and 6 months 25.5%<br>and 41.1% lower,<br>respectively, in diacerein plus<br>standard therapy group than<br>standard therapy group.<br>Cumulative NSAID and<br>analgesic consumption in<br>diacerein plus standard<br>therapy group 26.1% (p =<br>0.068) lower than in standard | NSAID and analgesic<br>consumption, additional<br>physician office visits,<br>injections, nursing care,<br>physiotherapy sessions,<br>hydrotherapy and<br>treatment of adverse<br>events were lower in the<br>diacerein plus standard<br>therapy group than in the | control for co-<br>interventions as to<br>allow standard<br>practice and<br>evaluate standard<br>therapies. Mixture<br>of therapies<br>questionable. If<br>control group<br>received more of |

|  |  | therapy group. Difference        | standard therapy group." | same that          |
|--|--|----------------------------------|--------------------------|--------------------|
|  |  | between two groups               |                          | previously failed, |
|  |  | statistically significant during |                          | then study likely  |
|  |  | 0-to-6-month period (p =         |                          | biased in favor of |
|  |  | 0.01) and 0-to 9 month           |                          | intervention.      |
|  |  | period ( $p = 0.001$ ).          |                          |                    |

# ACUPUNCTURE

| Author/Year<br>Study Type        | Score<br>(0-11) | Sample<br>Size               | Comparison<br>Group                                                                                                                                             | Results                                                                                                                                                                                                                                                                                                             | Conclusion                                                                                                          | Comments                                                                                                                                                                                                                                                                                                                       |
|----------------------------------|-----------------|------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Haslam<br>2001                   | 3.0             | N = 32                       | Acupuncture 6<br>sessions up to 25                                                                                                                              | WOMAC scores<br>(baseline/8 weeks):                                                                                                                                                                                                                                                                                 | "[T]his trial supports the hypothesis that                                                                          | Small sample, sparse data. Unclear if controls                                                                                                                                                                                                                                                                                 |
| RCT                              |                 | Hip OA<br>awaiting<br>THR    | minutes each;<br>GB29, 30, 34, 43,<br>ST44, LI4<br>bilaterally and 4<br>"ah shi" points<br>around greater<br>trochanter) vs.<br>advice/exercises<br>for 6 weeks | acupuncture (870/732)<br>vs. controls (854/878), p<br>= 0.02.                                                                                                                                                                                                                                                       | acupuncture is more<br>effective than advice<br>and exercises in the<br>symptomatic treatment<br>of OA of the hip." | already had same<br>treatment, thus<br>potentially biased to<br>favor acupuncture.<br>Controls wait listed for<br>arthroplasty; likely<br>biases in favor of<br>intervention.                                                                                                                                                  |
| Fargas-<br>Babjak<br>1989<br>RCT | 2.5             | N = 37<br>Hip and<br>knee OA | Codetron<br>(acupuncture-like<br>TENS device) vs.<br>placebo device                                                                                             | After 6 weeks of<br>treatment, using a VAS,<br>Codetron group 14/19<br>(74%) had >25%<br>improved pain whereas<br>placebo only 5/18(28%)<br>had >25% improved pain<br>(p <0.02). Pain scores<br>using West Haven Yale<br>(WH/Y) scale showed<br>significant improvement<br>of Codetron (13/19 vs<br>5/18, p <0.05). | This is highly<br>suggestive of the<br>therapy of chronic pain<br>conditions such as<br>osteoarthritis.             | Intervention group<br>instructed to use<br>maximum intensity<br>tolerated, thus true<br>blinding absent. High<br>dropouts. Pain tools had<br>contradictory responses<br>from same patients on<br>same questions<br>suggesting confusion or<br>misinterpretation. No<br>demonstrated<br>improvements in<br>functional outcomes. |

### MANIPULATION AND MOBILIZATION

| Author/Year/<br>Study Type | Score<br>(0-11) | Sample<br>Size                                    | Comparison<br>Group                                    | Results                                                                                                                                          | Conclusion                                                                               | Comments                                                                                                                                                                                                 |
|----------------------------|-----------------|---------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Cibulka<br>1993            | 2.5             | N = 20<br>Runners                                 | Mobilization of hip<br>joint vs.<br>Manipulation of SI | Pain improvements at<br>"follow-up" (unknown<br>time interval):                                                                                  | "The results suggest<br>that a manipulation<br>technique designed to                     | Details/results sparse.<br>Differences at baseline<br>with older group                                                                                                                                   |
| RCT                        |                 | with<br>anterior<br>and/or<br>lateral hip<br>pain | Joint with all felt<br>to have SI<br>dysfunction       | manipulation 3.8 vs.<br>mobilization 0.8.<br>Negative Faber at follow-<br>up in 9/10 (90%) of<br>manipulation vs. 3/10<br>(30%) of mobilization. | reduce sacroiliac joint<br>dysfunction is an<br>effective method to<br>reduce hip pain." | receiving mobilization<br>(24 vs. 16 years)<br>suggests randomization<br>failure. No placebo limits<br>conclusions, already<br>may be limited to<br>runners. Follow-up<br>interval appears not<br>fixed. |

TENS

| IENS                      |                 |                |                     |                         |                          |                           |
|---------------------------|-----------------|----------------|---------------------|-------------------------|--------------------------|---------------------------|
| Author/Year<br>Study Type | Score<br>(0-11) | Sample<br>Size | Comparison<br>Group | Results                 | Conclusion               | Comments                  |
| Pike                      | 2.5             | N = 40         | Pethidine 30mg      | Mean doses of pethidine | "There was less          | Study does not discuss    |
| 1978                      |                 |                | IM vs. pethidine    | TENS 1.3±1.38 vs.       | pethidine used in the    | randomization process. If |
|                           |                 | THR            | plus TENS for first | control 4.3±2.05, p     | TES groupIt was well     | valid, data suggest       |
| RCT                       |                 |                | 24 hours post-op    | <0.001. Patient         | accepted by both         | TENS may reduce           |
|                           |                 |                | in THR patients     | assessment of           | patients and staffAn     | postoperative anesthetic  |
|                           |                 |                |                     | anesthesia also favored | ideal stimulation effect | requirements.             |
|                           |                 |                |                     | TENS [good/excellent    | was often achieved by    |                           |
|                           |                 |                |                     | 17/20 (85%) vs. 9/20    | similar patterns of      |                           |
|                           |                 |                |                     | (45%)].                 | stimulating              |                           |

|  |  | parameters." |  |
|--|--|--------------|--|
|  |  |              |  |
|  |  |              |  |
|  |  |              |  |
|  |  |              |  |

# **GLUCOCORTICOSTEROID INJECTIONS**

| Author/Year<br>Study Type | Score<br>(0-11) | Sample<br>Size    | Comparison<br>Group                  | Results                                                                                                                                                                                                | Conclusion                                                                                                                                                                                                                        | Comments                                                                                                          |
|---------------------------|-----------------|-------------------|--------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|
| Robinson<br>2007<br>RCT   | N/A             | N = 120<br>Hip OA | Methylprednisolon<br>e 40mg vs. 80mg | Both doses improved<br>pain and stiffness at<br>week 6. 80mg dose<br>superior for stiffness at<br>week 12 ( $p = 0.026$ ) and<br>disability at week 6 ( $p =$<br>0.026) and week 12 ( $p =$<br>0.004). | "[B]oth the 40 mg and 80<br>mg IAST doses had a<br>beneficial effect at week<br>6, while the 80 mg dose<br>maintained this<br>improvement at week<br>12Randomized<br>controlled trials of IAST<br>for hip OA are now<br>required" | Suggests 80mg superior,<br>however baseline data<br>have differences in<br>synovitis and study not<br>randomized. |

# **HIP OSTEONECROSIS**

| Author/Yea            | Scor | Sample<br>Size                                                         | Comparison<br>Group                                                                                                                                                                      | Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Conclusion                                                                                                                                                                                                                                                                                                                                                                                          | Comments                                                                                                                                                                                                                                                                                     |
|-----------------------|------|------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Study Type            | 11)  | 0.20                                                                   | e.eap                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                              |
| Wang<br>2005<br>RCT   | 3.5  | N = 53<br>(57<br>hips)<br>Stages<br>I, II or III<br>osteo-<br>necrosis | Shock-wave<br>(SWT, single<br>treatment with<br>6,000 impulses<br>of shock waves<br>at 28kV to hip)<br>vs. core<br>decompression<br>with<br>nonvascularized<br>fibular grafting<br>(CDG) | At 24 months, Harris hip<br>scores in SWT better than<br>CDG (baseline/24 months:<br>SWT 78.7 $\pm$ 13.5/97.5 $\pm$ 2.9<br>vs. CDG<br>74.6 $\pm$ 4.7/76.8 $\pm$ 5.6, p <<br>0.001). In SWT 79% hips<br>improved, 10% unchanged,<br>10% worse vs. CDG 29%,<br>36%, and 36% worse. SWT<br>had 5/13 (38.5%)<br>regressed in stage I or II.<br>Two each of stage-II and III<br>progressed. CDG 4<br>regressed and 15/19<br>(78.9%) of stage I or II<br>progressed and 9<br>unchanged. | "Extracorporeal shock-<br>wave treatment<br>appeared to be more<br>effective than core<br>decompression and<br>nonvascularized fibular<br>grafting in patients with<br>early-stage<br>osteonecrosis of the<br>femoral head. Long-<br>term results are<br>needed to determine<br>whether the effect of<br>this novel method of<br>treatment for<br>osteonecrosis of the<br>femoral head<br>endures " | Pseudorandomiz<br>ation by day of<br>week. SWT<br>group trended<br>towards lower<br>pain ratings at<br>baseline (p =<br>0.06). Lack of<br>decreased pain<br>in the surgery<br>group differs<br>from other<br>studies. Data<br>suggest SWT<br>superior to coring<br>with fibular<br>grafting. |
| Gangji<br>2005<br>RCT | 3.5  | N = 13<br>(18<br>hips)<br>Stages I<br>or II<br>osteo-<br>necrosis      | Core<br>decompression<br>procedure with<br>vs. without<br>autologous<br>bone marrow<br>mononuclear<br>cell implantation                                                                  | Significant pain reduction<br>(p = 0.021) and WOMAC (p<br>= 0.013) with autologous<br>bone marrow cell<br>implantation. At 24 months<br>5 of 8 control hips vs. 1/10<br>bone marrow hips<br>deteriorated to stage III.                                                                                                                                                                                                                                                            | "Implantation of<br>autologous bone-<br>marrow mononuclear<br>cells appears to be a<br>safe and effective<br>treatment for early<br>stages of<br>osteonecrosis of the<br>femoral head.<br>Although the findings<br>of this study are<br>promising, their<br>interpretation is limited<br>because of the small<br>number of patients and<br>the short duration of<br>follow-up."                     | Small sample<br>size. Sparse<br>details. Sparse<br>data. Study<br>needs replicating<br>with larger<br>sample size and<br>data reported.                                                                                                                                                      |

# HAMSTRING STRAINS: PATS

| Author/Year<br>Study Type  | Score<br>(0-11) | Sample<br>Size                                                                                                                             | Comparison<br>Group                                                                                                                                                    | Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Conclusion                                                                                                                                                                                                                                                                                                | Comments                                                                                                                                                                                                                                                                                                                                            |
|----------------------------|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Engebretsen<br>2008<br>RCT | 3.5             | N = 388<br>Soccer<br>players<br>with<br>history of<br>MSD of<br>ankle,<br>knee,<br>hamstring<br>or groin<br>and high<br>recurrence<br>risk | Exercise<br>program<br>intervention<br>(stepped<br>increase in<br>ankle, knee,<br>groin,<br>hamstring<br>exercises up to<br>3 per week for<br>10 weeks) vs.<br>control | 505 injuries among 56% of<br>players. Total injury<br>incidence mean 3.2 (95%<br>Cl 2.5-3.9) in low-risk<br>group, 5.3 (95% Cl, 4.6-<br>6.0) HR controls (p =<br>0.0001 vs LR controls), and<br>4.9 (95% Cl, 4.3-5.6) HR<br>intervention group (p = 0.50<br>vs. HR controls). For main<br>outcome measure, sum of<br>ankle, knee, hamstring,<br>groin injuries, significantly<br>lower injury risk in LR<br>control vs. other 2 groups,<br>no difference between HR<br>intervention and HR<br>controls. Compliance with<br>training programs in HR<br>intervention: 27.5% ankle,<br>29.2% knee, 21.1%<br>hamstring, 19.4% groin. | "[P]layers with a<br>significantly increased<br>risk of injury were able<br>to be identified through<br>the use of a<br>questionnaire, but<br>player compliance with<br>the training programs<br>prescribed was low and<br>any effect of the<br>intervention on injury<br>risk could not be<br>detected." | Prevention study<br>of soccer players<br>and applicability<br>to other patients<br>unclear. Multiple<br>injuries and<br>exercises<br>combined with<br>inadequate<br>reporting of any<br>one weak. Thus<br>validity and utility<br>for any one<br>outcome<br>unclear.<br>Compliance so<br>low (19-29%)<br>that results<br>appear without<br>meaning. |
| Hartig<br>1999             | 3.5             | Two<br>infantry                                                                                                                            | Three<br>hamstring                                                                                                                                                     | Intervention group's<br>hamstring flexibility                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | "[T]he number of lower<br>extremity overuse                                                                                                                                                                                                                                                               | Randomization<br>by company.                                                                                                                                                                                                                                                                                                                        |
| RCT                        |                 | trainee<br>companies<br>(N = 148<br>and 150)                                                                                               | sessions plus<br>usual training<br>fitness<br>program vs. no<br>hamstring<br>stretching<br>exercises<br>added to usual<br>training fitness<br>program                  | 41.7 $\pm$ 8.3/34.7 vs. controls<br>45.9 $\pm$ 6.5/42.9. 43 injuries<br>in controls group<br>(incidence rate 29.1%) vs.<br>25 injuries in intervention<br>(IR = 16.7%), p = 0.02.                                                                                                                                                                                                                                                                                                                                                                                                                                                | significantly lower<br>infantry basic trainees<br>with increased<br>hamstring flexibility."                                                                                                                                                                                                               | differences in<br>hamstring<br>flexibility<br>(intervention<br>more flexible<br>41.7±8.3 vs.<br>45.9±6.5, p<br><0.001), indicate<br>randomiza-tion<br>failure, potential<br>fatal study flaw.                                                                                                                                                       |

# GROIN STRAINS AND ADDUCTOR-RELATED GROIN PAIN: PHYSICAL OR OCCUPATIONAL THERAPY

| INEKAFI                   |                 |                                                                                                                                            |                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                     |
|---------------------------|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Author/Year<br>Study Type | Score<br>(0-11) | Sample<br>Size                                                                                                                             | Comparison<br>Group                                                                                                                                                    | Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Conclusion                                                                                                                                                                                                                                                                                                | Comments                                                                                                                                                                                                                                                                                                                                            |
| RCT                       | 3.5             | N = 388<br>Soccer<br>players<br>with<br>history of<br>MSD of<br>ankle,<br>knee,<br>hamstring<br>or groin<br>and high<br>recurrence<br>risk | Exercise<br>program<br>intervention<br>(stepped<br>increase in<br>ankle, knee,<br>groin,<br>hamstring<br>exercises up to<br>3 per week for<br>10 weeks) vs.<br>control | Reported 505 injuries<br>among 56% of players.<br>Total injury incidence mean<br>3.2 (95% Cl 2.5-3.9) in low-<br>risk group, 5.3 (95% Cl,<br>4.6-6.0) HR controls (p = 0<br>.0001 vs. LR controls), and<br>4.9 (95% Cl, 4.3-5.6) HR<br>intervention group (p = 0.50<br>vs. HR controls). For main<br>outcome measure, sum of<br>ankle, knee, hamstring,<br>groin injuries also<br>significantly lower injury risk<br>LR control group vs. other<br>2 groups; no difference<br>between HR intervention<br>and HR controls.<br>Compliance with training<br>programs HR intervention: | "[P]layers with a<br>significantly increased<br>risk of injury were able<br>to be identified through<br>the use of a<br>questionnaire, but<br>player compliance with<br>the training programs<br>prescribed was low and<br>any effect of the<br>intervention on injury<br>risk could not be<br>detected." | Prevention study<br>of soccer players<br>and applicability<br>to other patients<br>unclear. Multiple<br>injuries and<br>exercises<br>combined with<br>inadequate<br>reporting of any<br>one weak. Thus<br>validity and utility<br>for any one<br>outcome<br>unclear.<br>Compliance so<br>low (19-29%)<br>that results<br>appear without<br>meaning. |
|                           |                 |                                                                                                                                            |                                                                                                                                                                        | 27.5% ankle, 29.2% knee,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                           | 1                                                                                                                                                                                                                                                                                                                                                   |

|  |  | 21.1% hamstring, 19.4% |  |
|--|--|------------------------|--|
|  |  | groin.                 |  |

### HIP FRACTURES

|                           |                 | • ·                                                           |                                                            | -                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                       |                                                                                                                  |
|---------------------------|-----------------|---------------------------------------------------------------|------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|
| Author/Year<br>Study Type | Score<br>(0-11) | Sample<br>Size                                                | Comparison<br>Group                                        | Results                                                                                                                                                                                                                                                                                                                                                                                                                         | Conclusion                                                                                                                                                                                                                                                                                                                            | Comments                                                                                                         |
| Sonne-Holm<br>1982<br>RCT | 3.5             | N = 112<br>Femoral<br>neck<br>fracture<br>s                   | Hemiarthroplast<br>y with and<br>without bone<br>cement    | After 6 weeks, post-op<br>cemented patients had less<br>pain (p <0.05); but no<br>difference in hip mobility or<br>gait function. Total hip<br>index higher for cemented<br>hemi-arthroplasties after 3<br>and 6 months. Twice as<br>many with cemented vs.<br>uncemented<br>hemiarthroplasties had<br>normal gait function after 3<br>and 6 months; by 1 year<br>follow up 40% of all<br>patients had normal gait<br>function. | "Clinical results are<br>improved with fixation of<br>the prosthesis with<br>cement, at least during<br>the first 6 months<br>following the operation."                                                                                                                                                                               | Author suggests<br>patients and<br>observers were<br>blinded. Lack of<br>methodology<br>details.                 |
| Raahave<br>1976<br>RCT    | 3.5             | N = 16<br>Hernia<br>repairs                                   | Plastic skin<br>drape vs. no<br>plastic skin<br>drape      | Median bacterial densities<br>of sounds (first<br>stage/second stage): skin<br>drape (4.6/10.4) vs.<br>controls (4.2/6.0).                                                                                                                                                                                                                                                                                                      | "[P]lastic skin drapes<br>were without influence<br>on the species and<br>density of bacteria in<br>operation wounds.<br>Plastic wound drapes,<br>on the other hand,<br>considerably reduced<br>not only exogenous but<br>in particular<br>endogenous bacteria<br>which otherwise would<br>have remained in the<br>operation wounds." | Small sample<br>size. Study<br>suggests plastic<br>drapes may be<br>effective.                                   |
| Jackson<br>1971<br>RCT    | 3.5             | N = 921<br>Mixed<br>surgical<br>cases                         | Plastic skin<br>drape vs. no<br>plastic skin<br>drape      | For clean wounds, 5.4% of draped wounds became infected vs. 3.9%, p>0.5.                                                                                                                                                                                                                                                                                                                                                        | "No significant<br>difference was<br>observed in the rate of<br>wound infection<br>between the two<br>groups."                                                                                                                                                                                                                        | Suggests no<br>differences.                                                                                      |
| Buciuto<br>1997<br>RCT    | 3.5             | N = 233<br>Unstabl<br>e<br>trochan-<br>teric<br>fracture<br>s | Fixed angle<br>blade plate vs.<br>compression hip<br>screw | Follow-up study of previous<br>randomized population<br>reporting results 1-3 years<br>post-surgical fixation of<br>unstable trochanteric<br>fractures. In follow-up, 20<br>patients had implant<br>removed after fracture<br>union; 7 of 20 cases, a<br>spontaneous femoral neck<br>fracture occurred average<br>of 19 days post-removal<br>(range, 7-60 days).                                                                | "The authors<br>recommend<br>consideration of<br>additional and<br>complementary<br>radiologic investigations<br>before implant removal<br>in a patient with<br>unspecified hip pain in<br>whom standard<br>radiographs show a<br>healed trochanteric<br>fracture."                                                                   | The role of the<br>implant position<br>and subsequent<br>removal and<br>incidence of<br>fracture are<br>unclear. |
| Buciuto<br>1998<br>RCT    | 3.5             | N = 233<br>Unstabl<br>e<br>trochan-<br>teric<br>fracture<br>s | Fixed angle<br>blade plate vs.<br>compression hip<br>screw | No differences in operative<br>time or blood loss. Healing<br>rates without complications:<br>FAB 87% vs. CHS 68%, p<br>= 0.003. Technical failures<br>occurred in 13 vs. 38. More<br>leg length discrepancies in<br>CHS group (2 vs. 15, p =<br>0.002). Deaths at 1 year                                                                                                                                                       | "Our findings suggest<br>that the RAB-plate is a<br>safe implant for fixation<br>of unstable trochanteric<br>fractures and can be<br>regarded as a good<br>alternative to the<br>compression hip<br>screw."                                                                                                                           | Trends of better<br>healing rates and<br>lower technical<br>failures, but more<br>deaths in the<br>FAB group.    |

|                       |     |                                                                                   |                                                                                                                                  | were: FAB 13/111 (11.7%)<br>vs. CHS 22/122 (18.0%).                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                      |
|-----------------------|-----|-----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Mehdi<br>2000<br>RCT  | 3.0 | N = 180<br>Extra-<br>capsular<br>fracture<br>s                                    | Extramedullary<br>hip screw vs.<br>sliding hip<br>screw                                                                          | Average operating times 55<br>vs. 48 minutes (p = 0.9)<br>respectively for IMHS and<br>SHS. Mean EBL 247 and<br>270mL (p = 0.9). Acceptable<br>screw position achieved in<br>more SHS (p <0.05),<br>attributed to greater<br>technical difficulties with<br>IMHS (p <0.05). Mean<br>Harris hip scores at<br>minimum 6 months not<br>different between fracture<br>severity groups (p = 0.3 and<br>0.5) and ASA groups (p<br>>0.05). | "It is recommended for<br>complex fractures in fit<br>patients."                                                                                                                                                                                                        | Abstract. Sparse<br>study details                                                                                                                                                                                                                                    |
| Benum<br>1994<br>RCT  | 3.0 | N = 912<br>Sub-<br>trochan-<br>teric<br>femoral<br>fracture<br>s                  | Gamma nail vs.<br>conventional hip<br>screw                                                                                      | Average operative time GN<br>60.9 vs. CHS 56.4 minutes,<br>p = 0.02. More peri-<br>operative "problems and<br>complications" with GN<br>(11.1%) than CHS (4.0%),<br>p = 0.00009. More<br>reoperations in GN (6.8%<br>vs. 1.5%, $p = 0.00001$ ).                                                                                                                                                                                     | "Due to a significantly<br>higher rate of<br>preoperative problems<br>complications and<br>reoperations in<br>particular complicating<br>femoral fractures,<br>gamma nailing cannot<br>be recommended as a<br>standard procedure in<br>intertrochanteric<br>fractures." | Abstract. Details<br>sparse. Large<br>sample size.                                                                                                                                                                                                                   |
| Hogh<br>1993<br>RCT   | 3.0 | N = 299<br>Trochan<br>-teric<br>and<br>sub-tro-<br>chanteri<br>c<br>fracture<br>s | Gamma nail vs.<br>DHS                                                                                                            | No differences in operating<br>time, blood loss.<br>Compression screws cut<br>out in 3 DHS vs. 10 GN<br>cases. No differences over<br>6 months in walking. More<br>pain in GN group.                                                                                                                                                                                                                                                | "Immediate weight<br>bearing was allowed for<br>all patients in the<br>gamma group.<br>Significantly more<br>patients in the gamma<br>group had pain in the<br>trochanter region."                                                                                      | Abstract. Sparse<br>details.                                                                                                                                                                                                                                         |
| Sadr<br>1977<br>RCT   | 2.5 | N = 40<br>Sub-<br>capital<br>femoral<br>fracture<br>s                             | Hemiarthroplasty<br>with Thompson<br>prosthesis with<br>proplast<br>coatings vs.<br>standard<br>Thompson with<br>acrylic cement. | Loosening in 9 Proplast vs.<br>0 cemented. Operative<br>mortality in 5/20 (25%)<br>proplast vs. 2/20 (10%), p<br>>0.05.                                                                                                                                                                                                                                                                                                             | "At follow-up, which<br>ranged from 3 to 17<br>months, there was<br>substantial X-ray<br>evidence of prosthetic<br>loosening in the<br>Proplast series."                                                                                                                | Variable length<br>follow-ups of 3 to<br>17 months                                                                                                                                                                                                                   |
| Calder<br>1995<br>RCT | 2.5 | N = 238<br>Dis-<br>placed<br>intra-<br>capsular<br>fracture<br>s                  | AHS vs. Monk<br>vs. Thompson.<br>Study assessed<br>outcomes with<br>mailed surveys                                               | Rate of usable surveys<br>67.4%. Those younger<br>completed more surveys<br>(74.3% vs. 62.4%), as did<br>those who were previously<br>independent of walking<br>aids (p = 0.005) and higher<br>mental test scores (p<br><0.0001).                                                                                                                                                                                                   | "Postal assessment<br>using NHP gave a<br>satisfactory response<br>rate even in the elderly,<br>and can provide an<br>extra assessment to<br>complement or replace<br>hospital follow-up in<br>some circumstances."                                                     | Study to<br>ascertain<br>usability of<br>mailed follow-up<br>surveys for<br>assessing<br>outcomes.<br>Higher<br>participation rate<br>for younger more<br>active patients;<br>67.4% response<br>rates/potential<br>response biases<br>may invalidate<br>conclusions, |

|                          |     |                                                             |                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                        | especially<br>adverse<br>outcomes.                                                                                                                                          |
|--------------------------|-----|-------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Herrera<br>2002<br>RCT   | 2.5 | N = 125<br>Peritro-<br>chanteri<br>c<br>fracture<br>s       | Gamma nail vs.<br>proximal<br>femoral nail                                                                           | Surgical procedure length<br>averaged PFN 49 minutes<br>vs. Gamma nail 68 minutes<br>(p <0.05). More<br>transfusions for GN.<br>Average healing time was<br>12 weeks for both. No<br>differences in recovery of<br>prior functional ability. No<br>differences in mortality.                                                                                                                                                                                                                               | "The PFN seems to us<br>to be a more dynamic<br>system with a lower<br>incidence of local and<br>late complications."                                                                                                                                                                                                  | Both techniques<br>had significant<br>limitations, but<br>the study<br>suggests PFN<br>superior to<br>Gamma nail.                                                           |
| Bannister<br>1990<br>RCT | 2.5 | N = 155<br>Trochan<br>-teric<br>fracture<br>s               | AO dynamic hip<br>screw vs.<br>Jewett nail<br>plate; open<br>reduction<br>permitted if<br>unsatisfactory<br>position | Of 155, complete data on<br>86 and 50 were DHS. Data<br>not presented to denote<br>how those in complete<br>dataset differed from entire<br>population or between<br>intervention; 3 failed to<br>unite, 2JNP and 1 DHS<br>8/50 (16%) DHS had<br>evidence of mechanical<br>failure vs. 25/36 (69%), p<br><0.001. At 1 year, 12%<br>DHS vs. 25% JNP<br>complained of hip pain.                                                                                                                              | "If the results of this<br>study are projected, it is<br>to be anticipated that<br>the sliding screw will<br>reduce reoperation by<br>two-thirds and mild pain<br>by one-half. While this<br>represents welcome<br>progress, it is unlikely to<br>radically alter the face<br>of trochanteric fracture<br>management." | One-year<br>mortality rate<br>37%. Most data<br>aggregate,<br>limiting<br>conclusions on<br>relative value of<br>devices. Data<br>suggest DHS<br>superior.                  |
| Pitsaer<br>1993<br>RCT   | 2.5 | N = 100<br>Inter-<br>tro-<br>chanteri<br>c<br>fracture<br>s | Sliding hip<br>screw vs.<br>McLaughlin nail<br>plate                                                                 | Deaths in 33 patients within<br>6 months (32 unstable<br>fractures) (NS between<br>groups). No differences in<br>early rehab, pain or<br>regaining walking ability;<br>82% pain-free at 6 months.<br>Functional outcome at 6<br>months did not correlate<br>with prefracture walking<br>score. Stable fractures<br>developed less shortening<br>(median 8.4 mm) than<br>unstable fracture (median<br>17.1 mm). No differences<br>between DHS and MCL<br>groups. More breakage of<br>McLaughlin nail-plate. | "[O]verall outcome was<br>unrelated to the implant<br>selected; although the<br>Dynamic Hip Screw had<br>a higher failure rate by<br>'cutting-out' we would<br>advise against the use<br>of the McLaughlin nail-<br>plate due to its high<br>incidence of implant<br>breakage."                                        | Sparse study<br>details.<br>Recommendatio<br>n against<br>McLaughlin Nail<br>plate not based<br>on functional<br>outcomes but on<br>complications<br>(implant<br>breakage). |
| Ekeland<br>1993<br>RCT   | 2.5 | N = 378<br>Proxima<br>I<br>femoral<br>fracture<br>s         | Gamma nail vs.<br>hip compression<br>screw                                                                           | Fifteen re-operations<br>(13GN vs. 2 HCS), p<br><0.003. 10 fractures, all<br>with GN.                                                                                                                                                                                                                                                                                                                                                                                                                      | "The reoperation rate is<br>significantly higher after<br>Gamma nailing than<br>after HCS. The risk of<br>femoral shaft fractures<br>after Gamma nailing is<br>about 5%. Half of the<br>fractures occurred early<br>and were probably due<br>to technical errors<br>during Gamma nailing."                             | Abstract                                                                                                                                                                    |
| Madsen<br>1996<br>RCT    | 2.0 | N = 99<br>Unstabl<br>e per-<br>and                          | Gamma nail vs.<br>compression hip<br>screw vs.<br>dynamic hip<br>screw                                               | No differences in DVTs, but<br>more infections in Gamma<br>(18%) and CHS (14%) vs.<br>2.4% in DHS/TSP, p =<br>0.02. Hospital stavs                                                                                                                                                                                                                                                                                                                                                                         | "The three different<br>operation methods<br>showed satisfactory<br>results compared to<br>previously reported                                                                                                                                                                                                         | Abstract                                                                                                                                                                    |

|                           |     | sub-tro-<br>chanteri<br>c<br>fracture<br>s                                    |                                                                               | Gamma 12.9 vs. CHS 10.2<br>vs. DHS/TSP 14.9 days, p<br>>0.05.                                                                                                                                                                                                                    | series, both regarding<br>postoperative<br>complications and<br>fracture healing."                                                                                                                                                                                |                                                                                                                                            |
|---------------------------|-----|-------------------------------------------------------------------------------|-------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|
| Hansen<br>1994<br>RCT     | 1.5 | N = 23<br>Impacte<br>d,<br>subcapit<br>al<br>femoral<br>neck<br>fracture<br>s | Conservative<br>treatment vs.<br>dynamic hip<br>screw                         | 16 treated conservatively<br>with secondary dislocation<br>in 10 treated with<br>hemiarthroplasty; 7 treated<br>DHS, 6 healed well; 1 later<br>had osteonecrosis.<br>Successful conservatively<br>treated younger (mean 69<br>years) than those with<br>dislocations (82 years). | "[T]he advantages of<br>primary osteo-synthesis<br>predominate in the<br>treatment of this type of<br>fracture."                                                                                                                                                  | Abstract only.<br>Details sparse.<br>The groups are<br>unequal for<br>unknown<br>reasons.                                                  |
| Aune<br>1993<br>RCT       | 1.5 | N = 378<br>Proxima<br>I<br>femoral<br>fracture<br>s                           | Gamma nail vs.<br>hip compression<br>screw                                    | 13 reoperations with GN<br>vs. 2 with HCS (p <0.003);<br>10 GN with femoral shaft<br>fractures vs. 0 HCS.                                                                                                                                                                        | "The reoperation rate<br>was significantly higher<br>after Gamma nailing<br>than after HCS."                                                                                                                                                                      | Abstract                                                                                                                                   |
| Michos<br>2001<br>RCT     | 1.5 | N = 52<br>Peritro-<br>chanteri<br>c<br>fracture<br>s                          | Gamma nail vs.<br>sliding screw                                               | EBL 730 for SS vs. 610mL<br>for GN. Hospitalization for<br>14.5 days for SS vs. 12<br>days for GN. No non-union<br>cases either group.                                                                                                                                           | "[W]e recommend the<br>selective use of the<br>Gamma system. Its<br>biomechanical benefits<br>are required in<br>subtrochanteric and<br>unstable pertrochanteric<br>fractures."                                                                                   | Abstract                                                                                                                                   |
| Harrington<br>1999<br>RCT | 1.0 | N = 82<br>Unstabl<br>e<br>peritro-<br>chanteri<br>c<br>fracture<br>s          | Compression<br>hip screw (CHS)<br>vs<br>intramedullary<br>hip screw<br>(IMHS) | Duration of operation was<br>significantly longer in IMHS<br>group (mean 102 minutes)<br>and blood loss significantly<br>less than CHS group.                                                                                                                                    | "We found no significant<br>difference in functional<br>outcome in patients<br>treated with either CHS<br>or the IMHS. However<br>there were slightly more<br>complications in the<br>IMHS group."                                                                | Study reported in<br>4 paragraphs<br>which resulted in<br>sparse details.<br>Unclear if part of<br>population<br>Harrington 2002<br>above. |
| Saudan<br>1999<br>RCT     | 0.5 | N = 120<br>Inter<br>and<br>subtro-<br>chanteri<br>c<br>fracture<br>s          | Proximal<br>femoral nail vs.<br>dynamic hip<br>screw                          | Decreased EBL and operative time with PFN.                                                                                                                                                                                                                                       | "PFN treatment for<br>patients with trochanteric<br>fracture has similar 6<br>month clinical results as<br>treatment with DHS, with<br>a briefer procedure and<br>less blood loss,<br>particularly among<br>patients with complicated<br>trochanteric fractures." | Short abstract.                                                                                                                            |
| Mott<br>1993<br>RCT       | 0.5 | N = 69<br>Peri-<br>trochan-<br>teric hip<br>fracture<br>s                     | Gamma nail vs.<br>sliding hip<br>screw                                        | No differences in operative<br>time, EBL, transfusions. 3<br>screw cutouts in GN vs. 1<br>in SHS.                                                                                                                                                                                | "[T]he Gamma Nail<br>appears to have unique<br>morbidities associated<br>with its use and its<br>theoretical advantages<br>have not been seen<br>clinically."                                                                                                     | Short abstract.                                                                                                                            |

### **HIP ARTHROPLASTY**

|  | Author/Year<br>Study Type | Score<br>(0-11) | Sample<br>Size | Comparison<br>Group | Results | Conclusion | Comments |
|--|---------------------------|-----------------|----------------|---------------------|---------|------------|----------|
|--|---------------------------|-----------------|----------------|---------------------|---------|------------|----------|

| Lindberg<br>1991<br>RCT   | 3.5 | N = 47<br>Cemente<br>d THA                                              | High vs. low<br>viscosity<br>cement both<br>with<br>gentamicin                                                                               | At 48 hours, gentamicin<br>concentrations were: high<br>viscosity (±SEM) 0.03±0.0<br>vs. 0.13±0.01. Other<br>intervals similar results (p<br><0.01).                                                                                                                  | "The improved<br>mechanical fixation and<br>the high concentration of<br>gentamicin of the bone<br>cement interface favours<br>the use of low viscosity<br>cement, especially in<br>revision for deep<br>infection." | Study assessed<br>release of<br>gentamicin from<br>2 different<br>cement preps,<br>with more<br>systemic<br>release of low<br>viscosity<br>cement.                                                                                                                                                               |
|---------------------------|-----|-------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Vendittoli<br>2006<br>RCT | 2.5 | N = 210<br>De-<br>generativ<br>e hip<br>disease,<br>ages 23-<br>65years | Total hip<br>arthroplasty<br>(CLS<br>Spotorno,<br>Allofit, Metasul,<br>Zimmer head)<br>vs. resurfacing<br>arthroplasty<br>(Durom,<br>Zimmer) | Intra-operative stability in<br>89 (87.3%) THRs vs. 98<br>(95%) resurfacing (p =<br>0.21). No difference in<br>diameters of last reamer<br>used (p = 0.77). Acetabular<br>component size correlated<br>with male gender (p<br><0.0001) and higher BMI (p<br>= 0.016). | "[W]ith a specific design<br>of acetabular implant<br>and by following a<br>careful surgical<br>technique, removal of<br>bone on the acetabular<br>side is comparable with<br>that of total hip<br>replacement."     | Implant survival<br>not main study<br>purpose. Some<br>methods details<br>sparse.<br>Baseline BMI<br>higher in THR (p<br>= 0.01). Data<br>suggest<br>comparable<br>results to total<br>arthroplasty;<br>however,<br>maximum<br>follow-up less<br>than 3 years; 4<br>hips converted<br>intra-operative<br>to THR. |

| ANTIBIOTI                 | CS                   |                                                                   |                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                            |                                                                           |
|---------------------------|----------------------|-------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|
| Author/Year<br>Study Type | Scor<br>e (0-<br>11) | Sample<br>Size                                                    | Comparison<br>Group                                                                                                                                                                                              | Results                                                                                                                                                                                                                                                                                          | Conclusion                                                                                                                                                                                                                                                                                                 | Comments                                                                  |
| Nelson<br>1993<br>RCT     | 2.5                  | N = 28<br>Infected<br>total hip<br>or knee<br>arthro-<br>plasties | All debrided.<br>Implantation of<br>gentamicin-<br>poly-methyl-<br>methacrylate<br>(PMMA) beads<br>vs.<br>conventional<br>parenteral<br>systemic<br>antibiotics.                                                 | Infection recurred in 2<br>patients treated by<br>gentamicin-PMMA beads<br>(15%) vs. 4 (30%) in<br>systemic antibiotic therapy.<br>All recurrences occurred in<br>patients who had infected<br>total hip arthroplasties;<br>none occurred in patients in<br>6 with total knee<br>arthroplasties. | "These data support<br>the concept that<br>debridement combined<br>with gentamicin – PMMA<br>bead implantation<br>followed by a second-<br>stage joint reconstruction<br>is comparable with<br>debridement and<br>conventional parental<br>antibiotic therapy<br>followed by secondary<br>reconstruction." | Methods<br>sparse. Multiple<br>co-interventions<br>weaken<br>conclusions. |
| McQueen<br>1990<br>RCT    | 2.0                  | N = 378<br>Total joint<br>arthro-<br>plasty                       | 1.5g of<br>cefuroxime<br>intravenously<br>plus 2 doses of<br>750mg intra-<br>muscularly at 6<br>and 12 hours<br>after operation<br>vs. 1.5g<br>cefuroxime<br>powder mixed<br>with CMW type<br>1 cement<br>powder | No statistically significant<br>difference in superficial<br>wound infections. Early<br>deep infection rate was 1%<br>and not different. There<br>were no late deep<br>infections.                                                                                                               | "[C]efuroxime given<br>systemically or in bone<br>cement is an effective<br>antibiotic in the<br>prophylaxis of infection<br>after total joint<br>arthroplasty."                                                                                                                                           | Methods<br>sparse.                                                        |

# **PRE-OPERATIVE EDUCATION**

| Author/Year<br>Study Type | Scor<br>e (0-<br>11) | Sample<br>Size                          | Comparison<br>Group                                                                                                                                                                                                                                                                                                                                                    | Results                                                                                                                                                                                                                                                                                                                                                                                                                                    | Conclusion                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Comments                                                                                                                                                                                                                           |
|---------------------------|----------------------|-----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| McGregor<br>2004<br>RCT   | 3.5                  | N = 35<br>THR                           | Standard care<br>(B) vs.<br>standard care<br>plus hip class<br>2 to 4 weeks<br>before surgery<br>and<br>information<br>booklet (A)                                                                                                                                                                                                                                     | Preoperative class and<br>booklet, had lower hospital<br>stays by 3 days (15 vs. 18<br>days), significantly reducing<br>costs. Group A reported<br>prediction of surgical<br>results with 93.9%±8.9%<br>accuracy at discharge,<br>decreasing to 89.6%±3.2%<br>at 3-months. Group B had<br>79.1%±19.2% success in<br>predicting outcome at<br>discharge, decreasing to<br>69.4%±30.9% at 3 months.                                          | "Patients attending the<br>class reported higher<br>levels of satisfaction<br>(99% satisfied in the<br>preoperative<br>rehabilitation class<br>compared with 80% in<br>the control group 3<br>months postoperatively)<br>and had more realistic<br>expectations of surgery."                                                                                                                                                                                                | Details sparse.<br>Length of stay<br>may not be<br>generalizable<br>beyond U.K.<br>Exercise<br>intervention<br>apparently to<br>ensure ability to<br>perform<br>exercises post-<br>op, rather than<br>perform pre-op<br>exercises. |
| Lilja<br>1998<br>RCT      | 3.5                  | N=101<br>55 THR;<br>46 breast<br>cancer | Control group<br>informed about<br>pre- and post-<br>operative<br>routines by<br>ward nurse vs.<br>intervention<br>group given<br>extended<br>information by<br>an anesthetic<br>nurse (0.5<br>hours day<br>before surgery)                                                                                                                                            | No significant differences<br>between intervention and<br>control group for breast<br>cancer patients or THR<br>patients. Breast cancer<br>patients in intervention<br>group significantly more<br>anxious than THR patients<br>in intervention group (p <<br>0.01). Breast cancer<br>patients in intervention<br>group showed highest<br>anxiety scores on Hospital<br>Anxiety and Depression<br>Scale (HADS) scale on day<br>of surgery. | "[E]tended preoperative<br>information given by<br>anaesthetic nurses will<br>decrease anxiety, cortisol<br>and pain inTHR<br>patients, was not<br>supported. The other<br>assumption, that anxiety,<br>cortisol and pain would<br>decrease more for the<br>THR patients than for<br>breast cancer patients<br>was confirmed."                                                                                                                                              | Baseline data<br>not provided.                                                                                                                                                                                                     |
| Wong<br>1990<br>RCT       | 2.5                  | N = 146<br>THR                          | Group I<br>(experimental)<br>– early<br>discharged,<br>experimental<br>program<br>participants<br>(pamphlet,<br>videotape,<br>home nurse<br>visits); Group II<br>(experimental)<br>– conventional<br>discharged,<br>experimental<br>program<br>participants;<br>and Group III<br>(control) –<br>conventional<br>discharged,<br>traditional<br>program<br>participants. | Lengths of stay were 8.8,<br>13.8 and 12.8 days<br>respectively. Patients in<br>both experimental groups<br>had a higher score in<br>Perceived Preparedness<br>for Discharge Scale (p<br><0.01) and Exercise<br>compliance scores (p<br><0.05), but no significant<br>difference was found<br>between groups I and III on<br>the Compliant behavior<br>index (p <0.05).                                                                    | "The findings suggest<br>that a programme of<br>after-care combines'<br>educational and follow-up<br>home-visit strategies for<br>the early discharged<br>patients provides<br>outcomes that are<br>comparable to the<br>traditional discharge<br>planning for the<br>conventionally<br>discharged patients. It<br>also points out that<br>patients who have been<br>adequately informed of<br>their conditions are more<br>likely to comply with<br>prescribed treatment." | Sparse details.<br>Results suggest<br>earlier<br>discharge and<br>education are<br>effective.<br>Interventions<br>began 3 to 6<br>days after<br>surgery, likely<br>limiting utility of<br>the findings.                            |
| Santavirta<br>1994<br>RCT | 2.5                  | N = 60<br>Primary<br>THR                | All received<br>educational<br>booklet. Trial<br>was<br>educational<br>booklet vs.<br>booklet plus                                                                                                                                                                                                                                                                     | Knowledge of<br>complications was poor,<br>with no differences<br>between the intensive<br>education and control<br>groups. Intensive<br>educational group better                                                                                                                                                                                                                                                                          | "[T]he experimental group<br>showed greater interest<br>in obtaining more<br>information about their<br>replaced hip. Patients in<br>the experimental group<br>showed significantly                                                                                                                                                                                                                                                                                         | Randomized,<br>but compliance<br>with<br>assignments<br>was low in the<br>experimental<br>group. Contact                                                                                                                           |

|                      |     |                                                                                                                    | intensive<br>education (20-<br>60 minute<br>teaching<br>session)                                                                                                                                                                              | followed the exercise<br>program (p = 0.02).                                                                                                                                                                                                                       | better adherence to the<br>instructions for the<br>postoperative<br>rehabilitation<br>programme."                                                                                                                                                                                             | time varied<br>significantly.<br>37% could not<br>name a<br>relevant<br>complication. |
|----------------------|-----|--------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|
| Burns<br>1992<br>RCT | 2.0 | N = 108<br>(?)<br>"Approxi-<br>mately<br>108<br>patients<br>were<br>included."<br>Females<br>with hip<br>fractures | Controls in<br>acute<br>orthopaedic<br>ward (both<br>therapists<br>responsible for<br>other wards)<br>vs. trial group<br>transferred to<br>continuing care<br>hospital with<br>occupational<br>therapy,<br>kitchen,<br>physiotherapy<br>area. | "At discharge, significantly<br>more patients in the<br>treatment group were<br>independent in terms of<br>activities of daily living,<br>than the control group: 41<br>v. 25. Their median stay<br>was 24 days compared<br>with 41 days in the control<br>group." | "This trial confirms the<br>effectiveness of<br>rehabilitative aftercare for<br>elderly woman with hip<br>fracture. Without<br>provision of such<br>aftercare, these patients<br>would occupy a rising,<br>proportion of hospital<br>beds and achieve a<br>lesser degree of<br>independence." | Sparse<br>description of<br>study and<br>results.                                     |

#### PREVENTION OF VENOUS THROMBOEMBOLIC DISEASE

| Author/Year<br>Study Type                     | Scor<br>e (0-<br>11) | Sample<br>Size             | Comparison<br>Group                                                                                                                                                                                                                                                | Results                                                                                                                                                                                                                                                                                                       | Conclusion                                                                                                                                                                              | Comments                                                                                                                                                         |
|-----------------------------------------------|----------------------|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Kew<br>1999<br>RCT                            | 3.5                  | N = 78<br>Hip<br>fractures | Low molecular<br>weight heparin<br>(Fraxiparine)<br>vs. control                                                                                                                                                                                                    | "There was a significantly<br>increased occurrence of<br>DVTs on the operated side<br>in both groups (p<0.001)."                                                                                                                                                                                              | "[Low molecular weight<br>heparin] may thus be<br>effective in preventing<br>thigh DVTs and<br>significant pulmonary<br>emboli."                                                        | Sparse<br>information. No<br>demographics.<br>No dose of<br>medicine.                                                                                            |
| Kim<br>2003<br>J Bone Joint<br>Surg Br<br>RCT | 3.5                  | N = 200<br>THR             | Cemented vs.<br>cementless<br>implants                                                                                                                                                                                                                             | Bilateral THR 200 (100%)<br>with DVT vs. unilateral 100<br>(100%) with DVT. No<br>differences between groups<br>for any factors. Of 200 with<br>bilateral total hip<br>replacement, 52 (26%)<br>positive for thrombi.<br>Cementless vs. cemented<br>no statistical difference for<br>thrombi ( $p = 0.654$ ). | "[A]II thrombi regardless<br>of their site or size<br>resolved completely and<br>spontaneously without<br>causing pulmonary<br>embolism."                                               | Mostly an<br>incidence study<br>not a<br>comparison of<br>treatments.                                                                                            |
| Horbach<br>1996<br>RCT                        | 3.5                  | N = 305<br>THR             | LMWH 3000IU<br>and DHE<br>0.5mg<br>subcutaneousl<br>y once daily for<br>14 days vs. 3<br>subcutaneous<br>injections of<br>unfractionated<br>heparin/day<br>starting with<br>5000 IU per<br>administration,<br>adjusted to<br>keep PTT 50<br>seconds for 14<br>days | 16 patients excluded. DVT<br>in 12.0% of LMWH/DHE vs.<br>8.8% of UFH, p = 0.76.<br>Blood transfusion not<br>significant between groups.                                                                                                                                                                       | "Single daily<br>subcutaneous injections<br>of LMWH/DHE appeared<br>to be safe and<br>efficacious compared to<br>adjusted-dose UFH for<br>prophylaxis of DVT in<br>high risk patients." | Some baseline<br>differences with<br>more obesity in<br>UFH should<br>bias against<br>UFH. No<br>difference<br>between LMWH<br>and<br>unfractionated<br>heparin. |

| Zhao<br>2005<br>RCT                       | 3.0 | N = 62<br>Hip<br>fractures                                    | Osteoking<br>25ml once<br>every other<br>day at evening<br>in fasting vs.<br>Sanchi-<br>dansheng<br>tablet 3 times a<br>day, 3 tablets<br>each time for<br>10 days | Difference in round length<br>between left and right<br>sides, either for thighs or<br>shanks, less in Osteoking<br>than Sanchi-dansheng<br>group, p <0.05. 9.4% of<br>Osteoking vs. 30%<br>Sancchi-dansheng group<br>diagnosed with DVT (p<br><0.05). | "Osteoking has a<br>satisfactory effect in<br>preventing<br>postoperational DVT in<br>patients with ITF<br>(intertrochanteric<br>fracture."                                                                                                                                                       | Many<br>methodological<br>weaknesses.<br>Dropouts not<br>mentioned. |
|-------------------------------------------|-----|---------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|
| Jain<br>004<br>Prospective<br>case series | 1.5 | N = 45<br>Total hip<br>patients<br>and 26<br>knee<br>patients | No prophylaxis                                                                                                                                                     | 2 patients developed<br>proximal DVT; no distal<br>DVT was found.                                                                                                                                                                                      | "[T]he incidence of DVT<br>in Indian patients is very<br>low and is not<br>comparable with<br>American and European<br>populations. It is<br>therefore not cost<br>effective to advise<br>prophylaxis in Indian<br>patients undergoing<br>THA/ TKA who have no<br>known risk factors for<br>DVT." | Not an RCT or<br>crossover.<br>Biases not<br>discussed.             |

# POST-OPERATIVE ACTIVITY LIMITATIONS AND REHABILITATION PROGRAMS: HIP ARTHROPLASTY

| Author/Year<br>Study Type | Score | Sample<br>Size                                      | Comparison<br>Group                                                                                             | Results                                                                                                                                             | Conclusion                                                                                                                                                                                | Comments                                                                                                                                             |
|---------------------------|-------|-----------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|
| Jan<br>2004               | 3.0   | N = 53<br>Hip                                       | Home exercise<br>12 weeks of<br>hip flexion                                                                     | Strength improved in the high compliance group (p <0.05). Walking speed and                                                                         | "The designed home<br>program was effective in<br>improving hip muscle                                                                                                                    | High<br>compliance<br>defined as at                                                                                                                  |
| RCT                       |       | arthroplasty<br>at least 1.5<br>years<br>previously | ROM,<br>strengthening<br>exercises, 30-<br>minute daily<br>walk vs. no<br>additional<br>instruction<br>controls | functional scores also<br>improved in the compliant<br>group (p <0.05). Low<br>compliant group had no<br>improvements, as did the<br>control group. | strength, walking speed,<br>and function in patients<br>after THR who practiced<br>the program at least 3<br>times a week, but<br>adherence to this home<br>program may be a<br>problem." | least 50%.<br>Results<br>negative<br>except when<br>not compliant<br>subtracted from<br>analyses.<br>Study<br>intervention<br>long after<br>surgery. |

# POST-OPERATIVE ACTIVITY LIMITATIONS AND REHABILITATION PROGRAMS: HIP FRACTURE

| Author/Year<br>Study Type | Scor<br>e (0-<br>11) | Sample<br>Size                                                            | Comparison<br>Group                                                                                                                                | Results                                                                                                                                                              | Conclusion                                                                                                                                                                         | Comments                                                                                                                                              |
|---------------------------|----------------------|---------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|
| Swanson<br>1998<br>RCT    | 3.5                  | N = 71<br>Elderly<br>patients<br>with<br>proximal<br>femoral<br>fractures | Early<br>intervention<br>(early surgery,<br>multidisciplinary<br>approach,<br>minimal<br>narcotics,<br>intense daily<br>therapy) vs.<br>usual care | Early intervention had<br>shorter hospital stays (21<br>vs. 32.5 days, p <0.01).                                                                                     | "This early intervention<br>program in an acute care<br>setting results in<br>significantly shorter<br>length of hospital stay for<br>elderly patients with<br>femoral fractures." | Multiple co-<br>interventions<br>limits strength of<br>conclusions on<br>any given<br>component.<br>Generalizability<br>from Australia is<br>unclear. |
| Day<br>2001<br>RCT        | 3.5                  | N = 71<br>All<br>proximal<br>femoral<br>fractures;<br>same as             | Accelerated<br>rehabilitation<br>(in acute care<br>ward) vs.<br>standard care<br>(specialist                                                       | Rates of chest infections,<br>cardiac problems, bed<br>sores higher standard care<br>( $39.4\%$ vs. $15.8\%$ , p =<br>0.03), mean length of<br>hospital stay favored | "Accelerated<br>rehabilitation for patients<br>with a proximal femoral<br>fracture in a major<br>teaching hospital can be<br>accomplished safely."                                 | Some baseline<br>differences of<br>uncertain<br>significance.<br>Data suggest<br>early                                                                |

Copyright© 2016 Reed Group, Ltd.

|                          |     | Swanson<br>98 above                                                                  | care, transfer<br>to geriatric<br>ward for rehab)                                                                                                                                                                                                                                                                                                  | accelerated rehab (32.5 vs.<br>21 days, p = 0.02). Short-<br>/long-term mortality did not<br>differ.                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                       | rehabilitation<br>program<br>superior to<br>standard care.                                                                                                                   |
|--------------------------|-----|--------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Gilchrist<br>1988<br>RCT | 3.5 | N = 222<br>All<br>females<br>over<br>65years<br>with<br>femoral<br>fractures         | Randomization<br>to orthopaedic<br>geriatric unit<br>(orthopaedic<br>surgical staff<br>care, weekly<br>combined ward<br>round with<br>geriatrician,<br>orthopaedic<br>senior registrar<br>and senior<br>ward nurse<br>then PT, OT<br>and social<br>worker at case<br>conference)<br>vs. controls<br>(similar nursing<br>but no case<br>conference) | Inpatient mortality was<br>4(4%) orthopaedic geriatric<br>unit vs. 13 (10%)<br>orthopaedic ward (p =<br>0.06). Lengths of stays did<br>not differ statistically,<br>although they favored the<br>orthopaedic geriatric unit<br>(e.g., 41.7 vs. 52.1 days for<br>those admitted from home<br>and discharged home). | "[D]esignated<br>orthopaedic geriatric<br>units can provide medical<br>care to these patients<br>and should be<br>administered without<br>additional cost."                                                                                                           | Randomization<br>to different<br>types of care<br>units in the UK<br>may limit<br>generalizability.                                                                          |
| Jette<br>1987<br>RCT     | 2.5 | N = 75<br>50 inter-<br>trochan-<br>teric and<br>25<br>subcapital<br>hip<br>fractures | Standard vs.<br>intensive<br>rehab;<br>standard<br>program of<br>progressive<br>weight bearing<br>and exercises.<br>Intensive<br>included same<br>exercises, plus<br>education<br>geriatric team<br>meetings, 1<br>home visit                                                                                                                      | No differences in morality,<br>hospital discharge or<br>functional recovery; 33%<br>vs. 21% regained function<br>(NS).                                                                                                                                                                                            | "There were no<br>statistically significant<br>differences in mortality,<br>hospital discharge status,<br>or pattern and level of<br>functional recovery,<br>between patients<br>receiving experimental<br>and standard<br>approaches to hospital<br>rehabilitation." | Methods details<br>sparse. Unclear<br>if numbers of<br>appointments<br>differed in 2<br>programs.<br>Programs<br>appear to be<br>exercise vs.<br>exercise plus<br>education. |
| Graham<br>1968<br>RCT    | 2.5 | N = 175<br>Hip<br>fractures                                                          | Weight bearing<br>at 2 weeks vs.<br>10 weeks                                                                                                                                                                                                                                                                                                       | Mortality rate at 3 years<br>was 25.1%; 76.8 % of<br>patients achieved bony<br>union 3 years after<br>operation. Most failures<br>occurred within 12 months<br>of operation. Severity of<br>fracture percent failed type<br>III/type IV: 15.2%/28.8%.                                                             | "[F]ull weight-bearing two<br>weeks after operation did<br>not increase the<br>incidence of failure of<br>fixation or of non-union."                                                                                                                                  | Suggests early<br>weight bearing<br>may be<br>superior.                                                                                                                      |
| Abrami<br>1964<br>RCT    | 2.0 | N = 124<br>Trans-<br>cervical<br>femoral<br>fracture                                 | Early weight<br>bearing at 2<br>weeks vs. 10<br>weeks                                                                                                                                                                                                                                                                                              | No significant difference<br>between those weight<br>bearing exercises starting<br>at 2 weeks or 10 weeks<br>postoperatively.                                                                                                                                                                                     | "[N]o harmful effect on<br>the early post-operative<br>stability of this fracture<br>when a sliding nail-plate<br>is used for fixation."                                                                                                                              | Few details.<br>Outcome<br>measure is<br>crude, which<br>likely reduces<br>power.                                                                                            |
| Tsauo<br>2005<br>RCT     | 2.0 | N = 25<br>Hip<br>fracture                                                            | Home-based<br>physical<br>therapy (8<br>home visits)<br>vs. bedside<br>education                                                                                                                                                                                                                                                                   | No difference between<br>baseline characteristics for<br>2 treatments. Harris score<br>of home-based PT group<br>progressed 58.6±8.5 to<br>90.1±5.4 at Month 3, vs.<br>control group progression<br>54.6±14.5 to 77.4±10.0 (p<br><0.01). Scores of                                                                | "Home-based PT<br>programs could help<br>patients regain function<br>and HRQOL earlier."                                                                                                                                                                              | Small sample<br>size and sparse<br>details.<br>Suggests home<br>PT superior to<br>education.                                                                                 |

|                          |     |                                                  |                                                              | psychologic domain of<br>HRQOL (health-related<br>quality of life) for home-<br>based PT group<br>significantly better Month 1<br>(p <0.05) and 3 (p <0.01)<br>after discharge. Physical<br>domain score of home-<br>based PT group<br>significantly better (p<br><0.05) 3 months after<br>discharge.                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                    |
|--------------------------|-----|--------------------------------------------------|--------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Baker<br>1991<br>RCT     | 0.5 | N = 40<br>Female<br>femoral<br>neck<br>fracture  | Treadmill gait<br>retraining vs.<br>conventional<br>training | Treadmill group more<br>mobile at discharge (p<br><0.05). 65% of treadmill<br>group vs. 40% controls<br>regained prefracture<br>mobility rating (p <0.05).<br>Treadmill group<br>hospitalized 54 vs. 67 days.<br>Unlimited mobility at<br>discharge was 45% within<br>the treadmill group<br>compared to 10% in<br>conventional group.                                                                                                                                                                         | [S]ignificantly better<br>mobility outcomes, as<br>measured by temporal-<br>distance gait parameters<br>and mobility level, more<br>subjects receiving<br>conventional gait<br>retraining. Furthermore,<br>the superior mobility<br>outcome was achieved<br>sooner." | Methods<br>sparse; unclear<br>if RCT; quasi-<br>randomization.<br>Intervention not<br>described in<br>detail. Analyses<br>of strength<br>included 12 of<br>18 subjects.<br>Unclear if other<br>analyses partial<br>or complete. If<br>an RCT,<br>suggests<br>treadmill<br>superior to<br>conventional<br>training. |
| Binder<br>2003<br>RCT    | 0.5 | N = 74<br>Elderly<br>hip<br>fracture<br>patients | Intensive<br>exercise vs.<br>home-based<br>exercise          | Changes from baseline and<br>6 months: physical<br>performance test score<br>exercise training group<br>7.0 $\pm$ 4.3, p <0.000;<br>functional status<br>questionnaire score<br>exercise training group<br>6.1 $\pm$ 5.1, p = 0.009; knee<br>extension exercise training<br>group 21.3 $\pm$ 15.0, p = 0.0;<br>Berg Balance score<br>exercise training group<br>5.0 $\pm$ 8.1 p = 0.009.<br>Significant changes in<br>exercise training group in<br>all 4 variables compared to<br>no change in control group. | "Intensive exercise<br>training after a hip<br>fracture can induce<br>greater improvements in<br>functional performance,<br>and reduce disability,<br>more than a low-intensity<br>home exercise program."                                                           | Abstract<br>suggests<br>intensive<br>exercise<br>program may be<br>superior.                                                                                                                                                                                                                                       |
| Lauridsen<br>2002<br>RCT | 0.5 | N = 88<br>Hip<br>fracture                        | 3.6 hours of<br>PT a week vs.<br>1.9 hours                   | 24 patients in the intensive<br>3.6 hours a week PT<br>withdrew after 15 days<br>compared to 13 patients<br>from control group after 22<br>days                                                                                                                                                                                                                                                                                                                                                                | "The considerable drop-<br>out rate suggests that<br>intensive physical<br>therapy may be of limited<br>value when attempting to<br>reduce the duration of<br>rehabilitation following<br>hip fracture."                                                             | Suggests<br>compliance<br>problems may<br>be important.                                                                                                                                                                                                                                                            |

#### References

1. Centers for Disease Control and Prevention. "Arthritis." Arthritis types - overview. 2008. <u>http://www.cdc.gov/arthritis/arthritis/osteoarthritis.htm</u>.

Rubak T. Physical exposure at work as a risk factor for primary hip osteoarthritis requiring surgery. *Poster* Session at the International Commission on Occupational Health's Conference. Cape Town, South Africa; 2009.
 Cedars-Sinai. "Health Condition." Arthritis of the Hip. http://www.csmc.edu/6915.html.

4. UW Medicine Orthopaedics and Sports Medicine. Osteoarthritis of the Hip (Hip Arthritis): "Degenerative Joint Disease" can cause pain, stiffness, and cartilage breakdown. 2008.

http://www.orthop.washington.edu/uw/hiparthritis/tabID\_3376/ItemID\_299/PageID\_3/Articles/Default.aspx.

5. American Academy of Orthopaedic Surgeons A. Falls and Hip Fractures 2007.

http://orthoinfo.aaos.org/topic.cfm?topic=A00121.

6. Centers for Disease Control and Prevention. "Home and Recreational Safety." Hip Fractures Among Older Adults. 2009. http://www.cdc.gov/HomeandRecreationalSafety/Falls/adulthipfx.html.

7. Berger R, Alexander E, Harnisch J, et al. Etiology, manifestations and therapy of acute epididymitis: prospective study of 50 cases. *J Urol.* 1979;121(6):750-4.

8. Berger R. Acute epididymitis: etiology and therapy. *Semin Urol.* 1991;9(1):28-31.

9. Childs S, Wells W, Chubb J. Ceftazidime, an open randomized comparison of 3 dosages for genitourinary infections. *J Urol.* 1983;130(3):495-7.

10. Eickhoff J, Frimodt- Moller N, Walter S, Frimodt- Moller C. A double-blind, randomized, controlled multicentre study to compare the efficacy of ciprofloxacin with pivampicillin as oral therapy for epididymitis in men over 40 years of age. *BJU Int.* 1999;84(7):827-34.

11. Vicari E. Effectiveness and limits of antimicrobial treatment on seminal leukocyte concentration and related reactive oxygen species production in patients with male accessory gland infection. *Human Reproduction*. 2000;15(12):2536-44.

12. Routh JC, Lischer GH, Leibovich BC. Epididymo-orchitis and testicular abscess due to Nocardia asteroides complex. *Urology*. 2005;65(3):591.

13. Redfern T, English P, Baumber C, McGhie D. The aetiology and management of acute epididymitis. *Br J Surg.* 1984;71(9):703-5.

14. Joly-Guillou M, Lasry S. Practical recommendations for the drug treatment of bacterial infections of the male genital tract including urethritis, epididymitis and prostatitis. *Drugs*. 1999;57(5):743-50.

15. Haidl G, Allam J, Schuppe H. Chronic epididymitis: impact on semen parameters and therapeutic options. *Andrologia*. 2008;40(2):92-6.

16. Ireton R, Berger R. Prostatitis and epididymitis. Urol Clin North Am. 1984;11(1):83-94.

17. Ludwig M. Diagnosis and therapy of acute prostatitis, epididymitis and orchitis. *Andrologia*. 2008;40(2):76-80.

18. Davis J. Treatment of epididymitis. *Mod Treat*. 1970;7(5):1036-43.

19. Watson R. Gonorrhea and acute epididymitis. *Mil Med.* 1979;144(12):785-7.

20. Walrath J, Fayerweather W, Spreen K. A survey of the prevalence of epididymitis in an industrial setting. *J Occup Med.* 1992;34(2):170-2.

21. Massey FJ, Bernstein G, O'Fallon W, et al. Vasectomy and health. Results from a large cohort study. *JAMA*. 1984;252(8):1023-9.

22. Gasparich J, Mason J, Greene H, Berger R, Krieger J. Amiodarone-associated epididymitis: drug-related epididymitis in the absence of infection. *J Urol.* 1985;133(6):971-2.

23. Sadek I, Biron P, Kus T. Amiodarone-induced epididymitis: report of a new case and literature review of 12 cases. *Can J Cardiol.* 1993;9(9):833-6.

24. Sawyer E, Anderson J. Acute epididymitis: a work-related injury? J Natl Med Assoc. 1996;88(6):385-7.

25. Tanagho E. Nonspecific infections of the urinary. In: DR S, ed. *General Urology, 10th ed.* Los Altos: Lange Medical Publications; 1981:182.

26. Cathcart C. Epididymitis from muscular strain followd by tuberculosis of epididymitis. *Edinburgh Med J.* 1921;26152-3.

27. Hanley H. Non-specific epididymitis. *Br J Surg.* 1966;53873.

28. Baumgarten H. Epididymitis in the workplace. *J Fla Med Assoc*. 1984;71(1):21-2.

29. Lerner PJ. Can heavy lifting cause epididymitis? . *J Occup Environ Med*. 1997;39(7):609-10.

30. Crane J. Epididymo-orchitis; the significance of the condition in industrial surgery. *Calif Med.* 1955;83(5):369-70.

31. Lewis E, Palmer J. Office diagnosis of epididymitis, epididymoorchitis and orchitis. *West J Med.* 1980;133(3):270-3.

32. Kohler FP. An inquiry into the etiology of acute epididymitis. *J Urol.* 1962;87918-22.

33. Welch LS, Hunting KL, Nessel-Stephens L. Chronic symptoms in construction workers treated for musculoskeletal injuries. *Am J Ind Med.* 1999;36(5):532-40.

34. Schiff SF. Epididymitis. In: Rakel RE, ed. Conn's Current Therapy. Philadelphia: WB Saunders; 1992.

35. Ball TP. Epididymitis. In: JJ K, ed. Current Urologic Therapy. Philadelphia: WB Saunders; 1986.

36. Stanfield B, Soderdahl D, Schamber D. Idiopathic urethro-ejaculatory reflux. *J Urol.* 1977;118(1 Pt 1):47-8.

37. Parvizi J, Leunig M, Ganz R. Femoroacetabular impingement. *J Am Acad Orthop Surg.* 2007;15(561-70).

38. Ganz R, Parvizi J, Beck M, Leunig M, Notzli H, Siebenrock K. Femoroacetabular impingement: a cause for osteoarthritis of the hip. *Clin Orthop Relat Res.* 2003;417112-20.

39. Beck M, Kalhor M, Leunig M, Ganz R. Hip morphology influences the pattern of damage to the acetabular cartilage: femoroacetabular impingement as a cause of early osteoarthritis of the hip. *J Bone Joint Surg Br*. 2005;871012-8.

40. McCarthy JC, Noble PC, Schuck MR, Wright J, Lee J. The Otto E. Aufranc Award: The role of labral lesions to development of early degenerative hip disease. *Clin Orthop Relat Res*. 2001(393):25-37.

41. Leunig M, Podeszwa D, Beck M, Werlen S, Ganz R. Magnetic resonance arthrography of labral disorders in hips with dysplasia and impingement. *Clin Orthop Relat Res.* 2004(418):74-80.

42. Wagner S, Hofstetter W, Chiquet M, et al. Early osteoarthritic changes of human femoral head cartilage subsequent to femoro-acetabular impingement. *Osteoarthritis Cartilage*. 2003;11(7):508-18.

43. Giori NJ, Trousdale RT. Acetabular retroversion is associated with osteoarthritis of the hip. *Clin Orthop Relat Res.* 2003(417):263-9.

44. Tanzer M, Noiseux N. Osseous abnormalities and early osteoarthritis: the role of hip impingement. *Clin Orthop Relat Res.* 2004(429):170-7.

45. Standaert CJ, Manner PA, Herring SA. Expert opinion and controversies in musculoskeletal and sports medicine: femoroacetabular impingement. *Arch Phys Med Rehabil.* 2008;89(5):890-3.

46. Jaberi F, Parvizi J. Hip pain in young adults: femoroacetabular impingement. *J Arthroplasty*. 2007;22(7 Suppl 3):37-42.

47. Beall D, Sweet C, Martin H, et al. Imaging findings of femoroacetabular impingement syndrome. *Skeletal Radiol.* 2005;34(11):691-701.

48. Laude F, Boyer T, Nogier A. Anterior femoroacetabular impingement. *Joint Bone Spine*. 2007;74(2):127-32.
49. Bird PA, Oakley SP, Shnier R, Kirkham BW. Prospective evaluation of magnetic resonance imaging and physical examination findings in patients with greater trochanteric pain syndrome. *Arthritis Rheum*.

2001;44(9):2138-45.

50. Zinn WM. Reflections on degenerative hip disease. Ann Phys Med. 1970;10(5):209-17.

51. Valdes AM, Loughlin J, Oene MV, et al. Sex and ethnic differences in the association of ASPN, CALM1, COL2A1, COMP, and FRZB with genetic susceptibility to osteoarthritis of the knee. *Arthritis Rheum*. 2007;56(1):137-46.

52. van Dijk G, Dekker J, Veenhof C, van den Ende C. Course of functional status and pain in osteoarthritis of the hip or knee: a systematic review of the literature. *Arthritis Rheum*. 2006;55(5):779-85.

53. Paans N, van den Akker-Scheek I, van der Meer K, Bulstra SK, Stevens M. The effects of exercise and weight loss in overweight patients with hip osteoarthritis: design of a prospective cohort study. *BMC Musculoskelet Disord*. 2009;1024.

54. Conrozier T, Marre JP, Payen-Champenois C, Vignon E. National survey on the non-pharmacological modalities prescribed by French general practitioners in the treatment of lower limb (knee and hip) osteoarthritis. Adherence to the EULAR recommendations and factors influencing adherence. *Clin Exp Rheumatol.* 2008;26(5):793-8.

55. Arokoski JP. Physical therapy and rehabilitation programs in the management of hip osteoarthritis. *Eura Medicophys*. 2005;41(2):155-61.

56. Flugsrud GB, Nordsletten L, Espehaug B, Havelin LI, Meyer HE. Weight change and the risk of total hip replacement. *Epidemiology*. 2003;14(5):578-84.

57. Glazier RH, Badley EM, Wright JG, et al. Patient and provider factors related to comprehensive arthritis care in a community setting in Ontario, Canada. *J Rheumatol.* 2003;30(8):1846-50.

58. O'Reilly S, Doherty M. Lifestyle changes in the management of osteoarthritis. *Best Pract Res Clin Rheumatol.* 2001;15(4):559-68.

59. Manek NJ, Lane NE. Osteoarthritis: current concepts in diagnosis and management. *Am Fam Physician*. 2000;61(6):1795-804.

60. Altman RD, Lozada CJ. Practice guidelines in the management of osteoarthritis. *Osteoarthritis Cartilage*. 1998;6 Suppl A22-4.

61. Felson DT. Weight and osteoarthritis. *Am J Clin Nutr*. 1996;63(3 Suppl):430S-2S.

62. Felson DT, Chaisson CE. Understanding the relationship between body weight and osteoarthritis. *Baillieres Clin Rheumatol.* 1997;11(4):671-81.

63. Vingard E, Alfredsson L, Malchau H. Lifestyle factors and hip arthrosis. A case referent study of body mass index, smoking and hormone therapy in 503 Swedish women. *Acta Orthop Scand*. 1997;68(3):216-20.

64. Wendelboe A, Hegmann K, Biggs J, et al. Relationships between body mass indices and surgical replacements of knee and hip joints. *Am J Prev Med.* 2003;25(4):290-5.

65. Misso ML, Pitt VJ, Jones KM, Barnes HN, Piterman L, Green SE. Quality and consistency of clinical practice guidelines for diagnosis and management of osteoarthritis of the hip and knee: a descriptive overview of published guidelines. *Med J Aust.* 2008;189(7):394-9.

66. Talamo G, Angtuaco E, Walker RC, et al. Avascular necrosis of femoral and/or humeral heads in multiple myeloma: results of a prospective study of patients treated with dexamethasone-based regimens and high-dose chemotherapy. *J Clin Oncology*. 2005;23(22):5217-23.

67. Helenius I, Jalanko H, Remes V, et al. Avascular bone necrosis of the hip joint after solid organ transplantation in childhood: a clinical and MRI analysis. *Transplantation*. 2006;81(12):1621-7.

68. Moorman Cr, Warren R, Hershmann E, Crowe J, Potter H, Barnes R. Traumatic posterior hip subluxation in American football. *J Bone Joint Surg Am*. 2003;85-A(1190-6).

69. Langlais F, Lambotte J, Lannou R, Gedouin J. Hip pain from impingement and dysplasia in patients aged 20-50 years. Workup and role for reconstruction. *Joint Bone Spine*. 2006;73614-23.

70. Wenger D, Kendell K, Miner M, Trousdale R. Acetabular labral tears rarely occur in the absence of bony abnormalities. *Clin Orthop Relat Res.* 2004;426145-50.

71. Lachiewicz PF, Kauk JR. Anterior iliopsoas impingement and tendinitis after total hip arthroplasty. *J Am Acad Orthop Surg.* 2009;17(6):337-44.

72. Di Lorenzo L, Jennifer Y, Pappagallo M. Psoas impingement syndrome in hip osteoarthritis. *Joint Bone Spine*. 2009;76(1):98-100.

73. Dora C, Houweling M, Koch P, Sierra RJ. Iliopsoas impingement after total hip replacement: the results of non-operative management, tenotomy or acetabular revision. *J Bone Joint Surg Br.* 2007;89(8):1031-5.

74. Cyteval C, Sarrabere MP, Cottin A, et al. Iliopsoas impingement on the acetabular component: radiologic and computed tomography findings of a rare hip prosthesis complication in eight cases. *J Comput Assist Tomogr.* 2003;27(2):183-8.

75. Blankenbaker DG, De Smet AA, Keene JS, Fine JP. Classification and localization of acetabular labral tears. *Skeletal Radiol.* 2007;36(5):391-7.

76. Czerny C, Hofmann S, Neuhold A, et al. Lesions of the acetabular labrum: accuracy of MR imaging and MR arthrography in detection and staging. *Radiology*. 1996;200(1):225-30.

77. Czerny C, Hofmann S, Urban M, et al. MR arthrography of the adult acetabular capsular-labral complex: correlation with surgery and anatomy. *Am J Roentgenol*. 1999;173(2):345-9.

78. Czerny C, Kramer J, Neuhold A, Urban M, Tschauner C, Hofmann S. Magnetic resonance imaging and magnetic resonance arthrography of the acetabular labrum: comparison with surgical findings. *Rofo.* 2001;173(8):702-7.

79. Lage L, Patel J, Villar R. The acetabular labral tear: an arthroscopic classification. *Arthroscopy*. 1996;12(3):269-72.

80. Kelly B, Shapiro G, Digiovanni C, Buly R, Potter H, Hannafin J. Vascularity of the hip labrum: a cadaveric investigation. *Arthroscopy*. 2005;213-11.

81. Safran MR. Evaluation of the hip: History, physical examination, and imaging *Operative Techniques in Sports Medicine*. 2005;13 (1):2-12

82. Parvizi J, Bican O, Bender B, et al. Arthroscopy for labral tears in patients with developmental dysplasia of the hip: a cautionary note. *J Arthroplasty*. 2009;24(6 Suppl):110-3.

83. Byrd JW, Jones KS. Arthroscopic femoroplasty in the management of cam-type femoroacetabular impingement. *Clin Orthop Relat Res.* 2009;467(3):739-46.

84. Nakano S, Nishisyo T, Hamada D, et al. Treatment of dysplastic osteoarthritis with labral tear by Chiari pelvic osteotomy: outcomes after more than 10 years follow-up. *Arch Orthop Trauma Surg.* 2008;128(1):103-9.

85. Rao J, Zhao Y, Villar R. Injury to the ligamentum teres. Mechanism, findings, and results of treatment. *Clin Sports Med.* 2001;20791-9.

86. Gray A, Villar R. The ligamentum teres of the hip: an arthroscopic classification of its pathology. *Arthroscopy*. 1997;13575-8.

87. Engebretsen AH, Myklebust G, Holme I, Engebretsen L, Bahr R. Prevention of injuries among male soccer players: a prospective, randomized intervention study targeting players with previous injuries or reduced function. *Am J Sports Med.* 2008;36(6):1052-60.
88. Harney D, Patijn J. Meralgia paresthetica: diagnosis and management strategies. *Pain Med.* 2007;8(8):669-77.

89. Mondelli M, Rossi S, Romano C. Body mass index in meralgia paresthetica: a case-control study. *Acta Neurol Scand*. 2007;116(2):118-23.

90. Shimizu S. A novel approach to the diagnosis and management of meralgia paresthetica. *Neurosurgery*. 2008;63(4):E820.

91. Fargo MV, Konitzer LN. Meralgia paresthetica due to body armor wear in U.S. soldiers serving in Iraq: a case report and review of the literature. *Mil Med.* 2007;172(6):663-5.

92. Moucharafieh R, Wehbe J, Maalouf G. Meralgia paresthetica: a result of tight new trendy low cut trousers ('taille basse'). *Int J Surg.* 2008;6(2):164-8.

93. Mannion AF, Muntener M, Taimela S, Dvorak J. Comparison of three active therapies for chronic low back pain: results of a randomized clinical trial with one-year follow-up. *Rheumatology*. 2001;40(7):772-8.

94. Kankaanpaa M, Taimela S, Airaksinen O, Hanninen O. The efficacy of active rehabilitation in chronic low back pain. Effect on pain intensity, self-experienced disability, and lumbar fatigability. *Spine (Phila Pa 1976)*. 1999;24(10):1034-42.

95. Cohen I, Rainville J. Aggressive exercise as treatment for chronic low back pain. *Sports Med.* 2002;32(1):75-82.

96. Danielsen JM, Johnsen R, Kibsgaard SK, Hellevik E. Early aggressive exercise for postoperative rehabilitation after discectomy. *Spine (Phila Pa 1976)*. 2000;25(8):1015-20.

97. Gross DP, Battie MC, Asante A. Development and validation of a short-form functional capacity evaluation for use in claimants with low back disorders. *J Occup Rehabil.* 2006;16(1):53-62.

98. Mayer T, Gatchel R. *Functional Restoration for Spinal Disorders: The Sports Medicine Approach*. Philadelphia: Lea & Febiger; 1988.

99. Mayer T, Gatchel R, Kishino N, et al. Objective assessment of spine function following industrial accident.
A prospective study with comparison group and one-year follow-up. *Spine (Phila Pa 1976)*. 1985;10(6):482-93.
100. Mayer TG, Gatchel RJ, Kishino N, et al. A prospective short-term study of chronic low back pain patients utilizing novel objective functional measurement. *Pain*. 1986;25(1):53-68.

101. Mayer TG, Gatchel RJ, Mayer H, Kishino ND, Keeley J, Mooney V. A prospective two-year study of functional restoration in industrial low back injury. An objective assessment procedure. *JAMA*. 1987;258(13):1763-7.

102. Rainville J, Kim RS, Katz JN. A review of 1985 Volvo Award winner in clinical science: objective assessment of spine function following industrial injury: a prospective study with comparison group and 1-year follow-up. *Spine (Phila Pa 1976).* 2007;32(18):2031-4.

103. Jousset N, Fanello S, Bontoux L, et al. Effects of functional restoration versus 3 hours per week physical therapy: a randomized controlled study. *Spine (Phila Pa 1976)*. 2004;29(5):487-93; discussion 94.

104. Hildebrandt J, Pfingsten M, Saur P, Jansen J. Prediction of success from a multidisciplinary treatment program for chronic low back pain. *Spine (Phila Pa 1976)*. 1997;22(9):990-1001.

Harris W. Traumatic arthritis of the hip after dislocation and acetabular fractures: treatment by mold arthroplasty. An end-result study using a new method of result evaluation. *J Bone Joint Surg Am.* 1969;51737-55.
Bellamy N, Buchanan W, Goldsmith C, Campbell J, Stitt L. Validation study of WOMAC: a health status instrument for measuring clinically important patient relevant outcomes to antirheumatic drug therapy in patients with osteoarthritis of the hip or knee. *J Rheumatol.* 1988;15(12):1833-40.

107. Lesher JM, Dreyfuss P, Hager N, Kaplan M, Furman M. Hip joint pain referral patterns: a descriptive study. *Pain Med.* 2008;9(1):22-5.

108. Khan AM, McLoughlin E, Giannakas K, Hutchinson C, Andrew JG. Hip osteoarthritis: where is the pain? *Ann R Coll Surg Engl.* 2004;86(2):119-21.

109. Khan NQ, Woolson ST. Referral patterns of hip pain in patients undergoing total hip replacement. *Orthopedics*. 1998;21(2):123-6.

110. Kleiner JB, Thorne RP, Curd JG. The value of bupivicaine hip injection in the differentiation of coxarthrosis from lower extremity neuropathy. *J Rheumatol.* 1991;18(3):422-7.

111. Gannon J, Gustilo. Treat the hip and not the knee: A report of four cases. Orthopedics. 1992;15474-7.

112. Felson B, Spitz H. Hip disease with referred pain to the knee. JAMA. 1975;234967-8.

113. James CD, Little TF. Regional hip blockade. A simplified technique for the relief of intractable osteoarthritic pain. *Anaesthesia*. 1976;31(8):1060-7.

114. Gardner E. The innervation of the hip joint. *Anat Rec.* 1948;101353-71.

115. Henningsen P, Zipfel S, Herzog W. Management of functional somatic syndromes. *Lancet.* 2007;369(9565):946-55.

116. Patterson R, Bickel W, Dahlin D. Idiopathic avascular necrosis of the head of the femur. *J Bone Joint Surg.* 1964;46267-82.

117. Cruess RL. The current status of avascular necrosis of the femoral head. *Clin Orthop Relat Res.* 1978(131):309-11.

118. Cruess RL. Osteonecrosis of bone. Current concepts as to etiology and pathogenesis. *Clin Orthop Relat Res.* 1986(208):30-9.

119. Fisher DE. The role of fat embolism in the etiology of corticosteroid-induced avascular necrosis: clinical and experimental results. *Clin Orthop Relat Res.* 1978(130):68-80.

120. Hungerford DS, Zizic TM. Alcoholism associated ischemic necrosis of the femoral head. Early diagnosis and treatment. *Clin Orthop Relat Res.* 1978(130):144-53.

121. De Bastiani G, Bosello O, Magnan B, Micciolo R, Ferrari F. Metabolic and nutritional factors in the pathogenesis of idiopathic osteonecrosis of the head of the femur (preliminary results of a long-term follow-up investigation). *Ital J Orthop Traumatol.* 1984;10(1):85-93.

122. Malka S. Idiopathic aseptic necrosis of the head of the femur in adults. *Surg Gynecol Obstet*. 1966;123(5):1057-65.

Leach RE, Baskies A. Alcoholism and its effect on the human hip. *Clin Orthop Relat Res.* 1973(90):95-9.
Nixon J. Avascular necrosis of bone: a review. *J R Soc Med.* 1983;76(8):681-92.

125. Matsuo K, Hirohata T, Sugioka Y, Ikeda M, Fukuda A. Influence of alcohol intake, cigarette smoking, and occupational status on idiopathic osteonecrosis of the femoral head. *Clin Orthop Relat Res.* 1988(234):115-23.

126. Hirota Y, Hirohata T, Fukuda K, et al. Association of alcohol intake, cigarette smoking, and occupational status with the risk of idiopathic osteonecrosis of the femoral head. *Am J Epidemiol.* 1993;137(5):530-8.

127. Mulliken B, Rorabeck C, Bourne R, Nayak N. A modified direct lateral approach in total hip replacement: a comprehensive review. *J Arthroplasty*. 1998;13(7):737-47.

128. McCollum DE, Mathews RS, O'Neil MT. Aseptic necrosis of the femoral head: associated diseases and evaluation of treatment. *South Med J.* 1970;63(3):241-53.

129. Jacobs B. Epidemiology of traumatic and nontraumatic osteonecrosis. *Clin Orthop Relat Res.* 1978(130):51-67.

130. Jurmain R. Stress and the etiology of osteoarthritis. *Am J Phys Anthrop.* 1977;46(2):353-65.

131. Kellgren JH. Osteoarthrosis in patients and populations. Br Med J. 1961;2(5243):1-6.

132. Kellgren JH, Lawrence JS, Bier F. Genetic Factors in Generalized Osteo-Arthrosis. *Ann Rheum Dis.* 1963;22237-55.

133. Lawrence JS. Generalized osteoarthrosis in a population sample. Am J Epidemiol. 1969;90(5):381-9.

134. Bagge E, Bjelle A, Valkenburg HA, Svanborg A. Prevalence of radiographic osteoarthritis in two elderly European populations. *Rheumatol Int.* 1992;12(1):33-8.

135. Felson D, Lawrence R, Dieppe P. NIH Conferences - Osteoarthritis: New Insights. Part 1: The disease and its risk factors. *Ann Intern Med.* 2000;133(8):635-46.

136. Silberberg R. Obesity and joint disease. *Gerontology*. 1976;22(3):135-40.

137. Burger H, van Daele PL, Odding E, et al. Association of radiographically evident osteoarthritis with higher bone mineral density and increased bone loss with age. The Rotterdam Study. *Arthritis Rheum*. 1996;39(1):81-6.

138. Kellgren JH, Lawrence JS. Osteo-arthrosis and disk degeneration in an urban population. *Ann Rheum Dis*. 1958;17(4):388-97.

139. Meachim G, Whitehouse GH, Pedley RB, Nichol FE, Owen R. An investigation of radiological, clinical and pathological correlations in osteoarthrosis of the hip. *Clin Radiol.* 1980;31(5):565-74.

140. Kellgren JH. Primary generalised osteoarthritis. Bull Rheum Dis. 1954;4(5):46-7.

141. Kellgren JH, Moore R. Generalized osteoarthritis and Heberden's nodes. Br Med J. 1952;1(4751):181-7.

142. Harris W, Crothers O, Oh I. Total hip replacement and femoral-head bone-grafting for severe acetabular deficiency in adults. *J Bone Joint Surg Am.* 1977;59752-9.

143. Peyron JG. Osteoarthritis. The epidemiologic viewpoint. *Clin Orthop Relat Res.* 1986(213):13-9.

144. Peyron JG. Epidemiologic and etiologic approach of osteoarthritis. *Semin Arthritis Rheum*. 1979;8(4):288-306.

145. Panush RS, Schmidt C, Caldwell JR, et al. Is running associated with degenerative joint disease? *JAMA*. 1986;255(9):1152-4.

146. Rondinelli R. *Guides to the Evaluation of Permanent Impairment, Sixth Edition*. Chicago: AMA Press; 2008.
147. Sanders SH, Harden RN, Vicente PJ. Evidence-based clinical practice guidelines for interdisciplinary

rehabilitation of chronic nonmalignant pain syndrome patients. *Pain Pract.* 2005;5(4):303-15.

148. Byrd J. Complications associated with hip arthroscopy. In: Byrd J, ed. *Operative Hip Arthroscopy*. New York: Thieme; 1998:171-6.

149. Clarke M, Arora A, Villar R. Hip arthroscopy: complications in 1054 cases. *Clin Orthop.* 2003;40684-8.

150. Griffin D, Villar R. Complications of arthroscopy of the hip. *J Bone Joint Surg Br.* 1999;81(4):604-6.

151. Enseki K, Martin R, Draovitch P, Kelly B, Philippon M, Schenker M. The hip joint: arthroscopic procedures and postoperative rehabilitation. *J Orthop Sports Phys Ther.* 2006;36(7):516-25.

152. Sampson T. Complications of hip arthroscopy. *Clin Sports Med.* 2001;20831-5.

153. Narvani AA, Tsiridis E, Tai CC, Thomas P. Acetabular labrum and its tears. *Br J Sports Med.* 2003;37(3):207-11.

154. Kim YH, Choi IY, Park MR, Park TS, Cho JL. Prophylaxis for deep vein thrombosis with aspirin or low molecular weight dextran in Korean patients undergoing total hip replacement. A randomized controlled trial. *Int Orthop.* 1998;22(1):6-10.

155. Funke E, Munzinger U. Complications in hip arthroscopy. *Arthroscopy*. 1996;12(2):156-9.

156. Byrd J, Jones K. Prospective analysis of hip arthroscopy with 2-year follow-up. *Arthroscopy*. 2000;16578-87.

157. Farjo L, Glick J, Sampson T. Hip arthroscopy for acetabular labral tears. *J Arthroscopic Related Surg.* 1999;15(2):132-7.

158. Fitzgerald RJ. Acetabular labrum tears: diagnosis and treatment. Clin Orthop. 1995;31160-8.

159. Hase T, Ueo T. Acetabular labral tear: arthroscopic diagnosis and treatment. *Arthroscopy*. 1999;15(2):138-41.

160. O'Leary J, Berend K, Vail T. The relationship between diagnosis and outcome in arthroscopy of the hip. *Arthroscopy*. 2001;17(2):181-8.

161. Potter BK, Freedman BA, Andersen RC, Bojescul JA, Kuklo TR, Murphy KP. Correlation of Short Form-36 and disability status with outcomes of arthroscopic acetabular labral debridement. *Am J Sports Med.* 2005;33(6):864-70.

162. Santori N, Villar RN. Acetabular labral tears: result of arthroscopic partial limbectomy. *Arthroscopy*. 2000;16(1):11-5.

163. Ferguson S, Bryant J, Ganz R, Ito K. The influence of the acetabular labrum on hip joint cartilage consilidation: a poroelastic finite element model. *J Biomech*. 2000;33(8):953-60.

164. Ferguson S, Bryant J, Ganz R, Ito K. An in vitro investigation of the acetabular labral seal in hip joint mechanics. *J Biomech.* 2003;36(2):171-8.

165. Philippon MJ, Schenker ML. A new method for acetabular rim trimming and labral repair. *Clin Sports Med.* 2006;25(2):293-7, ix.

166. Philippon MJ. New frontiers in hip arthroscopy: the role of arthroscopic hip labral repair and capsulorrhaphy in the treatment of hip disorders. *Instr Course LEct.* 2006;55309-16.

167. Steadman JR, Miller BS, Karas SG, Schlegel TF, Briggs KK, Hawkins RJ. The microfracture technique in the treatment of full-thickness chondral lesions of the knee in National Football League players. *J Knee Surg.* 2003;16(2):83-6.

168. Kelly B, Williams Rr, Philippon M. Hip arthroscopy: current indications, treatment options, and management issues. *Am J Sports Med.* 2003;31(6):1020-37.

169. Moseley JB, O'Malley K, Petersen NJ, et al. A controlled trial of arthroscopic surgery for osteoarthritis of the knee. *N Engl J Med*. 2002;347(2):81-8.

170. Kocher MS, Kim YJ, Millis MB, et al. Hip arthroscopy in children and adolescents. *J Pediatr Orthop*. 2005;25(5):680-6.

171. Byrd J, Jones K. Osteoarthritis caused by an inverted acetabular labrum: radiographic diagnosis and arthroscopic treatment. *Arthroscopy*. 2002;18(7):741-7.

172. Scheiber C, Meyer ME, Dumitresco B, et al. The pitfalls of planar three-phase bone scintigraphy in nontraumatic hip avascular osteonecrosis. *Clin Nucl Med.* 1999;24(7):488-94.

173. Stevens K, Tao C, Lee SU, et al. Subchondral fractures in osteonecrosis of the femoral head: comparison of radiography, CT, and MR imaging. *Am J Roentgenol*. 2003;180(2):363-8.

174. Ficat R. Idiopathic bone necrosis of the femoral head. Early diagnosis and treatment. *J Bone Joint Surg Br.* 1985;67(1):3-9.

175. Sakai T, Sugano N, Nishii T, Hananouchi T, Yoshikawa H. Extent of osteonecrosis on MRI predicts humeral head collapse. *Clin Orthop Relat Res.* 2008;466(5):1074-80.

176. Jones L, Hungerford D. Osteonecrosis: etiology, diagnosis, and treatment. *Curr Opin Rheumatol.* 2004;16443-9.

177. Koo KH, Kim R, Ko GH, Song HR, Jeong ST, Cho SH. Preventing collapse in early osteonecrosis of the femoral head. A randomised clinical trial of core decompression. *J Bone Joint Surg Br.* 1995;77(6):870-4.

178. Coombs R, de WM Thomas R. Avascular necrosis of the hip. *Br J Hospital Med.* 1994;51(6):275-80.

179. Cherian S, Laorr A, Saleh K, Kuskowski M, Bailey R, Cheng E. Quantifying the extent of femoral head involvement in osteonecrosis. *J Bone Joint Surg Am.* 2003;85309-15.

180. Radke S, Rader C, Kenn W, Kirschner S, Walther M, Eulert J. Transient marrow edema syndrome of the hip: results after core decompression. A prospective MRI-controlled study in 22 patients. *Arch Orthop Trauma Surg.* 2003;123(5):223-7.

181. Kassarjian A, Yoon LS, Belzile E, Connolly SA, Millis MB, Palmer WE. Triad of MR arthrographic findings in patients with cam-type femoroacetabular impingement. *Radiology*. 2005;236(2):588-92.

182. Lequesne M. From "periarthritis" to hip "rotator cuff" tears. Trochanteric tendinobursitis. *Joint Bone Spine*. 2006;73(4):344-8.

183. Armfield D, Towers J, Robertson D. Radiographic and MR imaging of the athletic hip. *Clin Sports Med.* 2006;25(2):211-39, viii.

184. Bredella M, Stoller D. MR imaging of femoroacetabular impingement. *Magn Reson Imaging Clin N Am.* 2005;13(4):653-64.

185. Schmerl M, Pollard H, Hoskins W. Labral injuries of the hip: a review of diagnosis and management. *J Manipulative Physiol Ther.* 2005;28(8):632.

186. Berthelot J, Potaux F, Alliaume C, Prost A, Maugars Y. A case of hip rotator cuff tear revealed by refractory gluteus medius tendinosis. *Joint Bone Spine*. 2001;68(4):360-3.

187. Palmer WE. MR Arthrography of the Hip. Semin Musculoskelet Radiol. 1998;2(4):349-62.

188. Newberg A, Newman J. Imaging the painful hip. *Clin Orthop Relat Res.* 2003;40619-28.

189. Petersilge CA, Haque MA, Petersilge WJ, Lewin JS, Lieberman JM, Buly R. Acetabular labral tears: evaluation with MR arthrography. *Radiology*. 1996;200(1):231-5.

Hodler J, Yu J, Goodwin D, Haghighi P, Trudell D, Resnick D. MR arthrography of the hip: improved imaging of the acetabular labrum with histologic correlation in cadavers. *Am J Roentgenol.* 1995;165(4):887-91.
Manaster B, Zakel S. Imaging of femoral acetabular impingement syndrome. *Clin Sports Med.* 2006;25(4):635-57.

192. Kingzett-Taylor A, Tirman P, Feller J, et al. Tendinosis and tears of gluteus medius and minimus muscles as a cause of hip pain: MR imaging findings. *Am J Roentgenol*. 1999;173(4):1123-6.

193. Chung CB, Robertson JE, Cho GJ, Vaughan LM, Copp SN, Resnick D. Gluteus medius tendon tears and avulsive injuries in elderly women: imaging findings in six patients. *Am J Roentgenol.* 1999;173(2):351-3.

194. Bunker TD, Esler CN, Leach WJ. Rotator-cuff tear of the hip. J Bone Joint Surg Br. 1997;79(4):618-20.

195. Blankenbaker DG, Tuite MJ. The painful hip: new concepts. *Skeletal Radiol*. 2006;35(6):352-70.

196. Tannast M, Siebenrock KA, Anderson SE. Femoroacetabular impingement: radiographic diagnosis--what the radiologist should know. *Am J Roentgenol.* 2007;188(6):1540-52.

197. Gossec L, Jordan JM, Lam MA, et al. Comparative evaluation of three semi-quantitative radiographic grading techniques for hip osteoarthritis in terms of validity and reproducibility in 1404 radiographs: report of the OARSI-OMERACT Task Force. *Osteoarthritis Cartilage*. 2009;17(2):182-7.

198. Reijman M, Hazes JM, Pols HA, Bernsen RM, Koes BW, Bierma-Zeinstra SM. Role of radiography in predicting progression of osteoarthritis of the hip: prospective cohort study. *Br Med J*. 2005;330(7501):1183. 199. Conrozier T, Lequesne M, Favret H, et al. Measurement of the radiological hip joint space width. An evaluation of various methods of measurement. *Osteoarthritis Cartilage*. 2001;9(3):281-6.

200. Tilzey J, Olson SA, Templeman D. Acetabular fracture. J Orthop Trauma. 2000;14(8):589-92.

201. Reed L, Baskett A, Watkins N. Managing children with acute non-traumatic limp: the utility of clinical findings, laboratory inflammatory markers and x-rays. *Emerg Med Australas*. 2009;21(2):136-42.

202. Peeters J, Vanhoenacker FM, Marchal P, et al. Imaging of femoroacetabular impingement: pictorial review. *JBR-BTR*. 2009;92(1):35-42.

203. Friend L, Kelly BT. Femoroacetabular impingement and labral tears in the adolescent hip: diagnosis and surgical advances. *Curr Opin Pediatr.* 2009;21(1):71-6.

204. Leunig M, Beaule PE, Ganz R. The concept of femoroacetabular impingement: current status and future perspectives. *Clin Orthop Relat Res.* 2009;467(3):616-22.

205. Clohisy JC, Carlisle JC, Trousdale R, et al. Radiographic evaluation of the hip has limited reliability. *Clin Orthop Relat Res.* 2009;467(3):666-75.

206. Bedi A, Chen N, Robertson W, Kelly BT. The management of labral tears and femoroacetabular impingement of the hip in the young, active patient. *Arthroscopy*. 2008;24(10):1135-45.

207. Kim YJ, Bixby S, Mamisch TC, Clohisy JC, Carlisle JC. Imaging structural abnormalities in the hip joint: instability and impingement as a cause of osteoarthritis. *Semin Musculoskelet Radiol*. 2008;12(4):334-45.

208. Vieira RL, Levy JA. Bedside ultrasonography to identify hip effusions in pediatric patients. *Ann Emerg Med.* 2010;55(3):284-9.

209. Mahan ST, Katz JN, Kim YJ. To screen or not to screen? A decision analysis of the utility of screening for developmental dysplasia of the hip. *J Bone Joint Surg Am.* 2009;91(7):1705-19.

210. Visser F, Sprij AJ, Bos CF. Comment on: Clinical examination versus ultrasonography in detecting developmental dysplasia of the hip. *Int Orthop.* 2009;33(3):883-4; author reply 5-6.

211. Troelsen A, Jacobsen S, Bolvig L, Gelineck J, Romer L, Soballe K. Ultrasound versus magnetic resonance arthrography in acetabular labral tear diagnostics: a prospective comparison in 20 dysplastic hips. *Acta Radiol.* 2007;48(9):1004-10.

212. Safran O, Goldman V, Applbaum Y, et al. Posttraumatic painful hip: sonography as a screening test for occult hip fractures. *J Ultrasound Med.* 2009;28(11):1447-52.

213. Harris JS, Sinnott PL, Holland JP, et al. Methodology to update the practice recommendations in the American College of Occupational and Environmental Medicine's Occupational Medicine Practice Guidelines, second edition. *J Occup Environ Med*. 2008;50(3):282-95.

214. Kapoor S, Shaw WS, Pransky G, Patterson W. Initial patient and clinician expectations of return to work after acute onset of work-related low back pain. *J Occup Environ Med.* 2006;48(11):1173-80.

215. Reed P. *The Medical Disability Advisor. Workplace Guidelines for Disability Duration, 5th Ed.* Westminister: Reed Group, Ltd; 2005.

216. Keogh JP, Nuwayhid I, Gordon JL, Gucer PW. The impact of occupational injury on injured worker and family: outcomes of upper extremity cumulative trauma disorders in Maryland workers. *Am J Ind Med.* 2000;38(5):498-506.

217. Verhagen AP, Karels C, Bierma-Zeinstra SM, et al. Ergonomic and physiotherapeutic interventions for treating work-related complaints of the arm, neck or shoulder in adults. *Cochrane Database Syst Rev.* 2006;3CD003471.

218. Cibulka MT, White DM, Woehrle J, et al. Hip pain and mobility deficits--hip osteoarthritis: clinical practice guidelines linked to the international classification of functioning, disability, and health from the orthopaedic section of the American Physical Therapy Association. *J Orthop Sports Phys Ther.* 2009;39(4):A1-25.

219. Ernst K, Minor MA. Keeping active with diabetes and arthritis. *Diabetes Self Manag.* 2009;26(3):36-8, 41-2. 220. van Baar ME, Assendelft WJ, Dekker J, Oostendorp RA, Bijlsma JW. Effectiveness of exercise therapy in patients with osteoarthritis of the hip or knee: a systematic review of randomized clinical trials. *Arthritis Rheum.* 1999;42(7):1361-9.

221. Kettunen JA, Kujala UM. Exercise therapy for people with rheumatoid arthritis and osteoarthritis. *Scand J Med Sci Sports*. 2004;14(3):138-42.

222. Roddy E, Zhang W, Doherty M, et al. Evidence-based recommendations for the role of exercise in the management of osteoarthritis of the hip or knee--the MOVE consensus. *Rheumatology*. 2005;44(1):67-73.

223. Ytterberg SR, Mahowald ML, Krug HE. Exercise for arthritis. *Baillieres Clin Rheumatol*. 1994;8(1):161-89.

224. Gerber LH. Exercise and arthritis. *Bull Rheum Dis.* 1990;39(6):1-9.

225. Leivseth G, Torstensson J, Reikeras O. Effect of passive muscle stretching in osteoarthritis of the hip. *Clin Sci (Lond)*. 1989;76(1):113-7.

226. Sisto SA, Malanga G. Osteoarthritis and therapeutic exercise. *Am J Phys Med Rehabil.* 2006;85(11 Suppl):S69-78; quiz S9-81.

227. Westby MD, Wade JP, Rangno KK, Berkowitz J. A randomized controlled trial to evaluate the effectiveness of an exercise program in women with rheumatoid arthritis taking low dose prednisone. *J Rheumatol.* 2000;27(7):1674-80.

228. van Baar ME, Dekker J, Oostendorp RA, et al. The effectiveness of exercise therapy in patients with osteoarthritis of the hip or knee: a randomized clinical trial. *J Rheumatol.* 1998;25(12):2432-9.

229. O'Grady M, Fletcher J, Ortiz S. Therapeutic and physical fitness exercise prescription for older adults with joint disease: an evidence-based approach. *Rheum Dis Clin North Am.* 2000;26(3):617-46.

230. Hicks JE, Gerber LH. Rehabilitation of the patient with arthritis and connective tissue disease. In: Delisa JA, Gans BM, eds. *Rehabilitation medicine principles and practice*. Philadelphia Lippincott Raven Publishers; 1998:1478-97.

231. Hernandez-Molina G, Reichenbach S, Zhang B, Lavalley M, Felson DT. Effect of therapeutic exercise for hip osteoarthritis pain: results of a meta-analysis. *Arthritis Rheum*. 2008;59(9):1221-8.

232. Veenhof C, Koke AJ, Dekker J, et al. Effectiveness of behavioral graded activity in patients with osteoarthritis of the hip and/or knee: A randomized clinical trial. *Arthritis Rheum*. 2006;55(6):925-34.

233. Hoeksma HL, Dekker J, Ronday HK, et al. Comparison of manual therapy and exercise therapy in osteoarthritis of the hip: a randomized clinical trial. *Arthritis Rheum.* 2004;51(5):722-9.

234. Nguyen M, Revel M, Dougados M. Prolonged effects of 3 week therapy in a spa resort on lumbar spine, knee and hip osteoarthritis: follow-up after 6 months. A randomized controlled trial. *Br J Rheumatol.* 1997;36(1):77-81.

235. Ravaud P, Giraudeau B, Logeart I, et al. Management of osteoarthritis (OA) with an unsupervised home based exercise programme and/or patient administered assessment tools. A cluster randomised controlled trial with a 2x2 factorial design. *Ann Rheum Dis.* 2004;63(6):703-8.

Halbert J, Crotty M, Weller D, Ahern M, Silagy C. Primary care-based physical activity programs:
effectiveness in sedentary older patients with osteoarthritis symptoms. *Arthritis Rheum*. 2001;45(3):228-34.
Lyngberg KK, Harreby M, Bentzen H, Frost B, Danneskiold-Samsoe B. Elderly rheumatoid arthritis patients on steroid treatment tolerate physical training without an increase in disease activity. *Arch Phys Med Rehabil*. 1994;75(11):1189-95.

238. Lyngberg K, Danneskiold-Samsoe B, Halskov O. The effect of physical training on patients with rheumatoid arthritis: changes in disease activity, muscle strength and aerobic capacity. A clinically controlled minimized cross-over study. *Clin Exp Rheumatol.* 1988;6(3):253-60.

239. Baslund B, Lyngberg K, Andersen V, et al. Effect of 8 wk of bicycle training on the immune system of patients with rheumatoid arthritis. *J Appl Physiol*. 1993;75(4):1691-5.

van den Ende CH, Hazes JM, le Cessie S, et al. Comparison of high and low intensity training in well controlled rheumatoid arthritis. Results of a randomised clinical trial. *Ann Rheum Dis.* 1996;55(11):798-805.
Daltroy LH, Robb-Nicholson C, Iversen MD, Wright EA, Liang MH. Effectiveness of minimally supervised

home aerobic training in patients with systemic rheumatic disease. *Br J Rheumatol.* 1995;34(11):1064-9. 242. Hansen TM, Hansen G, Langgaard AM, Rasmussen JO. Longterm physical training in rheumatoid arthritis. A randomized trial with different training programs and blinded observers. *Scand J Rheumatol.* 1993;22(3):107-12.

243. Smith S, MacKay-Lyons M, Nunes-Clement S. Therapeutic benefit of aquaerobics for individuals with rheumatoid arthritis. *Physiother Can.* 199840-6.

244. Ekblom B, Lovgren O, Alderin M, Fridstrom M, Satterstrom G. Effect of short-term physical training on patients with rheumatoid arthritis I. *Scand J Rheumatol.* 1975;4(2):80-6.

245. Harkcom TM, Lampman RM, Banwell BF, Castor CW. Therapeutic value of graded aerobic exercise training in rheumatoid arthritis. *Arthritis Rheum*. 1985;28(1):32-9.

246. Cochrane T, Davey RC, Matthes Edwards SM. Randomised controlled trial of the cost-effectiveness of water-based therapy for lower limb osteoarthritis. *Health Technol Assess*. 2005;9(31):iii-iv, ix-xi, 1-114.

247. Hakkinen A, Sokka T, Kotaniemi A, Hannonen P. A randomized two-year study of the effects of dynamic strength training on muscle strength, disease activity, functional capacity, and bone mineral density in early rheumatoid arthritis. *Arthritis Rheum*. 2001;44(3):515-22.

248. Hootman JM, Macera CA, Ham SA, Helmick CG, Sniezek JE. Physical activity levels among the general US adult population and in adults with and without arthritis. *Arthritis Rheum*. 2003;49(1):129-35.

249. Ekdahl C, Andersson SI, Moritz U, Svensson B. Dynamic versus static training in patients with rheumatoid arthritis. *Scand J Rheumatol.* 1990;19(1):17-26.

250. Stenstrom CH, Lindell B, Swanberg E, Swanberg P, Harms-Ringdahl K, Nordemar R. Intensive dynamic training in water for rheumatoid arthritis functional class II--a long-term study of effects. *Scand J Rheumatol.* 1991;20(5):358-65.

251. Jan MH, Lai JS. The effects of physiotherapy on osteoarthritic knees of females. *J Formos Med Assoc.* 1991;90(10):1008-13.

252. Peterson MG, Kovar-Toledano PA, Otis JC, et al. Effect of a walking program on gait characteristics in patients with osteoarthritis. *Arthritis Care Res.* 1993;6(1):11-6.

253. Chamberlain MA, Care G, Harfield B. Physiotherapy in osteoarthrosis of the knees. A controlled trial of hospital versus home exercises. *Int Rehabil Med.* 1982;4(2):101-6.

254. Messier SP, Mihalko S, Loeser RF, et al. Glucosamine/chondroitin combined with exercise for the treatment of knee osteoarthritis: a preliminary study. *Osteoarthritis Cartilage*. 2007;15(11):1256-66.

255. Schilke JM, Johnson GO, Housh TJ, O'Dell JR. Effects of muscle-strength training on the functional status of patients with osteoarthritis of the knee joint. *Nurs Res.* 1996;45(2):68-72.

256. Ettinger WH, Jr., Burns R, Messier SP, et al. A randomized trial comparing aerobic exercise and resistance exercise with a health education program in older adults with knee osteoarthritis. The Fitness Arthritis and Seniors Trial (FAST). *JAMA*. 1997;277(1):25-31.

257. Borjesson M, Robertson E, Weidenhielm L, Mattsson E, Olsson E. Physiotherapy in knee osteoarthrosis: effect on pain and walking. *Physiother Res Int.* 1996;1(2):89-97.

258. Bautch JC, Malone DG, Vailas AC. Effects of exercise on knee joints with osteoarthritis: a pilot study of biologic markers. *Arthritis Care Res.* 1997;10(1):48-55.

259. Callaghan M, Oldham J. An evaluation of exercise regimes for patients with osteoarthritis of the knee: a sinlge-blind randomized controlled trial. *Clin Rehabil.* 1995;9213-8.

260. Kovar PA, Allegrante JP, MacKenzie CR, Peterson MG, Gutin B, Charlson ME. Supervised fitness walking in patients with osteoarthritis of the knee. A randomized, controlled trial. *Ann Intern Med.* 1992;116(7):529-34.

Minor MA. Exercise in the treatment of osteoarthritis. *Rheum Dis Clin North Am.* 1999;25(2):397-415, viii.
Armstrong L. *ACSM's Guidelines for Exercise Testing and Prescription, 7th edition.* Baltimore: Lippincott Williams & Wilkins; 2005.

263. Minor MA, Hewett JE, Webel RR, Anderson SK, Kay DR. Efficacy of physical conditioning exercise in patients with rheumatoid arthritis and osteoarthritis. *Arthritis Rheum*. 1989;32(11):1396-405.

264. Mangione KK, McCully K, Gloviak A, Lefebvre I, Hofmann M, Craik R. The effects of high-intensity and lowintensity cycle ergometry in older adults with knee osteoarthritis. *J Gerontol A Biol Sci Med Sci*. 1999;54(4):M184-90.

265. Tak E, Staats P, Van Hespen A, Hopman-Rock M. The effects of an exercise program for older adults with osteoarthritis of the hip. *J Rheumatol.* 2005;32(6):1106-13.

266. Hopman-Rock M, Westhoff MH. The effects of a health educational and exercise program for older adults with osteoarthritis for the hip or knee. *J Rheumatol.* 2000;27(8):1947-54.

267. Hinman RS, Heywood SE, Day AR. Aquatic physical therapy for hip and knee osteoarthritis: results of a single-blind randomized controlled trial. *Phys Ther.* 2007;87(1):32-43.

268. Foley A, Halbert J, Hewitt T, Crotty M. Does hydrotherapy improve strength and physical function in patients with osteoarthritis--a randomised controlled trial comparing a gym based and a hydrotherapy based strengthening programme. *Ann Rheum Dis.* 2003;62(12):1162-7.

269. Sylvester K. Investigation of the effect of hydrotherapy in the treatment of osteoarthritic hips. *Clin Rehabil.* 1990;4223.

270. Williams KA, Petronis J, Smith D, et al. Effect of Iyengar yoga therapy for chronic low back pain. *Pain*. 2005;115(1-2):107-17.

271. Sherman KJ, Cherkin DC, Erro J, Miglioretti DL, Deyo RA. Comparing yoga, exercise, and a self-care book for chronic low back pain: a randomized, controlled trial. *Ann Intern Med.* 2005;143(12):849-56.

272. Galantino ML, Bzdewka TM, Eissler-Russo JL, et al. The impact of modified Hatha yoga on chronic low back pain: a pilot study. *Altern Ther Health Med.* 2004;10(2):56-9.

273. Wiffen P, Collins S, McQuay H, Carroll D, Jadad A, Moore A. Anticonvulsant drugs for acute and chronic pain. *Cochrane Database Syst Rev.* 2005(3):CD001133.

274. Challapalli V, Tremont-Lukats IW, McNicol ED, Lau J, Carr DB. Systemic administration of local anesthetic agents to relieve neuropathic pain. *Cochrane Database Syst Rev.* 2005(4):CD003345.

275. Pandey CK, Navkar DV, Giri PJ, et al. Evaluation of the optimal preemptive dose of gabapentin for postoperative pain relief after lumbar diskectomy: a randomized, double-blind, placebo-controlled study. *J Neurosurg Anesthesiol.* 2005;17(2):65-8.

276. Pandey CK, Priye S, Singh S, Singh U, Singh RB, Singh PK. Preemptive use of gabapentin significantly decreases postoperative pain and rescue analgesic requirements in laparoscopic cholecystectomy. *Can J Anaesth.* 2004;51(4):358-63.

277. Radhakrishnan M, Bithal PK, Chaturvedi A. Effect of preemptive gabapentin on postoperative pain relief and morphine consumption following lumbar laminectomy and discectomy: a randomized, double-blinded, placebo-controlled study. *J Neurosurg Anesthesiol.* 2005;17(3):125-8.

278. Turan A, Karamanlioglu B, Memis D, et al. Analgesic effects of gabapentin after spinal surgery. *Anesthesiology*. 2004;100(4):935-8.

279. Grbic JT, Landesberg R, Lin SQ, et al. Incidence of osteonecrosis of the jaw in women with postmenopausal osteoporosis in the health outcomes and reduced incidence with zoledronic acid once yearly pivotal fracture trial. *J Am Dent Assoc.* 2008;139(1):32-40.

280. Cole RE, Harris ST. Preventing nonvertebral osteoporotic fractures with extended-interval bisphosphonates: regimen selection and clinical application. *Medscape J Med*. 2009;11(1):12.

281. Doggrell SA. New findings with old drugs for osteoporosis. *Expert Opin Pharmacother*. 2009;10(3):513-6.

282. Saag KG, Shane E, Boonen S, et al. Teriparatide or alendronate in glucocorticoid-induced osteoporosis. *N Engl J Med.* 2007;357(20):2028-39.

283. Valimaki MJ, Farrerons-Minguella J, Halse J, et al. Effects of risedronate 5 mg/d on bone mineral density and bone turnover markers in late-postmenopausal women with osteopenia: a multinational, 24-month, randomized, double-blind, placebo-controlled, parallel-group, phase III trial. *Clin Ther.* 2007;29(9):1937-49.

284. Morrish DW, Beaupre LA, Bell NR, et al. Facilitated bone mineral density testing versus hospital-based case management to improve osteoporosis treatment for hip fracture patients: additional results from a randomized trial. *Arthritis Rheum*. 2009;61(2):209-15.

285. Sebba A. Osteoporosis: how long should we treat? *Curr Opin Endocrinol Diabetes Obes.* 2008;15(6):502-7.
286. Black DM, Delmas PD, Eastell R, et al. Once-yearly zoledronic acid for treatment of postmenopausal osteoporosis. *N Engl J Med.* 2007;356(18):1809-22.

287. Lewiecki EM. Pharmacologic therapy to reduce fracture risk: comment on the clinical practice guidelines of the ACP. *Nat Clin Pract Rheumatol.* 2009;5(3):120-1.

288. Ringe JD, Body JJ. A review of bone pain relief with ibandronate and other bisphosphonates in disorders of increased bone turnover. *Clin Exp Rheumatol.* 2007;25(5):766-74.

289. Ringe JD, Moller G. Differences in persistence, safety and efficacy of generic and original branded once weekly bisphosphonates in patients with postmenopausal osteoporosis: 1-year results of a retrospective patient chart review analysis. *Rheumatol Int.* 2009.

290. Solomon DH, Hochberg MC, Mogun H, Schneeweiss S. The relation between bisphosphonate use and non-union of fractures of the humerus in older adults. *Osteoporos Int.* 2009;20(6):895-901.

291. Iwamoto J, Sato Y, Takeda T, Matsumoto H. Hip fracture protection by alendronate treatment in postmenopausal women with osteoporosis: a review of the literature. *Clin Interv Aging*. 2008;3(3):483-9.
292. Black DM, Schwartz AV, Ensrud KE, et al. Effects of continuing or stopping alendronate after 5 years of treatment: the Fracture Intervention Trial Long-term Extension (FLEX): a randomized trial. *JAMA*.
2006;296(24):2927-38.

293. Wells G, Cranney A, Peterson J, et al. Risedronate for the primary and secondary prevention of osteoporotic fractures in postmenopausal women. *Cochrane Database Syst Rev.* 2008(1):CD004523.
294. Wells GA, Cranney A, Peterson J, et al. Etidronate for the primary and secondary prevention of

osteoporotic fractures in postmenopausal women. *Cochrane Database Syst Rev.* 2008(1):CD003376. 295. Wells GA, Cranney A, Peterson J, et al. Alendronate for the primary and secondary prevention of osteoporotic fractures in postmenopausal women. *Cochrane Database Syst Rev.* 2008(1):CD001155.

296. Stakkestad JA, Lakatos P, Lorenc R, Sedarati F, Neate C, Reginster JY. Monthly oral ibandronate is effective and well tolerated after 3 years: the MOBILE long-term extension. *Clin Rheumatol.* 2008;27(8):955-60. 297. Delmas PD, Benhamou CL, Man Z, et al. Monthly dosing of 75 mg risedronate on 2 consecutive days a month: efficacy and safety results. *Osteoporos Int.* 2008;19(7):1039-45.

298. Harris ST, Blumentals WA, Miller PD. Ibandronate and the risk of non-vertebral and clinical fractures in women with postmenopausal osteoporosis: results of a meta-analysis of phase III studies. *Curr Med Res Opin.* 2008;24(1):237-45.

299. Mok CC, Tong KH, To CH, Siu YP, Ma KM. Risedronate for prevention of bone mineral density loss in patients receiving high-dose glucocorticoids: a randomized double-blind placebo-controlled trial. *Osteoporos Int.* 2008;19(3):357-64.

300. Halbekath JM, Schenk S, von Maxen A, Meyer G, Muhlhauser I. Risedronate for the prevention of hip fractures: concern about validity of trials. *Arch Intern Med.* 2007;167(5):513-4; author reply 4-5.

301. Recker RR, Delmas PD, Halse J, et al. Effects of intravenous zoledronic acid once yearly on bone remodeling and bone structure. *J Bone Miner Res.* 2008;23(1):6-16.

 Recker RR, Ste-Marie LG, Langdahl B, Masanauskaite D, Ethgen D, Delmas PD. Oral ibandronate preserves trabecular microarchitecture: micro-computed tomography findings from the oral iBandronate Osteoporosis vertebral fracture trial in North America and Europe study. *J Clin Densitom*. 2009;12(1):71-6.
 Lyles KW, Colon-Emeric CS, Magaziner JS, et al. Zoledronic acid and clinical fractures and mortality after

hip fracture. N Engl J Med. 2007;357(18):1799-809.

304. Strom O, Borgstrom F, Sen SS, et al. Cost-effectiveness of alendronate in the treatment of postmenopausal women in 9 European countries--an economic evaluation based on the fracture intervention trial. *Osteoporos Int.* 2007;18(8):1047-61.

305. Huusko TM, Karppi P, Kautiainen H, Suominen H, Avikainen V, Sulkava R. Randomized, double-blind, clinically controlled trial of intranasal calcitonin treatment in patients with hip fracture. *Calcif Tissue Int.* 2002;71(6):478-84.

306. Garner SE, Fidan DD, Frankish R, Maxwell L. Rofecoxib for osteoarthritis. *Cochrane Database Syst Rev.* 2005(1):CD005115.

307. Berenbaum F, Grifka J, Brown JP, et al. Efficacy of lumiracoxib in osteoarthritis: a review of nine studies. *J Int Med Res*. 2005;33(1):21-41.

Jagtap SA, Lahoti S, Anwaruddin K, Ram S, Ballary C, Desai A. Evaluation of efficacy, safety and tolerability of valdecoxib in osteo-arthritis patients--an Indian study. *J Indian Med Assoc*. 2002;100(11):673-4.
Boutaud O, Aronoff DM, Richardson JH, Marnett LJ, Oates JA. Determinants of the cellular specificity of acetaminophen as an inhibitor of prostaglandin H(2) synthases. *Proc Natl Acad Sci U S A*. 2002;99(10):7130-5.
Dingle J. The effects of NSAID on the matrix of human articular cartilages. *Z Rheumatol*. 1999;58125-9.
de Grauw JC, van de Lest CH, van Weeren PR. Inflammatory mediators and cartilage biomarkers in

311. de Grauw JC, van de Lest CH, van Weeren PR. Inflammatory mediators and cartilage biomark synovial fluid after a single inflammatory insult: a longitudinal experimental study. *Arthritis Res Ther*. 2009;11(2):R35.

312. Lakey RL, Cawston TE. Sulfasalazine blocks the release of proteoglycan and collagen from cytokine stimulated cartilage and down-regulates metalloproteinases. *Rheumatology*. 2009;48(10):1208-12.

313. Clutterbuck AL, Mobasheri A, Shakibaei M, Allaway D, Harris P. Interleukin-1beta-induced extracellular matrix degradation and glycosaminoglycan release is inhibited by curcumin in an explant model of cartilage inflammation. *Ann N Y Acad Sci.* 2009;1171428-35.

314. Kullich W, Fagerer N, Schwann H. Effect of the NSAID nimesulide on the radical scavenger glutathione S-transferase in patients with osteoarthritis of the knee. *Curr Med Res Opin.* 2007;23(8):1981-6.

315. Graham DY, Agrawal NM, Campbell DR, et al. Ulcer prevention in long-term users of nonsteroidal antiinflammatory drugs: results of a double-blind, randomized, multicenter, active- and placebo-controlled study of misoprostol vs lansoprazole. *Arch Intern Med.* 2002;162(2):169-75.

316. Einhorn TA. Do inhibitors of cyclooxygenase-2 impair bone healing? *J Bone Miner Res.* 2002;17(6):977-8.
317. Levi F, Le Louarn C, Reinberg A. Timing optimizes sustained-release indomethacin treatment of osteoarthritis. *Clin Pharmacol Ther.* 1985;37(1):77-84.

318. Stengaard-Pedersen K, Ekesbo R, Karvonen AL, Lyster M. Celecoxib 200 mg q.d. is efficacious in the management of osteoarthritis of the knee or hip regardless of the time of dosing. *Rheumatology*. 2004;43(5):592-5.
319. Robinson M, Mills R, Euler A. Ranitidine prevents duodenal ulcers associated with non-steroidal anti-inflammatory drug therapy. *Aliment Pharmacol Ther*. 1991;5(2):143-50.

320. Robinson MG, Griffin JW, Jr., Bowers J, et al. Effect of ranitidine on gastroduodenal mucosal damage induced by nonsteroidal antiinflammatory drugs. *Dig Dis Sci*. 1989;34(3):424-8.

321. Ehsanullah RS, Page MC, Tildesley G, Wood JR. Prevention of gastroduodenal damage induced by nonsteroidal anti-inflammatory drugs: controlled trial of ranitidine. *Br Med J.* 1988;297(6655):1017-21.

322. Antman EM, Bennett JS, Daugherty A, Furberg C, Roberts H, Taubert KA. Use of nonsteroidal antiinflammatory drugs: an update for clinicians: a scientific statement from the American Heart Association. *Circulation*. 2007;115(12):1634-42.

323. Dorn U, Grethen C, Effenberger H, Berka H, Ramsauer T, Drekonja T. Indomethacin for prevention of heterotopic ossification after hip arthroplasty. A randomized comparison between 4 and 8 days of treatment. *Acta Orthop Scand.* 1998;69(2):107-10.

324. Persson PE, Sodemann B, Nilsson OS. Preventive effects of ibuprofen on periarticular heterotopic ossification after total hip arthroplasty. A randomized double-blind prospective study of treatment time. *Acta Orthop Scand.* 1998;69(2):111-5.

325. Fransen M, Anderson C, Douglas J, et al. Safety and efficacy of routine postoperative ibuprofen for pain and disability related to ectopic bone formation after hip replacement surgery (HIPAID): randomised controlled trial. *Br Med J*. 2006;333(7567):519.

326. Acetaminophen Safety - Deja Vu. The Medical Letter, 2009:53.

327. McQuay HJ, Edwards JE, Moore RA. Evaluating analgesia: the challenges. *Am J Ther.* 2002;9(3):179-87.

328. Amadio P, Cummings D. Evaluation of acetaminophen in the management of osteoarthritis of the knee. *Curr Ther Res.* 1983;34(1):59-66.

329. Pincus T, Koch G, Lei H, et al. Patient Preference for Placebo, Acetaminophen (paracetamol) or Celecoxib Efficacy Studies (PACES): two randomised, double blind, placebo controlled, crossover clinical trials in patients with knee or hip osteoarthritis. *Ann Rheum Dis.* 2004;63(8):931-9.

330. Kruger K, Klasser M, Mossinger J, Becker U. Oxaceprol--a randomised, placebo-controlled clinical study in osteoarthritis with a non-conventional non-steroidal anti-inflammatory drug. *Clin Exp Rheumatol.* 2007;25(1):29-34.
331. Pope JE, Prashker M, Anderson J. The efficacy and cost effectiveness of N of 1 studies with diclofenac compared to standard treatment with nonsteroidal anti-inflammatory drugs in osteoarthritis. *J Rheumatol.* 2004;31(1):140-9.

332. Berry H, Bird HA, Black C, et al. A double blind, multicentre, placebo controlled trial of lornoxicam in patients with osteoarthritis of the hip and knee. *Ann Rheum Dis.* 1992;51(2):238-42.

333. Caroit M, Forette B, Hubault A, Pasquier P. Double-blind study of ketoprofen against a placebo in osteoarthritis of the hip. *Scand J Rheumatol Suppl.* 1976;1976(0):123-7.

334. Petrick TJ, Bovenkerk WE. Multicenter studies in the United States and Canada of meclofenamate sodium in osteoarthritis of the hip and knee. Double-blind comparison with placebo and long-term experience. *Arzneimittelforschung.* 1983;33(4A):644-8.

335. Famaey JP, Colinet E. A double-blind trial of ketoprofen in the treatment of osteoarthritis of the hip. *Scand J Rheumatol Suppl.* 1976;1976(0):129-32.

336. Case JP, Baliunas AJ, Block JA. Lack of efficacy of acetaminophen in treating symptomatic knee osteoarthritis: a randomized, double-blind, placebo-controlled comparison trial with diclofenac sodium. *Arch Intern Med.* 2003;163(2):169-78.

337. Puopolo A, Boice JA, Fidelholtz JL, et al. A randomized placebo-controlled trial comparing the efficacy of etoricoxib 30 mg and ibuprofen 2400 mg for the treatment of patients with osteoarthritis. *Osteoarthritis Cartilage*. 2007;15(12):1348-56.

338. Saag K, van der Heijde D, Fisher C, et al. Rofecoxib, a new cyclooxygenase 2 inhibitor, shows sustained efficacy, comparable with other nonsteroidal anti-inflammatory drugs: a 6-week and a 1-year trial in patients with osteoarthritis. Osteoarthritis Studies Group. *Arch Fam Med.* 2000;9(10):1124-34.

339. Kivitz AJ, Moskowitz RW, Woods E, et al. Comparative efficacy and safety of celecoxib and naproxen in the treatment of osteoarthritis of the hip. *J Int Med Res.* 2001;29(6):467-79.

340. Yocum D, Fleischmann R, Dalgin P, Caldwell J, Hall D, Roszko P. Safety and efficacy of meloxicam in the treatment of osteoarthritis: a 12-week, double-blind, multiple-dose, placebo-controlled trial. The Meloxicam Osteoarthritis Investigators. *Arch Intern Med.* 2000;160(19):2947-54.

341. Kogstad O. Double blind crossover trial of piroxicam and naproxen in the treatment of osteoarthritis of hip and knee. *Br J Clin Pract.* 1981;35(1):45-50.

342. Bocanegra TS, Weaver AL, Tindall EA, et al. Diclofenac/misoprostol compared with diclofenac in the treatment of osteoarthritis of the knee or hip: a randomized, placebo controlled trial. Arthrotec Osteoarthritis Study Group. *J Rheumatol.* 1998;25(8):1602-11.

343. Lohmander LS, McKeith D, Svensson O, et al. A randomised, placebo controlled, comparative trial of the gastrointestinal safety and efficacy of AZD3582 versus naproxen in osteoarthritis. *Ann Rheum Dis.* 2005;64(3):449-56.

344. Levenstein JH. Isoxicam and indomethacin in acute osteo-arthritis. A GP multicentre double-blind comparison. *S Afr Med J.* 1985;67(17):676-9.

345. Averbuch M, Katzper M. Assessment of visual analog versus categorical scale for measurement of osteoarthritis pain. *J Clin Pharmacol.* 2004;44(4):368-72.

346. Fenton C, Keating GM, Wagstaff AJ. Valdecoxib: a review of its use in the management of osteoarthritis, rheumatoid arthritis, dysmenorrhoea and acute pain. *Drugs*. 2004;64(11):1231-61.

347. Beaulieu AD, Peloso PM, Haraoui B, et al. Once-daily, controlled-release tramadol and sustained-release diclofenac relieve chronic pain due to osteoarthritis: a randomized controlled trial. *Pain Res Manag.* 2008;13(2):103-10.

348. Pavelka K, Peliskova Z, Stehlikova H, Ratcliffe S, Repas C. Intraindividual differences in pain relief and functional improvement in osteoarthritis with diclofenac or tramadol. *Clin Drug Investig.* 1998;16(6):421-9.

349. Parr G, Darekar B, Fletcher A, Bulpitt CJ. Joint pain and quality of life; results of a randomised trial. *Br J Clin Pharmacol.* 1989;27(2):235-42.

350. Quiding H, Grimstad J, Rusten K, Stubhaug A, Bremnes J, Breivik H. Ibuprofen plus codeine, ibuprofen, and placebo in a single- and multidose cross-over comparison for coxarthrosis pain. *Pain*. 1992;50(3):303-7.

351. Kjaersgaard-Andersen P, Nafei A, Skov O, et al. Codeine plus paracetamol versus paracetamol in longerterm treatment of chronic pain due to osteoarthritis of the hip. A randomised, double-blind, multi-centre study. *Pain*. 1990;43(3):309-18.

352. McGettigan P, Henry D. Cardiovascular risk and inhibition of cyclooxygenase: a systematic review of the observational studies of selective and nonselective inhibitors of cyclooxygenase 2. *JAMA*. 2006;296(13):1633-44. 353. Kimmel SE, Berlin JA, Reilly M, et al. Patients exposed to rofecoxib and celecoxib have different odds of nonfatal myocardial infarction. *Ann Intern Med*. 2005;142(3):157-64.

354. Agrawal NM, Caldwell J, Kivitz AJ, et al. Comparison of the upper gastrointestinal safety of Arthrotec 75 and nabumetone in osteoarthritis patients at high risk for developing nonsteroidal anti-inflammatory drug-induced gastrointestinal ulcers. *Clin Ther.* 1999;21(4):659-74.

355. Melo Gomes JA, Roth SH, Zeeh J, Bruyn GA, Woods EM, Geis GS. Double-blind comparison of efficacy and gastroduodenal safety of diclofenac/misoprostol, piroxicam, and naproxen in the treatment of osteoarthritis. *Ann Rheum Dis.* 1993;52(12):881-5.

356. Bianchi Porro G, Lazzaroni M, Imbesi V, Montrone F, Santagada T. Efficacy of pantoprazole in the prevention of peptic ulcers, induced by non-steroidal anti-inflammatory drugs: a prospective, placebo-controlled, double-blind, parallel-group study. *Dig Liver Dis.* 2000;32(3):201-8.

357. Scheiman JM, Behler EM, Loeffler KM, Elta GH. Omeprazole ameliorates aspirin-induced gastroduodenal injury. *Dig Dis Sci.* 1994;39(1):97-103.

358. Scheiman JM, Yeomans ND, Talley NJ, et al. Prevention of ulcers by esomeprazole in at-risk patients using non-selective NSAIDs and COX-2 inhibitors. *Am J Gastroenterol*. 2006;101(4):701-10.

359. Chan FK, Hung LC, Suen BY, et al. Celecoxib versus diclofenac and omeprazole in reducing the risk of recurrent ulcer bleeding in patients with arthritis. *N Engl J Med.* 2002;347(26):2104-10.

360. Regula J, Butruk E, Dekkers CP, et al. Prevention of NSAID-associated gastrointestinal lesions: a comparison study pantoprazole versus omeprazole. *Am J Gastroenterol*. 2006;101(8):1747-55.

361. Yeomans N, Lanas A, Labenz J, et al. Efficacy of esomeprazole (20 mg once daily) for reducing the risk of gastroduodenal ulcers associated with continuous use of low-dose aspirin. *Am J Gastroenterol.* 2008;103(10):2465-73.

362. Bianchi Porro G, Lazzaroni M, Petrillo M, Manzionna G, Montrone F, Caruso I. Prevention of gastroduodenal damage with omeprazole in patients receiving continuous NSAIDs treatment. A double blind placebo controlled study. *Ital J Gastroenterol Hepatol.* 1998;3043-7.

363. Hawkey C, Talley NJ, Yeomans ND, et al. Improvements with esomeprazole in patients with upper gastrointestinal symptoms taking non-steroidal antiinflammatory drugs, including selective COX-2 inhibitors. *Am J Gastroenterol.* 2005;100(5):1028-36.

364. Desai JC, Sanyal SM, Goo T, et al. Primary prevention of adverse gastroduodenal effects from short-term use of non-steroidal anti-inflammatory drugs by omeprazole 20 mg in healthy subjects: a randomized, double-blind, placebo-controlled study. *Dig Dis Sci.* 2008;53(8):2059-65.

365. Bergmann JF, Chassany O, Simoneau G, Lemaire M, Segrestaa JM, Caulin C. Protection against aspirininduced gastric lesions by lansoprazole: simultaneous evaluation of functional and morphologic responses. *Clin Pharmacol Ther.* 1992;52(4):413-6.

366. Graham DY, White RH, Moreland LW, et al. Duodenal and gastric ulcer prevention with misoprostol in arthritis patients taking NSAIDs. Misoprostol Study Group. *Ann Intern Med.* 1993;119(4):257-62.

367. Bardhan KD, Bjarnason I, Scott DL, et al. The prevention and healing of acute non-steroidal antiinflammatory drug-associated gastroduodenal mucosal damage by misoprostol. *Br J Rheumatol.* 1993;32(11):990-5.

368. Raskin JB, White RH, Jackson JE, et al. Misoprostol dosage in the prevention of nonsteroidal antiinflammatory drug-induced gastric and duodenal ulcers: a comparison of three regimens. *Ann Intern Med.* 1995;123(5):344-50.

369. Elliott SL, Yeomans ND, Buchanan RR, Smallwood RA. Efficacy of 12 months' misoprostol as prophylaxis against NSAID-induced gastric ulcers. A placebo-controlled trial. *Scand J Rheumatol.* 1994;23(4):171-6.
370. Chandrasekaran AN, Sambandam PR, Lal HM, et al. Double blind, placebo controlled trial on the cytoprotective effect of misoprostol in subjects with rheumatoid arthritis, osteoarthritis and seronegative

spondarthropathy on NSAIDs. J Assoc Physicians India. 1991;39(12):919-21.

371. Lanza F, Peace K, Gustitus L, Rack MF, Dickson B. A blinded endoscopic comparative study of misoprostol versus sucralfate and placebo in the prevention of aspirin-induced gastric and duodenal ulceration. *Am J Gastroenterol.* 1988;83(2):143-6.

372. Jiranek GC, Kimmey MB, Saunders DR, Willson RA, Shanahan W, Silverstein FE. Misoprostol reduces gastroduodenal injury from one week of aspirin: an endoscopic study. *Gastroenterology*. 1989;96(2 Pt 2 Suppl):656-61.

373. Donnelly MT, Goddard AF, Filipowicz B, Morant SV, Shield MJ, Hawkey CJ. Low-dose misoprostol for the prevention of low-dose aspirin-induced gastroduodenal injury. *Aliment Pharmacol Ther.* 2000;14(5):529-34.
374. Medina Santillan R, Reyes Garcia G, Mateos Garcia E. Prevention of gastroduodenal injury induced by NSAIDs with low-dose misoprostol. *Proc West Pharmacol Soc.* 1999;4233-4.

Koch M, Dezi A, Tarquini M, Capurso L. Prevention of non-steroidal anti-inflammatory drug-induced gastrointestinal mucosal injury: risk factors for serious complications. *Dig Liver Dis*. 2000;32(2):138-51.
Miglioli M, Bianchi Porro G, Vaira D, et al. Prevention with sucralfate gel of NSAID-induced gastroduodenal

3/6. Miglioli M, Bianchi Porro G, Vaira D, et al. Prevention with sucralitate gel of NSAID-induced gastroduodenal damage in arthritic patients. *Am J Gastroenterol*. 1996;91(11):2367-71.

377. Stupnicki T, Dietrich K, Gonzalez-Carro P, et al. Efficacy and tolerability of pantoprazole compared with misoprostol for the prevention of NSAID-related gastrointestinal lesions and symptoms in rheumatic patients. *Digestion*. 2003;68(4):198-208.

378. Miyake K, Ueki N, Suzuki K, et al. Preventive therapy for non-steroidal anti-inflammatory drug-induced ulcers in Japanese patients with rheumatoid arthritis: the current situation and a prospective controlled-study of the preventive effects of lansoprazole or famotidine. *Aliment Pharmacol Ther.* 2005;21 Suppl 267-72.

379. Bianchi Porro G, Lazzaroni M, Petrillo M. Double-blind, double-dummy endoscopic comparison of the mucosal protective effects of misoprostol versus ranitidine on naproxen-induced mucosal injury to the stomach and duodenum in rheumatic patients. *Am J Gastroenterol.* 1997;92(4):663-7.

380. Raskin JB, White RH, Jaszewski R, Korsten MA, Schubert TT, Fort JG. Misoprostol and ranitidine in the prevention of NSAID-induced ulcers: a prospective, double-blind, multicenter study. *Am J Gastroenterol*. 1996;91(2):223-7.

381. Lanza FL, Aspinall RL, Swabb EA, Davis RE, Rack MF, Rubin A. Double-blind, placebo-controlled endoscopic comparison of the mucosal protective effects of misoprostol versus cimetidine on tolmetin-induced mucosal injury to the stomach and duodenum. *Gastroenterology*. 1988;95(2):289-94.

382. Agrawal NM, Roth S, Graham DY, et al. Misoprostol compared with sucralfate in the prevention of nonsteroidal anti-inflammatory drug-induced gastric ulcer. A randomized, controlled trial. *Ann Intern Med.* 1991;115(3):195-200.

383. Goldstein JL, Cryer B, Amer F, Hunt B. Celecoxib plus aspirin versus naproxen and lansoprazole plus aspirin: a randomized, double-blind, endoscopic trial. *Clin Gastroenterol Hepatol.* 2007;5(10):1167-74.

384. Sell S, Phillips O, Handel M. No difference between two doses of diclofenac in prophylaxis of heterotopic ossifications after total hip arthroplasty. *Acta Orthop Scand.* 2004;75(1):45-9.

385. Kjaersgaard-Andersen P, Schmidt SA, Pedersen NW, Kristensen SS, Pedersen P. Erythrocyte sedimentation rate and heterotopic bone formation after cemented total hip arthroplasty. *Clin Orthop Relat Res.* 1989(248):189-94.

386. Golden HE, Moskowitz RW, Minic M. Analgesic efficacy and safety of nonprescription doses of naproxen sodium compared with acetaminophen in the treatment of osteoarthritis of the knee. *Am J Ther.* 2004;11(2):85-94.
387. Temple AR, Benson GD, Zinsenheim JR, Schweinle JE. Multicenter, randomized, double-blind, active-controlled, parallel-group trial of the long-term (6-12 months) safety of acetaminophen in adult patients with osteoarthritis. *Clin Ther.* 2006;28(2):222-35.

388. Pincus T, Koch GG, Sokka T, et al. A randomized, double-blind, crossover clinical trial of diclofenac plus misoprostol versus acetaminophen in patients with osteoarthritis of the hip or knee. *Arthritis Rheum*. 2001;44(7):1587-98.

Boureau F, Schneid H, Zeghari N, Wall R, Bourgeois P. The IPSO study: ibuprofen, paracetamol study in osteoarthritis. A randomised comparative clinical study comparing the efficacy and safety of ibuprofen and paracetamol analgesic treatment of osteoarthritis of the knee or hip. *Ann Rheum Dis.* 2004;63(9):1028-34.
Geba GP, Weaver AL, Polis AB, Dixon ME, Schnitzer TJ. Efficacy of rofecoxib, celecoxib, and

acetaminophen in osteoarthritis of the knee: a randomized trial. JAMA. 2002;287(1):64-71.

391. Bradley JD, Brandt KD, Katz BP, Kalasinski LA, Ryan SI. Comparison of an antiinflammatory dose of ibuprofen, an analgesic dose of ibuprofen, and acetaminophen in the treatment of patients with osteoarthritis of the knee. *N Engl J Med.* 1991;325(2):87-91.

392. Miceli-Richard C, Le Bars M, Schmidely N, Dougados M. Paracetamol in osteoarthritis of the knee. *Ann Rheum Dis.* 2004;63(1):923-30.

393. Towheed TE, Maxwell L, Judd MG, Catton M, Hochberg MC, Wells G. Acetaminophen for osteoarthritis. *Cochrane Database Syst Rev.* 2006(1):CD004257.

394. Zacher J, Feldman D, Gerli R, et al. A comparison of the therapeutic efficacy and tolerability of etoricoxib and diclofenac in patients with osteoarthritis. *Curr Med Res Opin*. 2003;19(8):725-36.

395. Bellamy N, Bensen WG, Ford PM, Huang SH, Lang JY. Double-blind randomized controlled trial of flurbiprofen-SR (ANSAID-SR) and diclofenac sodium-SR (Voltaren-SR) in the treatment of osteoarthritis. *Clin Invest Med.* 1992;15(5):427-33.

396. Hawel R, Klein G, Singer F, Mayrhofer F, Kahler ST. Comparison of the efficacy and tolerability of dexibuprofen and celecoxib in the treatment of osteoarthritis of the hip. *Int J Clin Pharmacol Ther*. 2003;41(4):153-64.

397. Fleischmann R, Tannenbaum H, Patel NP, Notter M, Sallstig P, Reginster JY. Long-term retention on treatment with lumiracoxib 100 mg once or twice daily compared with celecoxib 200 mg once daily: a randomised controlled trial in patients with osteoarthritis. *BMC Musculoskelet Disord*. 2008;932.

398. Day R, Morrison B, Luza A, et al. A randomized trial of the efficacy and tolerability of the COX-2 inhibitor rofecoxib vs ibuprofen in patients with osteoarthritis. Rofecoxib/Ibuprofen Comparator Study Group. *Arch Intern Med.* 2000;160(12):1781-7.

399. Bellamy N, Buchanan WW, Grace E. Double-blind randomized controlled trial of isoxicam vs piroxicam in elderly patients with osteoarthritis of the hip and knee. *Br J Clin Pharmacol.* 1986;22 Suppl 2149S-55S.

400. Fioravanti A, Storri L, Di Martino S, et al. A randomized, double-blind, multicenter trial of nimesulide-betacyclodextrin versus naproxen in patients with osteoarthritis. *Clin Ther.* 2002;24(4):504-19.

401. Le Loet X, Dreiser RL, Le Gros V, Febvre N. Therapeutic equivalence of diclofenac sustained-released 75 mg tablets and diclofenac enteric-coated 50 mg tablets in the treatment of painful osteoarthritis. *Int J Clin Pract.* 1997;51(6):389-93.

402. Wagenitz A, Mueller EA, Frentzel A, Cambon N. Comparative efficacy and tolerability of two sustainedrelease formulations of diclofenac: results of a double-blind, randomised study in patients with osteoarthritis and a reappraisal of diclofenac's use in this patient population. *Curr Med Res Opin*. 2007;23(8):1957-66.

403. Labenz J, Blum AL, Bolten WW, et al. Primary prevention of diclofenac associated ulcers and dyspepsia by omeprazole or triple therapy in Helicobacter pylori positive patients: a randomised, double blind, placebo controlled, clinical trial. *Gut.* 2002;51(3):329-35.

404. Dorta G, Nicolet M, Vouillamoz D, et al. The effects of omeprazole on healing and appearance of small gastric and duodenal lesions during dosing with diclofenac in healthy subjects. *Aliment Pharmacol Ther*. 2000;14(5):535-41.

405. Mejjad O, Favre S, Dujardin F, Thomine J, Le Loet X, Weber J. Efficacy of etodolac on gait in hip osteoarthritis as assessed by Bessou's locometer: a randomized, crossover, double-blind study versus placebo. Groupe de Recherche sur le Handicap de L'appareil Locomoteur. *Osteoarthritis Cartilage*. 2000;8(3):230-5.
406. Gillgrass J, Grahame R. Nabumetone: a double-blind study in osteoarthrosis. *Pharmatherapeutica*. 1984;3(9):592-4.

407. Pincus T. Clinical evidence for osteoarthritis as an inflammatory disease. *Curr Rheumatol Rep.* 2001;3(6):524-34.

408. Blandino D. Are NSAIDs more effective than acetaminophen in patients with osteoarthritis? *J Fam Pract.* 2001;50(10):894.

409. Leung AT, Malmstrom K, Gallacher AE, et al. Efficacy and tolerability profile of etoricoxib in patients with osteoarthritis: A randomized, double-blind, placebo and active-comparator controlled 12-week efficacy trial. *Curr Med Res Opin.* 2002;18(2):49-58.

410. Reginster JY, Malmstrom K, Mehta A, et al. Evaluation of the efficacy and safety of etoricoxib compared with naproxen in two, 138-week randomised studies of patients with osteoarthritis. *Ann Rheum Dis.* 2007;66(7):945-51.

411. Kidd B, Frenzel W. A multicenter, randomized, double blind study comparing lornoxicam with diclofenac in osteoarthritis. *J Rheumatol.* 1996;23(9):1605-11.

Lisse JR, Perlman M, Johansson G, et al. Gastrointestinal tolerability and effectiveness of rofecoxib versus naproxen in the treatment of osteoarthritis: a randomized, controlled trial. *Ann Intern Med.* 2003;139(7):539-46.
Linden B, Distel M, Bluhmki E. A double-blind study to compare the efficacy and safety of meloxicam 15 mg with piroxicam 20 mg in patients with osteoarthritis of the hip. *Br J Rheumatol.* 1996;35 Suppl 135-8.

414. Wegman AC, van der Windt DA, de Haan M, Deville WL, Fo CT, de Vries TP. Switching from NSAIDs to paracetamol: a series of n of 1 trials for individual patients with osteoarthritis. *Ann Rheum Dis.* 2003;62(12):1156-61.

415. Smugar SS, Schnitzer TJ, Weaver AL, Rubin BR, Polis AB, Tershakovec AM. Rofecoxib 12.5 mg, rofecoxib 25 mg, and celecoxib 200 mg in the treatment of symptomatic osteoarthritis: results of two similarly designed studies. *Curr Med Res Opin*. 2006;22(7):1353-67.

416. Perpignano G, Bogliolo A, Puccetti L. Double-blind comparison of the efficacy and safety of etodolac SR 600 mg u.i.d. and of tenoxicam 20 mg u.i.d. in elderly patients with osteoarthritis of the hip and of the knee. *Int J Clin Pharmacol Res.* 1994;14(5-6):203-16.

417. Lussier A, Elie R, Gareau J. A placebo-controlled trial of floctafenine (idarac) against enteric-coated acetylsalicylic acid in osteoarthritic patients. *Rheumatol Rehabil.* 1980;19(1):52-9.

418. Myllykangas-Luosujarvi R, Lu HS, Chen SL, et al. Comparison of low-dose rofecoxib versus 1000 mg naproxen in patients with osteoarthritis. Results of two randomized treatment trials of six weeks duration. *Scand J Rheumatol.* 2002;31(6):337-44.

419. Hosie J, Distel M, Bluhmki E. Meloxicam in osteoarthritis: a 6-month, double-blind comparison with diclofenac sodium. *Br J Rheumatol.* 1996;35 Suppl 139-43.

420. Bellamy N, Bensen WG, Beaulieu A, et al. A multicenter study of nabumetone and diclofenac SR in patients with osteoarthritis. *J Rheumatol.* 1995;22(5):915-20.

421. Herrmann G, Steeger D, Klasser M, et al. Oxaceprol is a well-tolerated therapy for osteoarthritis with efficacy equivalent to diclofenac. *Clin Rheumatol.* 2000;19(2):99-104.

422. Ginsberg F, Famaey JP. A double-blind, parallel trial of oxaprozin versus naproxen in the treatment of osteoarthritis. *Curr Med Res Opin*. 1984;8(10):689-95.

423. Schnitzer TJ, Beier J, Geusens P, et al. Efficacy and safety of four doses of lumiracoxib versus diclofenac in patients with knee or hip primary osteoarthritis: a phase II, four-week, multicenter, randomized, double-blind, placebo-controlled trial. *Arthritis Rheum.* 2004;51(4):549-57.

424. Morgan GJ, Jr., Kaine J, DeLapp R, Palmer R. Treatment of elderly patients with nabumetone or diclofenac: gastrointestinal safety profile. *J Clin Gastroenterol.* 2001;32(4):310-4.

425. Cannon GW, Caldwell JR, Holt P, et al. Rofecoxib, a specific inhibitor of cyclooxygenase 2, with clinical efficacy comparable with that of diclofenac sodium: results of a one-year, randomized, clinical trial in patients with osteoarthritis of the knee and hip. Rofecoxib Phase III Protocol 035 Study Group. *Arthritis Rheum.* 2000;43(5):978-87.

426. Alho A, Jaer O, Slungaard U, Holme I. Piroxicam and naproxen in patients with osteoarthritis of the hip waiting for total hip replacement. *Clin Rheumatol.* 1988;7(2):208-13.

427. Baumgartner H, Schwarz HA, Blum W, et al. Ibuprofen and diclofenac sodium in the treatment of osteoarthritis: a comparative trial of two once-daily sustained-release NSAID formulations. *Curr Med Res Opin*. 1996;13(8):435-44.

428. Shipley M, Berry H, Broster G, Jenkins M, Clover A, Williams I. Controlled trial of homoeopathic treatment of osteoarthritis. *Lancet.* 1983;1(8316):97-8.

429. Brown BL, Johnson JH, Hearron MS. Double-blind comparison of flurbiprofen and sulindac for the treatment of osteoarthritis. *Am J Med.* 1986;80(3A):112-7.

430. Cardoe N, Hart FD. Double-blind multicentre UK hospital studies of isoxicam vs naproxen. *Br J Clin Pharmacol.* 1986;22 Suppl 2167S-72S.

431. Gordin A, Karppinen I, Holttinen K. Comparison of slow-release indomethacin and diflunisal in patients with arthrosis. *Curr Med Res Opin*. 1984;9(4):275-9.

432. Bauer HW, Klasser M, von Hanstein KL, et al. Oxaceprol is as effective as diclofenac in the therapy of osteoarthritis of the knee and hip. *Clin Rheumatol.* 1999;18(1):4-9.

433. Ginsberg F, Famaey JP. Double-blind crossover study of nabumetone versus naproxen in the treatment of osteoarthritis of the knee and hip. *J Int Med Res.* 1982;10(4):209-13.

434. Adelowo OO, Chukwuani CM, Grange JJ, Ojeasebhulo EE, Onabowale BO. Comparative double blind study of the efficacy and safety of tenoxicam vs. piroxicam in osteoarthritis of knee and hip joints. *West Afr J Med.* 1998;17(3):194-8.

435. Makarowski W, Zhao WW, Bevirt T, Recker DP. Efficacy and safety of the COX-2 specific inhibitor valdecoxib in the management of osteoarthritis of the hip: a randomized, double-blind, placebo-controlled comparison with naproxen. *Osteoarthritis Cartilage*. 2002;10(4):290-6.

436. Marcolongo R, Canesi B, Ferri S, et al. Efficacy and tolerability of ketoprofen 200 mg controlled-release cps vs indomethacin 50 mg cps in patients with symptomatic hip osteoarthritis. A multicentre study. *Minerva Med.* 1997;88(10):383-91.

437. Telhag H, Bach-Andersen R, Persson B. A double-blind comparative evaluation of tolmetin versus naproxen in osteoarthritis. *Curr Med Res Opin*. 1981;7(6):392-400.

438. Corts Giner JR, Garcia Borras JJ. Double-blind, randomized and parallel comparison between droxicam and diclofenac sodium in patients with coxarthrosis and gonarthrosis. *Eur J Rheumatol Inflamm*. 1991;11(4):29-34. 439. Bingham CO, 3rd, Sebba AI, Rubin BR, et al. Efficacy and safety of etoricoxib 30 mg and celecoxib 200 mg in the treatment of osteoarthritis in two identically designed, randomized, placebo-controlled, non-inferiority studies. *Rheumatology*. 2007;46(3):496-507.

440. Kiff PS, Stead H, Morant SV, Shield MJ. Arthrotec, diclofenac and ibuprofen in general practice. *Eur J Rheumatol Inflamm*. 1994;14(3 Suppl):31-8.

441. Clarke AK. A Double-blind comparison of naproxen against indometacin in osteoarthrosis. *Arzneimittelforschung.* 1975;25(2A):302-4.

442. Singer F, Mayrhofer F, Klein G, Hawel R, Kollenz CJ. Evaluation of the efficacy and dose-response relationship of dexibuprofen (S(+)-ibuprofen) in patients with osteoarthritis of the hip and comparison with racemic ibuprofen using the WOMAC osteoarthritis index. *Int J Clin Pharmacol Ther*. 2000;38(1):15-24.

443. Davies J, Dixon AS, Steele CE. Tolmetin sodium and indomethacin in the treatment of osteoarthrosis of the hip: a double-blind crossover study. *Curr Med Res Opin*. 1980;7(2):115-20.

444. Meurice J. Treatment of osteoarthritis: a 3-month comparison between tiaprofenic acid and indomethacin. *Curr Med Res Opin*. 1983;8(5):295-301.

445. Kriegel W, Korff KJ, Ehrlich JC, et al. Double-blind study comparing the long-term efficacy of the COX-2 inhibitor nimesulide and naproxen in patients with osteoarthritis. *Int J Clin Pract.* 2001;55(8):510-4.

446. Car A, Jajic I, Krampac I, Vitaus M, Zenic N, Zivkovic M. A double-blind multicentre comparison of diclofenac sodium and naproxen in osteoarthrosis of the hip. *Scand J Rheumatol Suppl.* 1978(22):63-8.

447. Keet JG. A comparative clinical trial of diflunisal and ibuprofen in the control of pain in osteoarthritis. *J Int Med Res.* 1979;7(4):272-6.

448. Frank O. A double-blind comparative study of 150 mg flurbiprofen daily and 75 mg indomethacin daily in the treatment of osteoarthrosis of the hip joint. *Curr Med Res Opin*. 1977;5(1):91-8.

449. Valtonen EJ. Clinical comparison of fenbufen and aspirin in osteoarthritis. *Scand J Rheumatol Suppl.* 1979(27):1-7.

450. Liyanage S, Steele C. Tolmetin in osteoarthrosis of the hip and knee: double-blind crossover trials. *Curr Med Res Opin*. 1977-1978;5(4):299-305.

451. Lund B, Andersen RB, Fossgreen J, et al. A long-term randomised trial on tenoxicam and piroxicam in osteoarthritis of the hip or knee: a 24-month interim report focusing on the 12-24 month interval. *Eur J Rheumatol Inflamm.* 1987;9(2):58-67.

452. Chikanza IC, Clarke B, Hopkins R, MacFarlane DG, Bird H, Grahame R. A comparative study of the efficacy and toxicity of etodolac and naproxen in the treatment of osteoarthritis. *Br J Clin Pract.* 1994;48(2):67-9. 453. Gyory AN, Bloch M, Burry HC, Grahame R. Orudis in management of rheumatoid arthritis and osteoarthrosis of the hip: comparison with indomethacin. *Br Med J.* 1972;4(5837):398-400.

454. Knusel O. Double-blind comparative clinical trial of carprofen versus diclofenac-Na in patients with coxarthrosis. *Eur J Rheumatol Inflamm.* 1982;5(4):536-42.

455. McIlwain HH, Platt RD. Piroxicam versus naproxen in the treatment of acute musculoskeletal disorders in athletes. *Am J Med.* 1988;84(5A):56-60.

456. Molony J, Pigott PV, Quill JO. A double-blind trial of a new anti-inflammatory drug in the management of osteo-arthritis of the hip-joint. *J Ir Med Assoc.* 1971;64(424):605-10.

457. The Manchester General Practitioner Group. A study of naproxen and ibuprofen in patients with osteoarthritis seen in general practice. The Manchester General Practitioner Group. *Curr Med Res Opin.* 1984;9(1):41-6.

458. Gordin A, Sotka S, Nuutila J. Comparison of a slow-release indomethacin tablet and naproxen in osteoarthrosis. *Curr Med Res Opin*. 1985;9(7):500-4.

459. Bjorkenheim JM, Helland J, Peltonen J. A double-blind crossover evaluation of naproxen and piroxicam in osteoarthritis of hip or knee. *J Int Med Res.* 1985;13(5):263-9.

460. Verbruggen LA, Cytryn E, Pintens H. Double-blind crossover study of nabumetone versus naproxen in the treatment of osteoarthritis. *J Int Med Res.* 1982;10(4):214-8.

461. Hayllar J, Bjarnason I. Gastroduodenal tolerability of highly specific cyclo-oxygenase-2 inhibitor. *Ital J Gastroenterol.* 1996;28 Suppl 430-2.

462. Becvar R, Urbanova Z, Vlasakova V, et al. Nabumetone induces less gastrointestinal mucosal changes than diclofenac retard. *Clin Rheumatol.* 1999;18(4):273-8.

463. Hoyeraal HM, Fagertun H, Ingemann-Hansen T, Ersmark H, Ronn O. Characterization of responders and nonresponders to tiaprofenic acid and naproxen in the treatment of patients with osteoarthritis. *J Rheumatol.* 1993;20(10):1747-52.

464. Edworthy SM, Devins GM. Improving medication adherence through patient education distinguishing between appropriate and inappropriate utilization. Patient Education Study Group. *J Rheumatol.* 1999;26(8):1793-801.

465. Rashad S, Revell P, Hemingway A, Low F, Rainsford K, Walker F. Effect of non-steroidal anti-inflammatory drugs on the course of osteoarthritis. *Lancet.* 1989;2(8662):519-22.

466. Vinje O, Fagertun HE, Laerum E, Lund H, Larsen S. Ketoprofen controlled release (CR) in the treatment of osteoarthrosis; a double blind, randomized multicentre study of single morning versus evening dose. Norwegian Study Group of General Practitioners. *Scand J Prim Health Care*. 1993;11(2):91-7.

467. Bakshi R. Comparative efficacy and tolerability of two diclofenac formulations in the treatment of painful osteoarthritis. *Br J Clin Pract.* 1996;50(6):294-7.

468. Bakshi R, Ezzet N, Frey L, Lasry D, Salliere D. Efficacy and tolerability of diclofenac dispersible in painful osteoarthrosis. *Clin Rheumatol.* 1993;12(1):57-61.

469. Toft B, Christophersen J, Christensen N, et al. A double-blind, crossover study of a sustained-release tablet of ketoprofen and normal ketoprofen capsules in the treatment of patients with osteoarthritis. *Curr Med Res Opin*. 1985;9(10):708-12.

470. Bacon P, Luqmani RA, Bossingham DH, et al. A comparison of two formulations of indomethacin ('Flexin Continus' tablets and 'Indocid' capsules) in the treatment of osteoarthritis. *Curr Med Res Opin*. 1990;12(2):128-34. 471. Cullen D, Bardhan KD, Eisner M, et al. Primary gastroduodenal prophylaxis with omeprazole for non-

steroidal anti-inflammatory drug users. Aliment Pharmacol Ther. 1998;12(2):135-40.

472. Niwa Y, Nakamura M, Ohmiya N, et al. Efficacy of rebamipide for diclofenac-induced small-intestinal mucosal injuries in healthy subjects: a prospective, randomized, double-blinded, placebo-controlled, cross-over study. *J Gastroenterol*. 2008;43(4):270-6.

473. Pilotto A, Di Mario F, Franceschi M, et al. Pantoprazole versus one-week Helicobacter pylori eradication therapy for the prevention of acute NSAID-related gastroduodenal damage in elderly subjects. *Aliment Pharmacol Ther*. 2000;14(8):1077-82.

474. Silverstein FE, Kimmey MB, Saunders DR, Levine DS. Gastric protection by misoprostol against 1300 mg of aspirin. An endoscopic study. *Dig Dis Sci*. 1986;31(2 Suppl):137S-41S.

475. Shephard NW, Steele CE. Comparison of tolmetin sodium with indomethacin in osteoarthritis. *Practitioner*. 1981;225(1361):1696-7.

476. Williams PI, Hosie J, Scott DL. Etodolac therapy for osteoarthritis: a double-blind, placebo-controlled trial. *Curr Med Res Opin*. 1989;11(7):463-70.

477. Lehn OF, Jensen ON, Andersen LA, et al. Enteric-coated and plain naproxen tablets in osteoarthritis; tolerability and efficacy. *Eur J Rheumatol Inflamm*. 1992;12(2):31-6.

478. Kaik B, Bauer K, Broll H. Double-blind randomized clinical trial on imidazole salicylate vs ibuprofen in osteoarthritis. *Int J Clin Pharmacol Ther Toxicol*. 1991;29(5):173-7.

479. Doherty M. The efficacy of Arthrotec in the treatment of osteoarthritis. *Scand J Rheumatol Suppl.* 1992;9615-21.

480. Cimmino MA, Cutolo M, Samanta E, Accardo S. Short-term treatment of osteoarthritis: a comparison of sodium meclofenamate and ibuprofen. *J Int Med Res.* 1982;10(1):46-52.

481. Brackertz D. Comparison of clofezone and diclofenac in the treatment of out-patients suffering from activated (painful) osteoarthrosis. *Z Rheumatol.* 1978;37(9-10):342-9.

482. Liyanage SP, Tambar PK. Comparative study of salsalate and aspirin in osteoarthrosis of the hip or knee. *Curr Med Res Opin*. 1978;5(6):450-3.

483. Niccoli L, Bellino S, Cantini F. Renal tolerability of three commonly employed non-steroidal antiinflammatory drugs in elderly patients with osteoarthritis. *Clin Exp Rheumatol.* 2002;20(2):201-7.

484. Ghosh AK, Rastogi AK. A randomized comparison between sulindac and ibuprofen in osteoarthritis of the aged. *Curr Med Res Opin*. 1981;7(7):482-7.

485. Davies GM, Watson DJ, Bellamy N. Comparison of the responsiveness and relative effect size of the western Ontario and McMaster Universities Osteoarthritis Index and the short-form Medical Outcomes Study Survey in a randomized, clinical trial of osteoarthritis patients. *Arthritis Care Res.* 1999;12(3):172-9.

486. Munzenberg J, Tachibana S. Preliminary double-blind evaluation of a new, non-steroidal anti-inflammatory drug: protacine. *Pharmatherapeutica*. 1980;2(5):279-84.

487. Bain LS, Lynch MP, Bruce GM. A double-blind trial of feprazone in osteoarthritis of the hip. *Curr Med Res Opin*. 1977;4(9):665-9.

488. Doury P, Pattin S. Comparative study of the effectiveness of flurbiprofen given twice or 3-times daily. *Curr Med Res Opin*. 1977;5(1):127-9.

489. Scott DL, Palmer RH. Safety and efficacy of nabumetone in osteoarthritis: emphasis on gastrointestinal safety. *Aliment Pharmacol Ther.* 2000;14(4):443-52.

490. Kienapfel H, Koller M, Wust A, et al. Prevention of heterotopic bone formation after total hip arthroplasty: a prospective randomised study comparing postoperative radiation therapy with indomethacin medication. *Arch Orthop Trauma Surg.* 1999;119(5-6):296-302.

491. McKenna F. Diclofenac/misoprostol: the European clinical experience. *J Rheumatol Suppl.* 1998;5121-30.
492. Zgradie I. Comparison of therapeutic efficacy of nimesulide and diclofenac in patients with degenerative joint diseases. *J Indian Med Assoc.* 1999;97(4):119-23.

493. Janke PG, Diggins JB, Currie WJ, et al. A multi-centre study of sulindac versus naproxen in the treatment of elderly osteoarthritic patients. *Pharmatherapeutica*. 1984;3(10):663-7.

494. Diamond HS. Double-blind crossover study of fenoprofen and aspirin in osteoarthritis. *J Rheumatol.* 1976;267-70.

495. Perpoint B, Mismetti P, Simitsidis S, et al. Dosing time optimizes sustained-release ketoprofen treatment of osteoarthritis. *Chronobiol Int.* 1994;11(2):119-25.

496. Crook PR, Fowler PD, Hothersall TE, Chiswell RJ. A study of the efficacy and tolerability of diclofenac and ibuprofen in osteoarthritis of the hip. *Br J Clin Pract.* 1981;35(9):309-12.

497. Puscas I, Puscas C, Coltau M, et al. Studies on the protective effect of ebrotidine on experimental ulcers induced by non-steroidal anti-inflammatory drugs in healthy volunteers. *Arzneimittelforschung*. 1997;47(4A):565-8.

498. Fendrick AM, Scheiman JM. Healing and prevention of NSAID-associated ulcer disease: is seeing believing? *Am J Gastroenterol.* 1998;93(12):2628-9.

499. Admani AK, Verma S. A study of sulindac versus ibuprofen in elderly patients with osteoarthritis. *Curr Med Res Opin*. 1983;8(5):315-20.

500. Kalso E, Edwards JE, Moore RA, McQuay HJ. Opioids in chronic non-cancer pain: systematic review of efficacy and safety. *Pain*. 2004;112(3):372-80.

501. Hall AJ, Logan JE, Toblin RL, et al. Patterns of abuse among unintentional pharmaceutical overdose fatalities. *JAMA*. 2008;300(22):2613-20.

502. Centers for Disease Control and Prevention. Alcohol and Other Drug Use Among Victims of Motor-Vehicle Crashes - West Virginia, 2004-2005. *MMWR*. 2006;55(48):1293-6.

503. Martin F, Cherif K, Gentili ME, et al. Lack of impact of intravenous lidocaine on analgesia, functional recovery, and nociceptive pain threshold after total hip arthroplasty. *Anesthesiology*. 2008;109(1):118-23.

504. Ballantyne JC, Mao J. Opioid therapy for chronic pain. *N Engl J Med*. 2003;349(20):1943-53.

505. Carragee EJ. Psychological screening in the surgical treatment of lumbar disc herniation. *Clin J Pain*. 2001;17(3):215-9.

506. Mullican W, Lacy J, Group T-A-S. Tramadol/acetaminophen combination tablets and codeine/ acetaminophen combination capsules for the management of chronic pain: a comparative trial. *Clin Ther*. 2001;23(9):1429-45.

507. Joranson DE, Berger JW. Regulatory issues in pain management. *J Am Pharm Assoc*. 2000;40(5 Suppl 1):S60-1.

508. Gilson AM, Ryan KM, Joranson DE, Dahl JL. A reassessment of trends in the medical use and abuse of opioid analgesics and implications for diversion control: 1997-2002. *J Pain Symptom Manage*. 2004;28(2):176-88. 509. Moulin DE, Iezzi A, Amireh R, Sharpe WK, Boyd D, Merskey H. Randomised trial of oral morphine for chronic non-cancer pain. *Lancet*. 1996;347(8995):143-7.

510. Webster LR, Butera PG, Moran LV, Wu N, Burns LH, Friedmann N. Oxytrex minimizes physical dependence while providing effective analgesia: a randomized controlled trial in low back pain. *J Pain.* 2006;7(12):937-46.

511. Fishbain DA, Cole B, Lewis J, Rosomoff HL, Rosomoff RS. What percentage of chronic nonmalignant pain patients exposed to chronic opioid analgesic therapy develop abuse/addiction and/or aberrant drug-related behaviors? A structured evidence-based review. *Pain Med.* 2008;9(4):444-59.

512. Hojsted J, Sjogren P. Addiction to opioids in chronic pain patients: a literature review. *Eur J Pain*. 2007;11(5):490-518.

513. Furlan AD, Sandoval JA, Mailis-Gagnon A, Tunks E. Opioids for chronic noncancer pain: a meta-analysis of effectiveness and side effects. *Cmaj.* 2006;174(11):1589-94.

514. Silverfield JC, Kamin M, Wu SC, Rosenthal N. Tramadol/acetaminophen combination tablets for the treatment of osteoarthritis flare pain: a multicenter, outpatient, randomized, double-blind, placebo-controlled, parallel-group, add-on study. *Clin Ther.* 2002;24(2):282-97.

515. Caldwell JR, Hale ME, Boyd RE, et al. Treatment of osteoarthritis pain with controlled release oxycodone or fixed combination oxycodone plus acetaminophen added to nonsteroidal antiinflammatory drugs: a double blind, randomized, multicenter, placebo controlled trial. *J Rheumatol.* 1999;26(4):862-9.

516. Caldwell JR, Rapoport RJ, Davis JC, et al. Efficacy and safety of a once-daily morphine formulation in chronic, moderate-to-severe osteoarthritis pain: results from a randomized, placebo-controlled, double-blind trial and an open-label extension trial. *J Pain Symptom Manage*. 2002;23(4):278-91.

517. Fleischmann R, Caldwell J, Roth S, Tesser J, Olson W, Kamin M. Tramadol for the treatment of joint pain associated with osteoarthritis: a randomized, double-blind, placebo-controlled trial. *Curr Ther Res.* 2001;62(2):113-28.

518. Emkey R, Rosenthal N, Wu SC, Jordan D, Kamin M. Efficacy and safety of tramadol/acetaminophen tablets (Ultracet) as add-on therapy for osteoarthritis pain in subjects receiving a COX-2 nonsteroidal antiinflammatory drug: a multicenter, randomized, double-blind, placebo-controlled trial. *J Rheumatol.* 2004;31(1):150-6.

519. Roth SH. Efficacy and safety of tramadol HCl in breakthrough musculoskeletal pain attributed to osteoarthritis. *J Rheumatol.* 1998;25(7):1358-63.

520. Roth SH, Fleischmann RM, Burch FX, et al. Around-the-clock, controlled-release oxycodone therapy for osteoarthritis-related pain: placebo-controlled trial and long-term evaluation. *Arch Intern Med.* 2000;160(6):853-60. 521. Schnitzer TJ, Kamin M, Olson WH. Tramadol allows reduction of naproxen dose among patients with naproxen-responsive osteoarthritis pain: a randomized, double-blind, placebo-controlled study. *Arthritis Rheum.* 1999;42(7):1370-7.

522. Peloso PM, Bellamy N, Bensen W, et al. Double blind randomized placebo control trial of controlled release codeine in the treatment of osteoarthritis of the hip or knee. *J Rheumatol.* 2000;27(3):764-71.

523. Chou R, Clark E, Helfand M. Comparative efficacy and safety of long-acting oral opioids for chronic noncancer pain: a systematic review. *J Pain Symptom Manage*. 2003;26(5):1026-48.

524. Lloyd RS, Costello F, Eves MJ, James IG, Miller AJ. The efficacy and tolerability of controlled-release dihydrocodeine tablets and combination dextropropoxyphene/paracetamol tablets in patients with severe osteoarthritis of the hips. *Curr Med Res Opin*. 1992;13(1):37-48.

525. Ballantyne JC. Opioids for chronic nonterminal pain. South Med J. 2006;99(11):1245-55.

526. Breckenridge J, Clark JD. Patient characteristics associated with opioid versus nonsteroidal antiinflammatory drug management of chronic low back pain. *J Pain*. 2003;4(6):344-50.

527. Dersh J, Mayer T, Theodore BR, Polatin P, Gatchel RJ. Do psychiatric disorders first appear preinjury or postinjury in chronic disabling occupational spinal disorders? *Spine (Phila Pa 1976)*. 2007;32(9):1045-51.

528. Balousek S, Plane MB, Fleming M. Prevalence of interpersonal abuse in primary care patients prescribed opioids for chronic pain. *J Gen Intern Med.* 2007;22(9):1268-73.

529. Martell BA, O'Connor PG, Kerns RD, et al. Systematic review: opioid treatment for chronic back pain: prevalence, efficacy, and association with addiction. *Ann Intern Med.* 2007;146(2):116-27.

530. Wasan AD, Davar G, Jamison R. The association between negative affect and opioid analgesia in patients with discogenic low back pain. *Pain*. 2005;117(3):450-61.

531. Wasan AD, Kaptchuk TJ, Davar G, Jamison RN. The association between psychopathology and placebo analgesia in patients with discogenic low back pain. *Pain Med.* 2006;7(3):217-28.

532. Michna E, Jamison RN, Pham LD, et al. Urine toxicology screening among chronic pain patients on opioid therapy: frequency and predictability of abnormal findings. *Clin J Pain*. 2007;23(2):173-9.

533. Arkinstall W, Sandler A, Goughnour B, Babul N, Harsanyi Z, Darke AC. Efficacy of controlled-release codeine in chronic non-malignant pain: a randomized, placebo-controlled clinical trial. *Pain*. 1995;62(2):169-78.
534. Abbruzzese G. The medical management of spasticity. *Eur J Neurol*. 2002;9 Suppl 130-4; discussion 53-61.

535. Elenbaas JK. Centrally acting oral skeletal muscle relaxants. *Am J Hosp Pharm*. 1980;37(10):1313-23. 536. Cherkin DC. Primary care research on low back pain. The state of the science. *Spine (Phila Pa 1976)*. 1998;23(18):1997-2002.

537. Di Iorio D, Henley E, Doughty A. A survey of primary care physician practice patterns and adherence to acute low back problem guidelines. *Arch Fam Med.* 2000;9(10):1015-21.

538. van Tulder M, Koes B, Bouter L. Conservative treatment of acute and chronic nonspecific low back pain: A systematic review of randomized controlled trials of the most common interventions. *Spine (Phila Pa 1976)*. 1997;222128-56.

539. Schnitzer TJ, Ferraro A, Hunsche E, Kong SX. A comprehensive review of clinical trials on the efficacy and safety of drugs for the treatment of low back pain. *J Pain Symptom Manage*. 2004;28(1):72-95.

540. Deyo RA, Loeser JD, Bigos SJ. Herniated lumbar intervertebral disk. *Ann Intern Med.* 1990;112(8):598-603.

541. Baratta RR. A double-blind comparative study of carisoprodol, propoxyphene, and placebo in the management of low back syndrome. *Curr Ther Res Clin Exp.* 1976;20(3):233-40.

542. Arbus L, Fajadet B, Aubert D, et al. Activity of tetrazepam (myolastan) in low back pain: a double-blind trial v. placebo. *Clin Trials J*. 1990;27(4):258-67.

543. Preston E, Miller C, Herbertson R. A double-blind, multicenter trial of methocarbamol (Robaxin (R)) and cyclobenzaprine (Flexeril (R)) in acute musculoskeletal conditions. *Today's Therapeutic Trends*. 1984;11-11. 544. Brown BR, Jr., Womble J. Cyclobenzaprine in intractable pain syndromes with muscle spasm. *JAMA*. 1978;240(11):1151-2.

545. Hingorani K. Orphenadrin-paracetamol in backache-a double-blind controlled trial. *Br J Clin Pract.* 1971;25(5):227-31.

546. Bercel N. Cyclobenzaprine in the treatment of skeletal muscle spasm in osteoarthritis of the cervical and lumbar spine. *Curr Ther Res.* 1977;22(4):462-8.

547. Salzmann E, Pforringer W, Paal G, Gierend M. Treatment of chronic low-back syndrome with tetrazepam in a placebo controlled double-blind trial. *J Drug Dev.* 1992;4(4):219-28.

548. Lofland JH, Szarlej D, Buttaro T, Shermock S, Jalali S. Cyclobenzaprine hydrochloride is a commonly prescribed centrally acting muscle relaxant, which is structurally similar to tricyclic antidepressants (TCAs) and differs from amitriptyline by only one double bond. *Clin J Pain*. 2001;17(1):103-4.

549. Littrell RA, Hayes LR, Stillner V. Carisoprodol (Soma): a new and cautious perspective on an old agent. *South Med J.* 1993;86(7):753-6.

550. Toth PP, Urtis J. Commonly used muscle relaxant therapies for acute low back pain: a review of carisoprodol, cyclobenzaprine hydrochloride, and metaxalone. *Clin Ther.* 2004;26(9):1355-67.

551. Ritchie LD. A clinical evaluation of flurbiprofen LAT and piroxicam gel: a multicentre study in general practice. *Clin Rheumatol.* 1996;15(3):243-7.

552. Lin J, Zhang W, Jones A, Doherty M. Efficacy of topical non-steroidal anti-inflammatory drugs in the treatment of osteoarthritis: meta-analysis of randomised controlled trials. *Br Med J*. 2004;329(7461):324.

553. FDA. Publich Health Advisory Potential Hazards of Skin Products Containing Numbing Ingredients for Relieving Pain from Mammography and Other Medical Tests and Conditions. 2009. http://www.fda.gov/Drugs/DrugSafety/PublicHealthAdvisories/ucm110625.htm.

554. Frerick H, Keitel W, Kuhn U, Schmidt S, Bredehorst A, Kuhlmann M. Topical treatment of chronic low back pain with a capsicum plaster. *Pain.* 2003;106(1-2):59-64.

555. Keitel W, Frerick H, Kuhn U, Schmidt U, Kuhlmann M, Bredehorst A. Capsicum pain plaster in chronic nonspecific low back pain. *Arzneimittelforschung*. 2001;51(11):896-903.

556. Schwarz EM, Campbell D, Totterman S, Boyd A, O'Keefe RJ, Looney RJ. Use of volumetric computerized tomography as a primary outcome measure to evaluate drug efficacy in the prevention of peri-prosthetic osteolysis: a 1-year clinical pilot of etanercept vs. placebo. *J Orthop Res.* 2003;21(6):1049-55.

557. Houpt JB, McMillan R, Wein C, Paget-Dellio SD. Effect of glucosamine hydrochloride in the treatment of pain of osteoarthritis of the knee. *J Rheumatol.* 1999;26(11):2423-30.

558. Martel-Pelletier J, Boileau C, Pelletier JP, Roughley PJ. Cartilage in normal and osteoarthritis conditions. Best Pract Res Clin Rheumatol. 2008;22(2):351-84.

559. Bassleer C, Rovati L, Franchimont P. Stimulation of proteoglycan production by glucosamine sulfate in chondrocytes isolated from human osteoarthritic articular cartilage in vitro. *Osteoarthritis Cartilage*. 1998;6(6):427-34.

560. Largo R, Alvarez-Soria MA, Diez-Ortego I, et al. Glucosamine inhibits IL-1beta-induced NFkappaB activation in human osteoarthritic chondrocytes. *Osteoarthritis Cartilage*. 2003;11(4):290-8.

561. Jomphe C, Gabriac M, Hale TM, et al. Chondroitin sulfate inhibits the nuclear translocation of nuclear factor-kappaB in interleukin-1beta-stimulated chondrocytes. *Basic Clin Pharmacol Toxicol.* 2008;102(1):59-65. 562. Reichelt A, Forster KK, Fischer M, Rovati LC, Setnikar I. Efficacy and safety of intramuscular glucosamine sulfate in osteoarthritis of the knee. A randomised, placebo-controlled, double-blind study. *Arzneimittelforschung.* 1994;44(1):75-80.

563. Vajaradul Y. Double-blind clinical evaluation of intra-articular glucosamine in outpatients with gonarthrosis. *Clin Ther.* 1981;3(5):336-43.

564. Muniyappa R, Karne RJ, Hall G, et al. Oral glucosamine for 6 weeks at standard doses does not cause or worsen insulin resistance or endothelial dysfunction in lean or obese subjects. *Diabetes*. 2006;55(11):3142-50. 565. Biggee BA, Blinn CM, Nuite M, Silbert JE, McAlindon TE. Effects of oral glucosamine sulphate on serum

glucose and insulin during an oral glucose tolerance test of subjects with osteoarthritis. *Ann Rheum Dis.* 2007;66(2):260-2.

566. Pham T, Cornea A, Blick KE, Jenkins A, Scofield RH. Oral glucosamine in doses used to treat osteoarthritis worsens insulin resistance. *Am J Med Sci.* 2007;333(6):333-9.

567. Marshall PD, Poddar S, Tweed EM, Brandes L. Clinical inquiries: Do glucosamine and chondroitin worsen blood sugar control in diabetes? *J Fam Pract.* 2006;55(12):1091-3.

568. Scroggie DA, Albright A, Harris MD. The effect of glucosamine-chondroitin supplementation on glycosylated hemoglobin levels in patients with type 2 diabetes mellitus: a placebo-controlled, double-blinded, randomized clinical trial. *Arch Intern Med.* 2003;163(13):1587-90.

569. Villacis J, Rice TR, Bucci LR, et al. Do shrimp-allergic individuals tolerate shrimp-derived glucosamine? *Clin Exp Allergy*. 2006;36(11):1457-61.

570. Monfort J, Pelletier JP, Garcia-Giralt N, Martel-Pelletier J. Biochemical basis of the effect of chondroitin sulphate on osteoarthritis articular tissues. *Ann Rheum Dis.* 2008;67(6):735-40.

571. Uebelhart D, Malaise M, Marcolongo R, et al. Intermittent treatment of knee osteoarthritis with oral chondroitin sulfate: a one-year, randomized, double-blind, multicenter study versus placebo. *Osteoarthritis Cartilage*. 2004;12(4):269-76.

572. Pavelka K, Gatterova J, Olejarova M, Machacek S, Giacovelli G, Rovati LC. Glucosamine sulfate use and delay of progression of knee osteoarthritis: a 3-year, randomized, placebo-controlled, double-blind study. *Arch Intern Med.* 2002;162(18):2113-23.

573. Reginster JY, Deroisy R, Rovati LC, et al. Long-term effects of glucosamine sulphate on osteoarthritis progression: a randomised, placebo-controlled clinical trial. *Lancet*. 2001;357(9252):251-6.

574. Michel BA, Stucki G, Frey D, et al. Chondroitins 4 and 6 sulfate in osteoarthritis of the knee: a randomized, controlled trial. *Arthritis Rheum*. 2005;52(3):779-86.

575. Rozendaal RM, Koes BW, van Osch GJ, et al. Effect of glucosamine sulfate on hip osteoarthritis: a randomized trial. *Ann Intern Med.* 2008;148(4):268-77.

576. Mazieres B, Hucher M, Zaim M, Garnero P. Effect of chondroitin sulphate in symptomatic knee osteoarthritis: a multicentre, randomised, double-blind, placebo-controlled study. *Ann Rheum Dis.* 2007;66(5):639-45.

577. Clegg DO, Reda DJ, Harris CL, et al. Glucosamine, chondroitin sulfate, and the two in combination for painful knee osteoarthritis. *N Engl J Med.* 2006;354(8):795-808.

578. Usha PR, Naidu MU. Randomised, Double-Blind, Parallel, Placebo-Controlled Study of Oral Glucosamine, Methylsulfonylmethane and their Combination in Osteoarthritis. *Clin Drug Investig.* 2004;24(6):353-63.

579. Herrero-Beaumont G, Ivorra JA, Del Carmen Trabado M, et al. Glucosamine sulfate in the treatment of knee osteoarthritis symptoms: a randomized, double-blind, placebo-controlled study using acetaminophen as a side comparator. *Arthritis Rheum.* 2007;56(2):555-67.

580. Muller-Fassbender H, Bach GL, Haase W, Rovati LC, Setnikar I. Glucosamine sulfate compared to ibuprofen in osteoarthritis of the knee. *Osteoarthritis Cartilage*. 1994;2(1):61-9.

581. Lopes Vaz A. Double-blind clinical evaluation of the relative efficacy of ibuprofen and glucosamine sulphate in the management of osteoarthrosis of the knee in out-patients. *Curr Med Res Opin*. 1982;8(3):145-9.

582. Vlad SC, LaValley MP, McAlindon TE, Felson DT. Glucosamine for pain in osteoarthritis: why do trial results differ? *Arthritis Rheum*. 2007;56(7):2267-77.

583. Hughes R, Carr A. A randomized, double-blind, placebo-controlled trial of glucosamine sulphate as an analgesic in osteoarthritis of the knee. *Rheumatology*. 2002;41(3):279-84.

584. McAlindon T, Formica M, LaValley M, Lehmer M, Kabbara K. Effectiveness of glucosamine for symptoms of knee osteoarthritis: results from an internet-based randomized double-blind controlled trial. *Am J Med.* 2004;117(9):643-9.

585. Mehta K, Gala J, Bhasale S, et al. Comparison of glucosamine sulfate and a polyherbal supplement for the relief of osteoarthritis of the knee: a randomized controlled trial [ISRCTN25438351]. *BMC Complement Altern Med.* 2007;734.

586. Noack W, Fischer M, Forster KK, Rovati LC, Setnikar I. Glucosamine sulfate in osteoarthritis of the knee. *Osteoarthritis Cartilage*. 1994;2(1):51-9.

587. Cibere J, Kopec JA, Thorne A, et al. Randomized, double-blind, placebo-controlled glucosamine discontinuation trial in knee osteoarthritis. *Arthritis Rheum.* 2004;51(5):738-45.

588. Rindone JP, Hiller D, Collacott E, Nordhaugen N, Arriola G. Randomized, controlled trial of glucosamine for treating osteoarthritis of the knee. *West J Med.* 2000;172(2):91-4.

589. Pujalte JM, Llavore EP, Ylescupidez FR. Double-blind clinical evaluation of oral glucosamine sulphate in the basic treatment of osteoarthrosis. *Curr Med Res Opin*. 1980;7(2):110-14.

590. Drovanti A, Bignamini AA, Rovati AL. Therapeutic activity of oral glucosamine sulfate in osteoarthrosis: a placebo-controlled double-blind investigation. *Clin Ther.* 1980;3(4):260-72.

591. Qiu GX, Gao SN, Giacovelli G, Rovati L, Setnikar I. Efficacy and safety of glucosamine sulfate versus ibuprofen in patients with knee osteoarthritis. *Arzneimittelforschung.* 1998;48(5):469-74.

592. D'Ambrosio E, Casa B, Bompani R, Scali G, Scali M. Glucosamine sulphate: a controlled clinical investigation in arthrosis. *Pharmatherapeutica*. 1981;2(8):504-8.

593. Wolsko PM, Eisenberg DM, Davis RB, Kessler R, Phillips RS. Patterns and perceptions of care for treatment of back and neck pain: results of a national survey. *Spine (Phila Pa 1976)*. 2003;28(3):292-7; discussion 8.

594. Sherman KJ, Cherkin DC, Kahn J, et al. A survey of training and practice patterns of massage therapists in two US states. *BMC Complement Altern Med.* 2005;513.

595. Abbot NC, Harkness EF, Stevinson C, Marshall FP, Conn DA, Ernst E. Spiritual healing as a therapy for chronic pain: a randomized, clinical trial. *Pain*. 2001;91(1-2):79-89.

596. Zaproudina N, Hanninen OO, Airaksinen O. Effectiveness of traditional bone setting in chronic neck pain: randomized clinical trial. *J Manipulative Physiol Ther.* 2007;30(6):432-7.

597. Kaptchuk TJ. The placebo effect in alternative medicine: can the performance of a healing ritual have clinical significance? *Ann Intern Med.* 2002;136(11):817-25.

598. Chrubasik JE, Roufogalis BD, Chrubasik S. Evidence of effectiveness of herbal antiinflammatory drugs in the treatment of painful osteoarthritis and chronic low back pain. *Phytother Res.* 2007;21(7):675-83.

599. Gagnier JJ, van Tulder MW, Berman B, Bombardier C. Herbal medicine for low back pain: a Cochrane review. *Spine (Phila Pa 1976)*. 2007;32(1):82-92.

600. Shackel NA, Day RO, Kellett B, Brooks PM. Copper-salicylate gel for pain relief in osteoarthritis: a randomised controlled trial. *Med J Aust*. 1997;167(3):134-6.

601. Boettcher B. Copper-salicylate gel for pain relief in osteoarthritis. Med J Aust. 1998;168(6):312.

602. Haghighi M, Khalvat A, Toliat T, Jallaei S. Comparing the effects of ginger (Zingiber officinale) extract and ibuprofen on patients with osteoarthritis. *Arch Iranian Med.* 2005;8267-71.

603. Leach MJ, Saravana Kumar The clinical effectiveness of Ginger (Zingiber officinale) in adults with osteoarthritis. *Intl J Evidence-Based Healthcare*. 2008;6(3):311 - 20.

604. Bliddal H, Rosetzsky A, Schlichting P, et al. A randomized, placebo-controlled, cross-over study of ginger extracts and ibuprofen in osteoarthritis. *Osteoarthritis Cartilage*. 2000;8(1):9-12.

605. Wigler I, Grotto I, Caspi D, Yaron M. The effects of Zintona EC (a ginger extract) on symptomatic gonarthritis. *Osteoarthritis Cartilage*. 2003;11(11):783-9.

606. Altman RD, Marcussen KC. Effects of a ginger extract on knee pain in patients with osteoarthritis. *Arthritis Rheum*. 2001;44(11):2531-8.

607. Marcus DM, Suarez-Almazor ME. Is there a role for ginger in the treatment of osteoarthritis? *Arthritis Rheum.* 2001;44(11):2461-2.

608. Westermarck TS, Guntars; Sauka, Melita; Aboltina, Laima; Davidova, Alla; Pilmane, Mara;. Effects Of Dietary Supplemetation With Ginger Extract In Osteoarthritis. A Double-blind Controlled Study: 190. *Therapeutic Drug Monitoring*. 2005;27(2):259.

609. Shen CL, Hong KJ, Kim SW. Comparative effects of ginger root (Zingiber officinale Rosc.) on the production of inflammatory mediators in normal and osteoarthrotic sow chondrocytes. *J Med Food*. 2005;8(2):149-53.

610. Rossnagel K, Roll S, Willich SN. The clinical effectiveness of rosehip powder in patients with osteoarthritis. A systematic review. *MMW Fortschr Med.* 2007;149(11):51-6.

611. Rossnagel K, Willich SN. Value of complementary medicine exemplified by rose-hips. *Gesundheitswesen*. 2001;63(6):412-6.

612. Chrubasik C, Duke RK, Chrubasik S. The evidence for clinical efficacy of rose hip and seed: a systematic review. *Phytother Res.* 2006;20(1):1-3.

613. Christensen R, Bartels EM, Altman RD, Astrup A, Bliddal H. Does the hip powder of Rosa canina (rosehip) reduce pain in osteoarthritis patients?--a meta-analysis of randomized controlled trials. *Osteoarthritis Cartilage*. 2008;16(9):965-72.

614. Winther K, Rein E, Kharazmi A. The anti-inflammatory properties of rose-hip. *Inflammopharmacology*. 1999;7(1):63-8.

Kharazmi A, Winther K. Rose hip inhibits chemotaxis and chemiluminescence of human peripheral blood neutrophils in vitro and reduces certain inflammatory parameters in vivo. *Inflammopharmacology*. 1999;7(4):377-86.
Warholm O, Skaar S, Hedman E, Molmen H, Eik L. The effects of standardized herbal remedy made from a subtype of Rosa canina in patients with osteoarthritis: A double-blind, randomized, placebo-controlled clinical trial. *Curr Ther Res Clin Exp*. 2003;64(1):21-31.

617. Warholm O, Skaar S, Hedman E, Molmer H, Elk L. Hyben vital, a herbal remedy, reduces pain and stiffness of the hip, in a group of patietns suffering from severe osteoarthrosis. *The 9th APLAR Congress of Rheumatology*. Beijing, China; 2000.

618. Rein E, Kharazmi A, Winther K. A herbal remedy, Hyben Vital (stand. powder of a subspecies of Rosa canina fruits), reduces pain and improves general wellbeing in patients with osteoarthritis--a double-blind, placebo-controlled, randomised trial. *Phytomedicine*. 2004;11(5):383-91.

619. Winther K, Apel K, Thamsborg G. A powder made from seeds and shells of a rose-hip subspecies (Rosa canina) reduces symptoms of knee and hip osteoarthritis: a randomized, double-blind, placebo-controlled clinical trial. *Scand J Rheumatol.* 2005;34(4):302-8.

620. Glorioso S, Todesco S, Mazzi A, et al. Double-blind multicentre study of the activity of S-

adenosylmethionine in hip and knee osteoarthritis. Int J Clin Pharmacol Res. 1985;5(1):39-49.

621. Najm WI, Reinsch S, Hoehler F, Tobis JS, Harvey PW. S-adenosyl methionine (SAMe) versus celecoxib for the treatment of osteoarthritis symptoms: a double-blind cross-over trial. [ISRCTN36233495]. *BMC Musculoskelet Disord*. 2004;56.

622. Muller-Fassbender H. Double-blind clinical trial of S-adenosylmethionine versus ibuprofen in the treatment of osteoarthritis. *Am J Med.* 1987;83(5A):81-3.

623. Vetter G. Double-blind comparative clinical trial with S-adenosylmethionine and indomethacin in the treatment of osteoarthritis. *Am J Med.* 1987;83(5A):78-80.

624. Fetrow CW, Avila JR. Efficacy of the dietary supplement S-adenosyl-L-methionine. *Ann Pharmacother*. 2001;35(11):1414-25.

625. Konig B. A long-term (two years) clinical trial with S-adenosylmethionine for the treatment of osteoarthritis. *Am J Med.* 1987;83(5A):89-94.

626. Harmand MF, Vilamitjana J, Maloche E, Duphil R, Ducassou D. Effects of S-adenosylmethionine on human articular chondrocyte differentiation. An in vitro study. *Am J Med.* 1987;83(5A):48-54.

627. Schreiber A, Warren G, Sutherland E, Simon F. Enhancement of taurocholate secretory maximum: S-Adenosl Methionine (SAMe)-induced cytoprotection. *Clin Res.* 1983;31(1):86A.

628. Gualano M, Stramentinoli G, Berti F. Anti-inflammatory activity of S-adenosyl-L-methionine: interference with the eicosanoid system. *Pharmacol Res Commun.* 1983;15(7):683-96.

629. Blotman F, Maheu E, Wulwik A, Caspard H, Lopez A. Efficacy and safety of avocado/soybean unsaponifiables in the treatment of symptomatic osteoarthritis of the knee and hip. A prospective, multicenter, three-month, randomized, double-blind, placebo-controlled trial. *Rev Rhum Engl Ed.* 1997;64(12):825-34.

630. Maheu E, Mazieres B, Valat JP, et al. Symptomatic efficacy of avocado/soybean unsaponifiables in the treatment of osteoarthritis of the knee and hip: a prospective, randomized, double-blind, placebo-controlled, multicenter clinical trial with a six-month treatment period and a two-month followup demonstrating a persistent effect. *Arthritis Rheum.* 1998;41(1):81-91.

631. Ernst E. Avocado-soybean unsaponifiables (ASU) for osteoarthritis - a systematic review. *Clin Rheumatol.* 2003;22(4-5):285-8.

632. Moe RH, Haavardsholm EA, Christie A, Jamtvedt G, Dahm KT, Hagen KB. Effectiveness of nonpharmacological and nonsurgical interventions for hip osteoarthritis: an umbrella review of high-quality systematic reviews. *Phys Ther*. 2007;87(12):1716-27.

633. Little CV, Parsons T. Herbal therapy for treating osteoarthritis. *Cochrane Database Syst Rev.* 2001(1):CD002947.

634. Lequesne M, Maheu E, Cadet C, Dreiser RL. Structural effect of avocado/soybean unsaponifiables on joint space loss in osteoarthritis of the hip. *Arthritis Rheum.* 2002;47(1):50-8.

635. Biegert C, Wagner I, Ludtke R, et al. Efficacy and safety of willow bark extract in the treatment of osteoarthritis and rheumatoid arthritis: results of 2 randomized double-blind controlled trials. *J Rheumatol.* 2004;31(11):2121-30.

636. Schmid B, Ludtke R, Selbmann HK, et al. Efficacy and tolerability of a standardized willow bark extract in patients with osteoarthritis: randomized placebo-controlled, double blind clinical trial. *Phytother Res.* 2001;15(4):344-50.

637. Klein G, Kullich W, Schnitker J, Schwann H. Efficacy and tolerance of an oral enzyme combination in painful osteoarthritis of the hip. A double-blind, randomised study comparing oral enzymes with non-steroidal antiinflammatory drugs. *Clin Exp Rheumatol.* 2006;24(1):25-30.

638. Wittenborg A, Bock PR, Hanisch J, Saller R, Schneider B. Comparative epidemiological study in patients with rheumatic diseases illustrated in a example of a treatment with non-steroidal anti- inflammatory drugs versus an oral enzyme combination preparation. *Arzneimittelforschung*. 2000;50(8):728-38.

639. Akhtar NM, Naseer R, Farooqi AZ, Aziz W, Nazir M. Oral enzyme combination versus diclofenac in the treatment of osteoarthritis of the knee--a double-blind prospective randomized study. *Clin Rheumatol.* 2004;23(5):410-5.

640. Singer F, Singer C, Oberleitner H. Phlogenzym versus diclofenac in the treatment of activated osteoarthrits of the knee. *Int J Immunotherapy*. 2001;XVII(2/3/4):135-4.

641. van Tulder MW, Furlan AD, Gagnier JJ. Complementary and alternative therapies for low back pain. *Best Pract Res Clin Rheumatol.* 2005;19(4):639-54.

642. Pelletier JP, Mineau F, Fernandes JC, Duval N, Martel-Pelletier J. Diacerhein and rhein reduce the interleukin 1beta stimulated inducible nitric oxide synthesis level and activity while stimulating cyclooxygenase-2 synthesis in human osteoarthritic chondrocytes. *J Rheumatol.* 1998;25(12):2417-24.

643. Pelletier JP, Yaron M, Haraoui B, et al. Efficacy and safety of diacerein in osteoarthritis of the knee: a double-blind, placebo-controlled trial. The Diacerein Study Group. *Arthritis Rheum*. 2000;43(10):2339-48. 644. Fidelix TS, Soares BG, Trevisani VF. Diacerein for osteoarthritis. *Cochrane Database Syst Rev*. 2006(1):CD005117.

645. Moore AR, Greenslade KJ, Alam CA, Willoughby DA. Effects of diacerhein on granuloma induced cartilage breakdown in the mouse. *Osteoarthritis Cartilage*. 1998;6(1):19-23.

646. Del Rosso M, Fibbi G, Magnelli L, et al. Modulation of urokinase receptors on human synovial cells and osteoarthritis condrocytes by diacetylrhein. *Internal Journal of Tissue Reactions*. 1990;12(2):91-100.

647. Douni E, Sfikakis PP, Haralambous S, Fernandes P, Kollias G. Attenuation of inflammatory polyarthritis in TNF transgenic mice by diacerein: comparative analysis with dexamethasone, methotrexate and anti-TNF protocols. *Arthritis Res Ther*. 2004;6(1):R65-R72.

648. Bendele A, Bendele R, Hulman J, Swann B. A chronic study of the efficacy and toxicity of diacerhein treatment of guinea pigs with osteoarthris. *The 2nd OARS International Congress Symposium: Research and Therapeutics in Osteoarthritis.* Nice, France; 1995.

649. Smith GN, Jr., Myers SL, Brandt KD, Mickler EA, Albrecht ME. Diacerhein treatment reduces the severity of osteoarthritis in the canine cruciate-deficiency model of osteoarthritis. *Arthritis Rheum.* 1999;42(3):545-54.

650. Brandt KD, Smith G, Kang SY, Myers S, O'Connor B, Albrecht M. Effects of diacerhein in an accelerated canine model of osteoarthritis. *Osteoarthritis Cartilage*. 1997;5(6):438-49.

651. Petrillo M, Montrone F, Ardizzone S ea. Endoscopic evaluation of diacetylrhein-induced gastric mucosal lesions. *Curr Ther Res.* 1991;49(1):10-5.

652. Dougados M, Nguyen M, Berdah L, Mazieres B, Vignon E, Lequesne M. Evaluation of the structuremodifying effects of diacerein in hip osteoarthritis: ECHODIAH, a three-year, placebo-controlled trial. Evaluation of the Chondromodulating Effect of Diacerein in OA of the Hip. *Arthritis Rheum*. 2001;44(11):2539-47.

653. Mattara L. DAR "controlled" studies in treatment of osteoarthrosis. *The LXXXVI Congress of the Italian National Society of Internal Medicine*. Sorrento, Italy; 1985.

654. Mordini M, Nencioni C, Lavagni A, Camarri E. Diacerhein vs naproxen in coxogonarthrosis: double-blind randomized study. *The 27th Congress of the Italian Society of Rheumatology*. Montecatini, Italy; 1986.

655. Rintelen B, Neumann K, Leeb BF. A meta-analysis of controlled clinical studies with diacerein in the treatment of osteoarthritis. *Arch Intern Med.* 2006;166(17):1899-906.

656. Nguyen M, Dougados M, Berdah L, Amor B. Diacerhein in the treatment of osteoarthritis of the hip. *Arthritis Rheum.* 1994;37(4):529-36.

657. Mathieu P. Interleukin 1: Its role, its dosage, the difficulties in advances in arthritis. Results of a "pilot" study with diacerheine (ART 50) in gonarthrosis. *Rev Prat.* 1999;Suppl 13S15-8.

658. Pavelka K, Trc T, Karpas K, et al. The efficacy and safety of diacerein in the treatment of painful osteoarthritis of the knee: a randomized, multicenter, double-blind, placebo-controlled study with primary end points at two months after the end of a three-month treatment period. *Arthritis Rheum.* 2007;56(12):4055-64.

Ascherl R. Double-blind, placebo-controlled multicentre, phase iii study of the efficacy and tolerability of diacerein (DA39) in patients with osteoarthritis of the knee. Koln, Germany: University of Lubeck; 1994.
Schulitz K. Clinical investigation of the efficacy and tolerance of idacetylrhein (DAR) in the treatment of

osteoarthritis of the knee. Koln, Germany: Madaus AG; 1994. 661. Tang F, Wu D, Lu Z, Huang F, Zhou Y. The efficacy and safety of diacerein in the treatment of painful osteoarthritis of the knee. *The 11th Asia Pacific League of Associations for Rheumatology (APLAR) congress, International Convention Center (ICC).* Jeju, Korea; 2004.

662. Louthrenoo W, Nilganuwong S, Aksaranugraha S. The efficacy and safety of diacerin in the treatment of painful osteoarthris of the knee: a randomised, multicentre, double-blind, piroxicam-controlled, parallel-group, phase III study *The 11th Asia pacific league of Associations for Rheumatology (APLAR) Congress, International Convention Center (ICC).* Jeju, Korea; 2004.

663. Fioravanti A, Marcolongo R. Therapeutic effectiveness of diacerhein (DAR) in arthrosis of knee and hip. *The Toscana Medicina Symposium on Diacereina*. Pisa, Italy; 1985.

664. Portioli I. Naproxen-controlled study on the efficacy and tolerability of diacetylrhein in the functional manifestations of osteoarthritis of the knee and hip: a double-blind study versus naproxen. Reggio Emilia, Italy: Santa Maria Nuova Hospital; 1987.

665. Mantia C. A controlled study of the efficacy and tolerability of diacetylrhein in the functional manifestations of osteoarthritis of the hip and the knee: a doubleblind study versus diclofenac. Palermo, Italy: Palermo Hospital; 1987.

666. Pietrogrande V, Leonardi M, Pacchioni C. Results of a clinical trial with a new drug, diacerhein in arthrosic patients. *The LXXXVI Congress of the Italian national Society of Internal Medicine*. Sorrento, Italy; 1985.
667. Lingetti M, D'Ambrosio PL, Di Grezia F, Sorrentino P, Lingetti E. A controlled study in the treatment of

osteoarthritis with diacerhein (Artrodar) *Curr Ther Res.* 1982;31 (408-412). 668. Kay A, Griffiths L, Volans G, Grahame R. Preliminary experience with diacetylrheinin the treatment of osteoarthritis. *Current Medical Research.* 1980;6(8):1980.

669. Pham T, Le Henanff A, Ravaud P, Dieppe P, Paolozzi L, Dougados M. Evaluation of the symptomatic and structural efficacy of a new hyaluronic acid compound, NRD101, in comparison with diacerein and placebo in a 1 year randomised controlled study in symptomatic knee osteoarthritis. *Ann Rheum Dis.* 2004;63(12):1611-7.

670. Chantre P, Cappelaere A, Leblan D, Guedon D, Vandermander J, Fournie B. Efficacy and tolerance of Harpagophytum procumbens versus diacerhein in treatment of osteoarthritis. *Phytomedicine*. 2000;7(3):177-83.

671. Leblan D, Chantre P, Fournie B. Harpagophytum procumbens in the treatment of knee and hip osteoarthritis. Four-month results of a prospective, multicenter, double-blind trial versus diacerhein. *Joint Bone Spine*. 2000;67(5):462-7.

672. Marcolongo R, Fioravanti A, Adami S, et al. Efficacy and tolerability of diacerhein in the treatment of osteoarthrosis. *Curr Ther Res.* 1988;43878-87.

673. Fagnani F, Bouvenot G, Valat JP, et al. Medico-economic analysis of diacerein with or without standard therapy in the treatment of osteoarthritis. *Pharmacoeconomics*. 1998;13(1 Pt 2):135-46.

674. Lin VW, Hsiao I, Kingery WS. High intensity magnetic stimulation over the lumbosacral spine evokes antinociception in rats. *Clin Neurophysiol*. 2002;113(7):1006-12.

675. Collacott EA, Zimmerman JT, White DW, Rindone JP. Bipolar permanent magnets for the treatment of chronic low back pain: a pilot study. *JAMA*. 2000;283(10):1322-5.

676. Andersson HI, Ejlertsson G, Leden I, Schersten B. Impact of chronic pain on health care seeking, self care, and medication. Results from a population-based Swedish study. *J Epidemiol Community Health*. 1999;53(8):503-9.

677. Kwon YD, Pittler MH, Ernst E. Acupuncture for peripheral joint osteoarthritis: a systematic review and metaanalysis. *Rheumatology*. 2006;45(11):1331-7.

678. Puett DW, Griffin MR. Published trials of nonmedicinal and noninvasive therapies for hip and knee osteoarthritis. *Ann Intern Med.* 1994;121(2):133-40.

Boutron I, Tubach F, Giraudeau B, Ravaud P. Methodological differences in clinical trials evaluating nonpharmacological and pharmacological treatments of hip and knee osteoarthritis. *JAMA*. 2003;290(8):1062-70.
Baldry P. Superficial versus deep dry needling. *Acupunct Med*. 2002;20(2-3):78-81.

681. MacPherson H, Mercer SW, Scullion T, Thomas KJ. Empathy, enablement, and outcome: an exploratory study on acupuncture patients' perceptions. *J Altern Complement Med.* 2003;9(6):869-76.

Brinkhaus B, Witt CM, Jena S, et al. Interventions and physician characteristics in a randomized multicenter trial of acupuncture in patients with low-back pain. *J Altern Complement Med.* 2006;12(7):649-57.
Haake M, Muller HH, Schade-Brittinger C, et al. German Acupuncture Trials (GERAC) for chronic low back pain: randomized, multicenter, blinded, parallel-group trial with 3 groups. *Arch Intern Med.* 2007;167(17):1892-8.
Leibing E, Leonhardt U, Koster G, et al. Acupuncture treatment of chronic low-back pain -- a randomized, blinded, placebo-controlled trial with 9-month follow-up. *Pain.* 2002;96(1-2):189-96.

685. Haslam R. A comparison of acupuncture with advice and exercises on the symptomatic treatment of osteoarthritis of the hip--a randomised controlled trial. *Acupunct Med.* 2001;19(1):19-26.

686. Fink MG, Kunsebeck H, Wipperman B, Gehrke A. Non-specific effects of traditional Chinese acupuncture in osteoarthritis of the hip. *Complement Ther Med.* 2001;9(2):82-9.

687. Witt CM, Jena S, Brinkhaus B, Liecker B, Wegscheider K, Willich SN. Acupuncture in patients with osteoarthritis of the knee or hip: a randomized, controlled trial with an additional nonrandomized arm. *Arthritis Rheum.* 2006;54(11):3485-93.

688. Christensen BV, Iuhl IU, Vilbek H, Bulow HH, Dreijer NC, Rasmussen HF. Acupuncture treatment of severe knee osteoarthrosis. A long-term study. *Acta Anaesthesiol Scand*. 1992;36(6):519-25.

689. Petrou P, Winkler V, Genti G, Balint G. Double-blind trial to evaluate the effect of acupuncture treatment on knee osteoarthrosis. *Scand J Acupunct*. 1988;3112-5.

690. Takeda W, Wessel J. Acupuncture for the treatment of pain of osteoarthritic knees. *Arthritis Care Res.* 1994;7(3):118-22.

691. Molsberger A, Bowing G, Jensen KU, Lorek M. Acupuncture treatment for the relief of gonarthrosis pain-a controlled clinical trial. *Schmerz.* 1994;8(1):37-42.

692. Berman BM, Lao L, Langenberg P, Lee WL, Gilpin AM, Hochberg MC. Effectiveness of acupuncture as adjunctive therapy in osteoarthritis of the knee: a randomized, controlled trial. *Ann Intern Med.* 2004;141(12):901-10.

693. Berman BM, Singh BB, Lao L, et al. A randomized trial of acupuncture as an adjunctive therapy in osteoarthritis of the knee. *Rheumatology*. 1999;38(4):346-54.

694. Vas J, Mendez C, Perea-Milla E, et al. Acupuncture as a complementary therapy to the pharmacological treatment of osteoarthritis of the knee: randomised controlled trial. *Br Med J*. 2004;329(7476):1216.

695. Yurtkuran M, Kocagil T. TENS, electroacupuncture and ice massage: comparison of treatment for osteoarthritis of the knee. *Am J Acupunct*. 1999;27(3-4):133-40.

696. Ng MM, Leung MC, Poon DM. The effects of electro-acupuncture and transcutaneous electrical nerve stimulation on patients with painful osteoarthritic knees: a randomized controlled trial with follow-up evaluation. *J Altern Complement Med.* 2003;9(5):641-9.

697. Ammer K, Petschnig R. Comparison of the effectiveness of acupuncture and physical therapy in ambulatory patients with gonarthrosis. *Wiener medizinische Wochenschrift*. 1988;138566-9.

698. Jia J, Mao G, Hu S, Dong X. Acupuncture combined with function exercise for the elder patients with knee osteoarthritis. *Clin J Clin Rehab.* 2005;918-9.

699. Sangdee C, Teekachunhatean S, Sananpanich K, et al. Electroacupuncture versus diclofenac in symptomatic treatment of osteoarthritis of the knee: a randomized controlled trial. *BMC Complement Altern Med.* 2002;23.

700. Tukmachi E, Jubb R, Dempsey E, Jones P. The effect of acupuncture on the symptoms of knee osteoarthritis--an open randomised controlled study. *Acupunct Med.* 2004;22(1):14-22.

701. Huguenin L, Brukner PD, McCrory P, Smith P, Wajswelner H, Bennell K. Effect of dry needling of gluteal muscles on straight leg raise: a randomised, placebo controlled, double blind trial. *Br J Sports Med.* 2005;39(2):84-90.

702. Manheimer E, Ezzo J, Hadhazy V, Berman B. Published reports of acupuncture trials showed important limitations. *J Clin Epidemiol.* 2006;59(2):107-13.

703. Manheimer E, White A, Berman B, Forys K, Ernst E. Meta-analysis: acupuncture for low back pain. *Ann Intern Med.* 2005;142(8):651-63.

704. White P, Lewith G, Hopwood V, Prescott P. The placebo needle, is it a valid and convincing placebo for use in acupuncture trials? A randomised, single-blind, cross-over pilot trial. *Pain*. 2003;106(3):401-9.

705. Reinhold T, Witt CM, Jena S, Brinkhaus B, Willich SN. Quality of life and cost-effectiveness of acupuncture treatment in patients with osteoarthritis pain. *Eur J Health Econ.* 2008;9(3):209-19.

706. Stener-Victorin E, Kruse-Smidje C, Jung K. Comparison between electro-acupuncture and hydrotherapy, both in combination with patient education and patient education alone, on the symptomatic treatment of osteoarthritis of the hip. *Clin J Pain*. 2004;20(3):179-85.

707. Fargas-Babjak A, Rooney P, Gerecz E. Randomized trial of Codetron for pain control in osteoarthritis of the hip/knee. *Clin J Pain*. 1989;5(2):137-41.

708. Grana WA. Physical agents in musculoskeletal problems: heat and cold therapy modalities. *Instr Course LEct.* 1993;42439-42.

709. Michlovitz S. Thermal Agents in Rehabilitation. Philadelphia: FA Davis; 1996.

710. Melzack R, Jeans ME, Stratford JG, Monks RC. Ice massage and transcutaneous electrical stimulation: comparison of treatment for low-back pain. *Pain*. 1980;9(2):209-17.

711. Nadler SF. Nonpharmacologic management of pain. J Am Osteopath Assoc. 2004;104(11 Suppl 8):S6-12.

712. Saito N, Horiuchi H, Kobayashi S, Nawata M, Takaoka K. Continuous local cooling for pain relief following total hip arthroplasty. *J Arthroplasty*. 2004;19(3):334-7.

713. Vasudevan SV. Physical rehabilitation in managing pain. *Pain: Clinical Updates* 1997;V.

714. Falconer J, Hayes KW, Chang RW. Effect of ultrasound on mobility in osteoarthritis of the knee. A

randomized clinical trial. Arthritis Care Res. 1992;5(1):29-35.

715. Fitz-Ritson D. Lasers and their therapeutic applications in chiropractic. *J Can Chropr Assoc*. 2001;45(1):26-34.

716. Brosseau L, Welch V, Wells G, et al. Low level laser therapy (Classes I, II and III) for treating osteoarthritis. *Cochrane Database Syst Rev.* 2004(3):CD002046.

717. Hoskins W, McHardy A, Pollard H, Windsham R, Onley R. Chiropractic treatment of lower extremity conditions: a literature review. *J Manipulative Physiol Ther.* 2006;29(8):658-71.

718. Cibulka MT, Delitto A. A comparison of two different methods to treat hip pain in runners. *J Orthop Sports Phys Ther.* 1993;17(4):172-6.

719. Jarski RW, Loniewski EG, Williams J, et al. The effectiveness of osteopathic manipulative treatment as complementary therapy following surgery: a prospective, match-controlled outcome study. *Altern Ther Health Med.* 2000;6(5):77-81.

720. Licciardone JC, Stoll ST, Cardarelli KM, Gamber RG, Swift JN, Jr., Winn WB. A randomized controlled trial of osteopathic manipulative treatment following knee or hip arthroplasty. *J Am Osteopath Assoc*. 2004;104(5):193-202.

721. Melzack R, Vetere P, Finch L. Transcutaneous electrical nerve stimulation for low back pain. A comparison of TENS and massage for pain and range of motion. *Phys Ther.* 1983;63(4):489-93.

722. Preyde M. Effectiveness of massage therapy for subacute low-back pain: a randomized controlled trial. *Cmaj.* 2000;162(13):1815-20.

723. Kalauokalani D, Cherkin DC, Sherman KJ, Koepsell TD, Deyo RA. Lessons from a trial of acupuncture and massage for low back pain: patient expectations and treatment effects. *Spine (Phila Pa 1976)*. 2001;26(13):1418-24.

724. Poole H, Glenn S, Murphy P. A randomised controlled study of reflexology for the management of chronic low back pain. *Eur J Pain*. 2007;11(8):878-87.

725. Odebiyi DO, Adigun OT, Kehinde MO. Effect of sodium salicylate iontophoresis in the management of hip pain in patients with sickle cell disease. *Nig Q J Hosp Med.* 2007;17(2):82-6.

726. Gemignani G, Olivieri I, Ruju G, Pasero G. Transcutaneous electrical nerve stimulation in ankylosing spondylitis: a double-blind study. *Arthritis Rheum.* 1991;34(6):788-9.

727. van Tulder MW, Koes B, Malmivaara A. Outcome of non-invasive treatment modalities on back pain: an evidence-based review. *Eur Spine J.* 2006;15 Suppl 1S64-81.

728. Long DM. Fifteen years of transcutaneous electrical stimulation for pain control. *Stereotact Funct Neurosurg.* 1991;56(1):2-19.

729. Khadilkar A, Milne S, Brosseau L, et al. Transcutaneous electrical nerve stimulation (TENS) for chronic lowback pain. *Cochrane Database Syst Rev.* 2005(3):CD003008.

730. Shealy CN. Transcutaneous electrical nerve stimulation: the treatment of choice for pain and depression. *J Altern Complement Med.* 2003;9(5):619-23.

731. Richardson RR, Arbit J, Siqueira EB, Zagar R. Transcutaneous electrical neurostimulation in functional pain. *Spine (Phila Pa 1976)*. 1981;6(2):185-8.

732. Rushton DN. Electrical stimulation in the treatment of pain. *Disabil Rehabil*. 2002;24(8):407-15.

733. Lang T, Barker R, Steinlechner B, et al. TENS relieves acute posttraumatic hip pain during emergency transport. *J Trauma*. 2007;62(1):184-8; discussion 8.

734. Pike PM. Transcutaneous electrical stimulation. Its use in the management of postoperative pain. *Anaesthesia*. 1978;33(2):165-71.

735. Kullenberg B, Runesson R, Tuvhag R, Olsson C, Resch S. Intraarticular corticosteroid injection: pain relief in osteoarthritis of the hip? *J Rheum*. 2004;31(11):2265-8.

736. Lambert RG, Hutchings EJ, Grace MG, Jhangri GS, Conner-Spady B, Maksymowych WP. Steroid injection for osteoarthritis of the hip: a randomized, double-blind, placebo-controlled trial. *Arthritis Rheum*. 2007;56(7):2278-87.

737. Qvistgaard E, Christensen R, Torp-Pedersen S, Bliddal H. Intra-articular treatment of hip osteoarthritis: a randomized trial of hyaluronic acid, corticosteroid, and isotonic saline. *Osteoarthritis Cartilage*. 2006;14(2):163-70. 738. van den Bekerom MP, Lamme B, Sermon A, Mulier M. What is the evidence for viscosupplementation in the treatment of patients with hip osteoarthritis? Systematic review of the literature. *Arch Orthop Trauma Surg*. 2008;128(8):815-23.

739. Zhang W, Moskowitz RW, Nuki G, et al. OARSI recommendations for the management of hip and knee osteoarthritis, Part II: OARSI evidence-based, expert consensus guidelines. *Osteoarthritis Cartilage*. 2008;16(2):137-62.

740. Flanagan J, Casale FF, Thomas TL, Desai KB. Intra-articular injection for pain relief in patients awaiting hip replacement. *Ann R Coll Surg Engl.* 1988;70(3):156-7.

741. Robinson P, Keenan AM, Conaghan PG. Clinical effectiveness and dose response of image-guided intraarticular corticosteroid injection for hip osteoarthritis. *Rheumatology*. 2007;46(2):285-91.

742. Caglar-Yagci H, Unsal S, Yagci I, Dulgeroglu D, Ozel S. Safety and efficacy of ultrasound-guided intraarticular hylan G-F 20 injection in osteoarthritis of the hip: a pilot study. *Rheumatol Int.* 2005;25(5):341-4.

743. Tikiz C, Unlu Z, Sener A, Efe M, Tuzun C. Comparison of the efficacy of lower and higher molecular weight viscosupplementation in the treatment of hip osteoarthritis. *Clin Rheumatol.* 2005;24(3):244-50.

744. Abate M, Pelotti P, De Amicis D, Di Iorio A, Galletti S, Salini V. Viscosupplementation with hyaluronic acid in hip osteoarthritis (a review). *Ups J Med Sci.* 2008;113(3):261-77.

745. Dagenais S. Intra-articular hyaluronic acid (viscosupplementation) for hip osteoarthritis. *Issues Emerg Health Technol.* 2007(98):1-4.

746. Migliore A, Tormenta S, Martin Martin LS, et al. The symptomatic effects of intra-articular administration of hylan G-F 20 on osteoarthritis of the hip: clinical data of 6 months follow-up. *Clin Rheumatol.* 2006;25(3):389-93. 747. Migliore A, Tormenta S, Massafra U, et al. Repeated ultrasound-guided intra-articular injections of 40 mg of

Hyalgan may be useful in symptomatic relief of hip osteoarthritis. *Osteoarthritis Cartilage*. 2005;13(12):1126-7.
Migliore A, Tormenta S, Massafra U, et al. 18-month observational study on efficacy of intraarticular hyaluronic acid (Hylan G-F 20) injections under ultrasound guidance in hip osteoarthritis. *Reumatismo*. 2006;58(1):39-49.

749. Brocq O, Tran G, Breuil V, Grisot C, Flory P, Euller-Ziegler L. Hip osteoarthritis: short-term efficacy and safety of viscosupplementation by hylan G-F 20. An open-label study in 22 patients. *Joint Bone Spine*. 2002;69(4):388-91.

750. Conrozier T, Bertin P, Mathieu P, et al. Intra-articular injections of hylan G-F 20 in patients with symptomatic hip osteoarthritis: an open-label, multicentre, pilot study. *Clin Exp Rheumatol.* 2003;21(5):605-10. 751. Pourbagher MA, Ozalay M, Pourbagher A. Accuracy and outcome of sonographically guided intra-articular

sodium hyaluronate injections in patients with osteoarthritis of the hip. *J Ultrasound Med.* 2005;24(10):1391-5. 752. Gramajo RJ, Cutroneo EJ, Fernandez DE, et al. A single-blind, placebo-controlled study of

glycosaminoglycan-peptide complex ('Rumalon') in patients with osteoarthritis of the hip or knee. *Curr Med Res Opin*. 1989;11(6):366-73.

753. Yelland MJ, Glasziou PP, Bogduk N, Schluter PJ, McKernon M. Prolotherapy injections, saline injections, and exercises for chronic low-back pain: a randomized trial. *Spine (Phila Pa 1976)*. 2004;29(1):9-16; discussion 754. Gobel H, Heinze A, Reichel G, Hefter H, Benecke R. Efficacy and safety of a single botulinum type A toxin complex treatment (Dysport) for the relief of upper back myofascial pain syndrome: results from a randomized double-blind placebo-controlled multicentre study. *Pain*. 2006;125(1-2):82-8.

755. Qerama E, Fuglsang-Frederiksen A, Kasch H, Bach FW, Jensen TS. A double-blind, controlled study of botulinum toxin A in chronic myofascial pain. *Neurology*. 2006;67(2):241-5.

756. Richards BA, Jensen. A double-blind, controlled study of botulinum toxin A in chronic myofascial pain. *Neurology*. 2007;68(12):963; author reply -4.

757. Ferrante FM, Bearn L, Rothrock R, King L. Evidence against trigger point injection technique for the treatment of cervicothoracic myofascial pain with botulinum toxin type A. *Anesthesiology*. 2005;103(2):377-83.
758. Lew MF, Adornato BT, Duane DD, et al. Botulinum toxin type B: a double-blind, placebo-controlled, safety and efficacy study in cervical dystonia. *Neurology*. 1997;49(3):701-7.

759. Charles PD. Botulinum neurotoxin serotype A: a clinical update on non-cosmetic uses. *Am J Health Syst Pharm.* 2004;61(22 Suppl 6):S11-23.

760. Naumann M, Lowe NJ. Botulinum toxin type A in treatment of bilateral primary axillary hyperhidrosis: randomised, parallel group, double blind, placebo controlled trial. *Br Med J.* 2001;323(7313):596-9.

761. Graham HK, Boyd R, Carlin JB, et al. Does botulinum toxin a combined with bracing prevent hip displacement in children with cerebral palsy and "hips at risk"? A randomized, controlled trial. *J Bone Joint Surg Am*. 2008;90(1):23-33.

762. Galli M, Cimolin V, Valente EM, Crivellini M, Ialongo T, Albertini G. Computerized gait analysis of botulinum toxin treatment in children with cerebral palsy. *Disabil Rehabil.* 2007;29(8):659-64.

763. Rousseaux M, Launay MJ, Kozlowski O, Daveluy W. Botulinum toxin injection in patients with hereditary spastic paraparesis. *Eur J Neurol.* 2007;14(2):206-12.

764. Li M, Goldberger BA, Hopkins C. Fatal case of BOTOX-related anaphylaxis? *J Forensic Sci.* 2005;50(1):169-72.

765. Billote DB, Abdoue AG, Wixson RL. Comparison of acute normovolemic hemodilution and preoperative autologous blood donation in clinical practice. *J Clin Anesth.* 2000;12(1):31-5.

766. Billote DB, Glisson SN, Green D, Wixson RL. A prospective, randomized study of preoperative autologous donation for hip replacement surgery. *J Bone Joint Surg Am.* 2002;84-A(8):1299-304.

767. Billote DB, Glisson SN, Green D, Wixson RL. Efficacy of preoperative autologous blood donation: analysis of blood loss and transfusion practice in total hip replacement. *J Clin Anesth*. 2000;12(7):537-42.

768. Etchason J, Petz L, Keeler E, et al. The cost effectiveness of preoperative autologous blood donations. *N Engl J Med.* 1995;332(11):719-24.

769. Birkmeyer JD, Goodnough LT, AuBuchon JP, Noordsij PG, Littenberg B. The cost-effectiveness of preoperative autologous blood donation for total hip and knee replacement. *Transfusion*. 1993;33(7):544-51.

Biesma DH, Marx JJ, van de Wiel A. Collection of autologous blood before elective hip replacement. A comparison of the results with the collection of two and four units. *J Bone Joint Surg Am*. 1994;76(10):1471-5.
Woolson ST, Marsh JS, Tanner JB. Transfusion of previously deposited autologous blood for patients

undergoing hip-replacement surgery. J Bone Joint Surg Am. 1987;69(3):325-8.

772. Woolson ST, Watt JM. Use of autologous blood in total hip replacement. A comprehensive program. *J Bone Joint Surg Am.* 1991;73(1):76-80.

773. NHLBI. Transfusion alert: use of autologous blood. National Heart, Lung, and Blood Institute Expert Panel on the use of Autologous Blood. *Transfusion*. 1995;35(8):703-11.

774. Bierbaum BE, Callaghan JJ, Galante JO, Rubash HE, Tooms RE, Welch RB. An analysis of blood management in patients having a total hip or knee arthroplasty. *J Bone Joint Surg Am*. 1999;81(1):2-10.

775. Grosvenor D, Goyal V, Goodman S. Efficacy of postoperative blood salvage following total hip arthroplasty in patients with and without deposited autologous units. *J Bone Joint Surg Am.* 2000;82-A(7):951-4.

776. Cormier G, Berthelot JM, Maugars Y. Gluteus tendon rupture is underrecognized by French orthopedic surgeons: results of a mail survey. *Joint Bone Spine*. 2006;73(4):411-3.

777. Lonner JH, Van Kleunen JP. Spontaneous rupture of the gluteus medius and minimus tendons. *Am J Orthop.* 2002;31(10):579-81.

778. Uhthoff HK, Sarkar K. Calcifying tendonitis. In: Rockwood CA, Matsen FA III ed. *The Shoulder*. Philadelphia, Pa: WB Saunders Co; 1990.

779. Kagan A, 2nd. Rotator-cuff tear of the hip. J Bone Joint Surg Br. 1998;80(1):182-3.

780. Kagan A, 2nd. Rotator cuff tears of the hip. Clin Orthop Relat Res. 1999(368):135-40.

781. Howell GE, Biggs RE, Bourne RB. Prevalence of abductor mechanism tears of the hips in patients with osteoarthritis. *J Arthroplasty*. 2001;16(1):121-3.

782. Bard H, Lequesne M, Vuillemin-Bodaghi V. La periarthrite de hanche en 2003. In: Kahn M, Kuntz D, Meyer O, Bardin T, Orcel P, eds. *L'actualite Rhumatologique 2003*. Paris: Elsevier; 2003:169-88.

783. Lequesne M, Mathieu P, Djian P, Bard H. Indication chirurgicale dans les tendinobursopathies trochanteriennes. *Rhumatologie*. 2004;564-6.

784. Cohen SP, Strassels SA, Foster L, et al. Comparison of fluoroscopically guided and blind corticosteroid injections for greater trochanteric pain syndrome: multicentre randomised controlled trial. *Br Med J*. 2009;338b1088.

785. Shbeeb MI, O'Duffy JD, Michet CJ, Jr., O'Fallon WM, Matteson EL. Evaluation of glucocorticosteroid injection for the treatment of trochanteric bursitis. *J Rheumatol.* 1996;23(12):2104-6.

786. Gordon EJ. Trochanteric bursitis and tendinitis. *Clin Orthop.* 1961;20193-202.

787. Rasmussen K, Fano N. Trochanteric bursitis: treatment by corticosteroid injection. *Scand J Rheumatol.* 1985;14(4):417-20.

788. Schapira D, Nahir M, Scharf Y. Trochanteric bursitis: a common clinical problem. *Arch Phys Med Rehabil*. 1986;67(11):815-7.

789. Krout RM, Anderson TP. Trochanteric bursitis: management. Arch Phys Med Rehabil. 1959;40(1):8-14.

790. Gerber JM, Herrin SO. Conservative treatment of calcific trochanteric bursitis. *J Manipulative Physiol Ther*. 1994;17(4):250-2.

791. Wenger D, Kishan S, Pring M. Impingement and childhood hip disease. *J Pediatr Orthop B*. 2006;15(4):233-43.

792. Goodman DA, Feighan JE, Smith AD, Latimer B, Buly RL, Cooperman DR. Subclinical slipped capital femoral epiphysis. Relationship to osteoarthrosis of the hip. *J Bone Joint Surg Am*. 1997;79(10):1489-97.

793. Leunig M, Casillas M, Hamlet M, et al. Slipped capital femoral epiphysis: early mechanical damage to the acetabular cartilage by a prominent femoral metaphysis. *Acta Orthop Scand*. 2000;71(4):370-5.

794. Siebenrock KA, Wahab KH, Werlen S, Kalhor M, Leunig M, Ganz R. Abnormal extension of the femoral head epiphysis as a cause of cam impingement. *Clin Orthop Relat Res.* 2004(418):54-60.

795. Crawford JR, Villar RN. Current concepts in the management of femoroacetabular impingement. *J Bone Joint Surg Br.* 2005;87(11):1459-62.

796. Rab GT. The geometry of slipped capital femoral epiphysis: implications for movement, impingement, and corrective osteotomy. *J Pediatr Orthop*. 1999;19419-24.

797. Philippon M, Schenker ML. Athletic hip injuries and capsular laxity. *Oper Tech Orthop.* 2005;15261-6.

798. Myers SR, Eijer H, Ganz R. Anterior femoroacetabular impingement after periacetabular osteotomy. *Clin Orthop Relat Res.* 1999(363):93-9.

799. Malik A, Maheshwari A, Dorr LD. Impingement with total hip replacement. *J Bone Joint Surg Am*. 2007;89(8):1832-42.

800. Lavigne M, Parvizi J, Beck M, Siebenrock KA, Ganz R, Leunig M. Anterior femoroacetabular impingement: part I. Techniques of joint preserving surgery. *Clin Orthop Relat Res.* 2004(418):61-6.

801. Murphy S, Tannast M, Kim YJ, Buly R, Millis MB. Debridement of the adult hip for femoroacetabular impingement: indications and preliminary clinical results. *Clin Orthop Relat Res.* 2004(429):178-81.

802. McCarthy JC, Busconi B. The role of hip arthroscopy in the diagnosis and treatment of hip disease. *Can J Surg.* 1995;38 Suppl 1S13-7.

803. Hunt D, Clohisy J, Prather H. Acetabular labral tears of the hip in women. *Phys Med Rehabil Clin N Am*. 2007;18(3):497-520, ix-x.

804. Seldes RM, Tan V, Hunt J, Katz M, Winiarsky R, Fitzgerald RH, Jr. Anatomy, histologic features, and vascularity of the adult acetabular labrum. *Clin Orthop Relat Res.* 2001(382):232-40.

805. McCarthy J, Noble P, Aluisio FV, Schuck M, Wright J, Lee JA. Anatomy, pathologic features, and treatment of acetabular labral tears. *Clin Orthop Relat Res.* 2003(406):38-47.

806. Cotten A, Boutry N, Demondion X, et al. Acetabular labrum: MRI in asymptomatic volunteers. *J Comput Assist Tomogr*. 1998;22(1):1-7.

807. Shibutani N. Three-dimensional architecture of the acetabular labrum--a scanning electron microscopic study. *Nippon Seikeigeka Gakkai Zasshi*. 1988;62(4):321-9.

808. Byers PD, Contepomi CA, Farkas TA. A post mortem study of the hip joint. Including the prevalence of the features of the right side. *Ann Rheum Dis.* 1970;29(1):15-31.

809. Beck M, Leunig M, Parvizi J, Boutier V, Wyss D, Ganz R. Anterior femoroacetabular impingement: part II. Midterm results of surgical treatment. *Clin Orthop Relat Res.* 2004(418):67-73.

810. Ito K, Leunig M, Ganz R. Histopathologic features of the acetabular labrum in femoroacetabular impingement. *Clin Orthop Relat Res.* 2004(429):262-71.

811. Ito K, Minka MA, 2nd, Leunig M, Werlen S, Ganz R. Femoroacetabular impingement and the cam-effect. A MRI-based quantitative anatomical study of the femoral head-neck offset. *J Bone Joint Surg Br.* 2001;83(2):171-6.

812. Baber YF, Robinson AH, Villar RN. Is diagnostic arthroscopy of the hip worthwhile? A prospective review of 328 adults investigated for hip pain. *J Bone Joint Surg Br.* 1999;81(4):600-3.

813. Bullough P, Goodfellow J, Greenwald AS, O'Connor J. Incongruent surfaces in the human hip joint. *Nature*. 1968;217(5135):1290.

814. Lewis CL, Sahrmann SA. Acetabular labral tears. *Phys Ther.* 2006;86(1):110-21.

815. Eijer H, Myers SR, Ganz R. Anterior femoroacetabular impingement after femoral neck fractures. *J Orthop Trauma*. 2001;15(7):475-81.

816. Siebenrock KA, Schoeniger R, Ganz R. Anterior femoro-acetabular impingement due to acetabular retroversion. Treatment with periacetabular osteotomy. *J Bone Joint Surg Am.* 2003;85-A(2):278-86.

817. Pitt MJ, Graham AR, Shipman JH, Birkby W. Herniation pit of the femoral neck. *Am J Roentgenol*. 1982;138(6):1115-21.

818. Diulus CA, Krebs VE, Hanna G, Barsoum WK. Hip arthroscopy technique and indications. *J Arthroplasty*. 2006;21(4 Suppl 1):68-73.

819. Zebala LP, Schoenecker PL, Clohisy JC. Anterior femoroacetabular impingement: a diverse disease with evolving treatment options. *Iowa Orthop J.* 2007;2771-81.

820. Ikeda T, Awaya G, Suzuki S, Okada Y, Tada H. Torn acetabular labrum in young patients. Arthroscopic diagnosis and management. *J Bone Joint Surg Br.* 1988;70(1):13-6.

821. Connell DA, Bass C, Sykes CA, Young D, Edwards E. Sonographic evaluation of gluteus medius and minimus tendinopathy. *Eur Radiol.* 2003;13(6):1339-47.

822. Robertson WJ, Kadrmas WR, Kelly BT. Arthroscopic management of labral tears in the hip: a systematic review of the literature. *Clin Orthop Relat Res.* 2007;45588-92.

823. Kelly BT, Weiland DE, Schenker ML, Philippon MJ. Arthroscopic labral repair in the hip: surgical technique and review of the literature. *Arthroscopy*. 2005;21(12):1496-504.

824. Sampson TG. Arthroscopic treatment of femoroacetabular impingement. *Tech Orthop.* 2005;20(1):56-62.
825. Kim KC, Hwang DS, Lee CH, Kwon ST. Influence of femoroacetabular impingement on results of hip arthroscopy in patients with early osteoarthritis. *Clin Orthop Relat Res.* 2007;456128-32.

McCarthy JC. Hip arthroscopy: applications and technique. *J Am Acad Orthop Surg.* 1995;3(3):115-22.
McCarthy JC, Lee JA. Arthroscopic intervention in early hip disease. *Clin Orthop Relat Res.* 2004(429):157-62.

828. Peters CL, Erickson JA. Treatment of femoro-acetabular impingement with surgical dislocation and debridement in young adults. *J Bone Joint Surg Am.* 2006;88(8):1735-41.

829. Espinosa N, Rothenfluh DA, Beck M, Ganz R, Leunig M. Treatment of femoro-acetabular impingement: preliminary results of labral refixation. *J Bone Joint Surg Am.* 2006;88(5):925-35.

830. Khanduja V, Villar RN. The arthroscopic management of femoroacetabular impingement. *Knee Surg Sports Traumatol Arthrosc.* 2007;15(8):1035-40.

831. Ganz R, Klaue K, Vinh TS, Mast JW. A new periacetabular osteotomy for the treatment of hip dysplasias. Technique and preliminary results. *Clin Orthop Relat Res.* 1988(232):26-36.

832. McCarthy JC, Lee JA. Acetabular dysplasia: a paradigm of arthroscopic examination of chondral injuries. *Clin Orthop Relat Res.* 2002(405):122-8.

833. Clohisy JC, Curry MC, Fejfar ST, Schoenecker PL. Surgical procedure profile in a comprehensive hip surgery program. *Iowa Orthop J*. 2006;2663-8.

834. Woodhouse CF. Dynamic influences of vascular occlusion affecting the development of avascular necrosis of the femoral head. *Clin Orthop Relat Res.* 1964;32119-29.

835. Rosingh GE, Steendijk R, van den Hooff A. Consequences of avascular necrosis of the femoral head in rabbits. A histological and radiological study. *J Bone Joint Surg Br.* 1969;51(3):551-62.

836. Pritchett JW. Statin therapy decreases the risk of osteonecrosis in patients receiving steroids. *Clin Orthop Relat Res.* 2001(386):173-8.

Mankin HJ. Nontraumatic necrosis of bone (osteonecrosis). *N Engl J Med.* 1992;326(22):1473-9.
Mont M, Hungerford D. Non-traumatic avascular necrosis of the femoral head. *J Bone Joint Surg Am.* 1995;77(3):459-74.

839. Valencia ME, Barreiro P, Soriano V, Blanco F, Moreno V, Lahoz JG. Avascular necrosis in HIV-infected patients receiving antiretroviral treatment: study of seven cases. *HIV Clin Trials*. 2003;4(2):132-6.

Jones LC, Mont MA, Le TB, et al. Procoagulants and osteonecrosis. *J Rheumatol.* 2003;30(4):783-91.
Chang CC, Greenspan A, Gershwin ME. Osteonecrosis: current perspectives on pathogenesis and treatment. *Semin Arthritis Rheum.* 1993;23(1):47-69.

842. Glesby MJ. Bone disorders in human immunodeficiency virus infection. *Clin Infect Dis.* 2003;37 Suppl 2S91-5.

843. Babis GC, Soucacos PN. Effectiveness of total hip arthroplasty in the management of hip osteonecrosis. *Orthop Clin North Am.* 2004;35(3):359-64, x.

844. Wang CJ, Wang FS, Huang CC, Yang KD, Weng LH, Huang HY. Treatment for osteonecrosis of the femoral head: comparison of extracorporeal shock waves with core decompression and bone-grafting. *J Bone Joint Surg Am.* 2005;87(11):2380-7.

845. Hungerford D. Bone marrow pressure, venography and core decompression in ischemic necrosis of the femoral head. *The Hip: Proceedings of the Seventh Open Scientific Meeting of the Hip Society.* St. Louis: CV Mosby; 1979:218-37.

846. Shannon BD, Trousdale RT. Femoral osteotomies for avascular necrosis of the femoral head. *Clin Orthop Relat Res.* 2004(418):34-40.

847. Castro FP, Jr., Barrack RL. Core decompression and conservative treatment for avascular necrosis of the femoral head: a meta-analysis. *Am J Orthop* 2000;29(3):187-94.

848. Learmonth ID, Maloon S, Dall G. Core decompression for early atraumatic osteonecrosis of the femoral head. *J Bone Joint Surg Br.* 1990;72(3):387-90.

849. Scully SP, Aaron RK, Urbaniak JR. Survival analysis of hips treated with core decompression or vascularized fibular grafting because of avascular necrosis. *J Bone Joint Surg Am*. 1998;80(9):1270-5.

850. Sugioka Y. Transtrochanteric rotational osteotomy in the treatment of idiopathic and steroid-induced femoral head necrosis, Perthes' disease, slipped capital femoral epiphysis, and osteoarthritis of the hip. Indications and results. *Clin Orthop Relat Res.* 1984(184):12-23.

851. Sugioka Y, Hotokebuchi T, Tsutsui H. Transtrochanteric anterior rotational osteotomy for idiopathic and steroid-induced necrosis of the femoral head. Indications and long-term results. *Clin Orthop Relat Res.* 1992(277):111-20.

852. Aldridge JM, 3rd, Urbaniak JR. Avascular necrosis of the femoral head: role of vascularized bone grafts. *Orthop Clin North Am.* 2007;38(1):13-22, v.

853. Cabanela ME. Bipolar versus total hip arthroplasty for avascular necrosis of the femoral head. A comparison. *Clin Orthop Relat Res.* 1990(261):59-62.

854. Cabanela ME. The bipolar prosthesis in avascular necrosis of the femoral head. *Semin Arthroplasty*. 1991;2(3):228-33.

855. Kim YH, Oh SH, Kim JS, Koo KH. Contemporary total hip arthroplasty with and without cement in patients with osteonecrosis of the femoral head. *J Bone Joint Surg Am.* 2003;85-A(4):675-81.

856. Wood M, McDowell C, Kelley S. Cementation for femoral head osteonecrosis: a preliminary clinic study. *Clin Orthop Relat Res.* 2003;41294-102.

857. Meyers MH. The treatment of osteonecrosis of the hip with fresh osteochondral allografts and with the muscle pedicle graft technique. *Clin Orthop Relat Res.* 1978(130):202-9.

858. Hernigou P, Poignard A, Manicom O, Mathieu G, Rouard H. The use of percutaneous autologous bone marrow transplantation in nonunion and avascular necrosis of bone. *J Bone Joint Surg Br.* 2005;87(7):896-902.
859. Barnes CL, Collins DN, Nelson CL. Cup arthroplasty, surface replacement arthroplasty, and femoral head

resurfacing for osteonecrosis. *Semin Arthroplasty*. 1991;2(3):222-7. 860. Adili A, Trousdale RT. Femoral head resurfacing for the treatment of osteonecrosis in the young patient. *Clin Orthop Relat Res*. 2003(417):93-101.

861. Mont MA, Jones LC, Sotereanos DG, Amstutz HC, Hungerford DS. Understanding and treating osteonecrosis of the femoral head. *Instr Course LEct.* 2000;49169-85.

862. Nelson CL, Evans RP, Blaha JD, Calhoun J, Henry SL, Patzakis MJ. A comparison of gentamicinimpregnated polymethylmethacrylate bead implantation to conventional parenteral antibiotic therapy in infected total hip and knee arthroplasty. *Clin Orthop Relat Res.* 1993(295):96-101.

863. Urbaniak JR. Aseptic necrosis of the femoral head treated by vascularized fibular graft. *Microsurgery for Major Limb Reconstruction*. St. Louis: C. V. Mosby; 1987:178-84.

864. Urbaniak JR, Coogan PG, Gunneson EB, Nunley JA. Treatment of osteonecrosis of the femoral head with free vascularized fibular grafting. A long-term follow-up study of one hundred and three hips. *J Bone Joint Surg Am*. 1995;77(5):681-94.

865. Steinberg M. Chapter 5: Management of avascular necrosis of the femoral head - an overview. *Instr Course LEct.* 1988;3741-50.

866. Beaule PE, Amstutz HC. Management of Ficat stage III and IV osteonecrosis of the hip. *J Am Acad Orthop Surg.* 2004;12(2):96-105.

867. Berend KR, Gunneson E, Urbaniak JR, Vail TP. Hip arthroplasty after failed free vascularized fibular grafting for osteonecrosis in young patients. *J Arthroplasty*. 2003;18(4):411-9.

868. Aaron RK, Steinberg ME. Electrical stimulation of osteonecrosis of the femoral head. *Semin Arthroplasty*. 1991;2(3):214-21.

869. Arlet J. Nontraumatic avascular necrosis of the femoral head. Past, present, and future. *Clin Orthop Relat Res.* 1992(277):12-21.

870. Lai KA, Shen WJ, Yang CY, Shao CJ, Hsu JT, Lin RM. The use of alendronate to prevent early collapse of the femoral head in patients with nontraumatic osteonecrosis. A randomized clinical study. *J Bone Joint Surg Am*. 2005;87(10):2155-9.

871. Cardozo JB, Andrade DM, Santiago MB. The use of bisphosphonate in the treatment of avascular necrosis: a systematic review. *Clin Rheumatol.* 2008;27(6):685-8.

872. Shimura K, Shimazaki C, Taniguchi K, et al. Hyperbaric oxygen in addition to antibiotic therapy is effective for bisphosphonate-induced osteonecrosis of the jaw in a patient with multiple myeloma. *Int J Hematol.* 2006;84(4):343-5.

873. Steinberg ME, Larcom PG, Strafford B, et al. Core decompression with bone grafting for osteonecrosis of the femoral head. *Clin Orthop Relat Res.* 2001(386):71-8.

874. Warner JJ, Philip JH, Brodsky GL, Thornhill TS. Studies of nontraumatic osteonecrosis. The role of core decompression in the treatment of nontraumatic osteonecrosis of the femoral head. *Clin Orthop Relat Res*. 1987(225):104-27.

875. Rijnen WH, Gardeniers JW, Buma P, Yamano K, Slooff TJ, Schreurs BW. Treatment of femoral head osteonecrosis using bone impaction grafting. *Clin Orthop Relat Res*. 2003(417):74-83.

876. Stulberg BN, Davis AW, Bauer TW, Levine M, Easley K. Osteonecrosis of the femoral head. A prospective randomized treatment protocol. *Clin Orthop Relat Res.* 1991(268):140-51.

877. Salvati EA, Cornell CN. Long-term follow-up of total hip replacement in patients with avascular necrosis. *Instr Course LEct.* 1988;3767-73.

878. Chandler HP, Reineck FT, Wixson RL, McCarthy JC. Total hip replacement in patients younger than thirty years old. A five-year follow-up study. *J Bone Joint Surg Am.* 1981;63(9):1426-34.

879. Saito S, Saito M, Nishina T, Ohzono K, Ono K. Long-term results of total hip arthroplasty for osteonecrosis of the femoral head. A comparison with osteoarthritis. *Clin Orthop Relat Res.* 1989(244):198-207.

880. Kantor SG, Huo MH, Huk OL, Salvati EA. Cemented total hip arthroplasty in patients with osteonecrosis. A 6-year minimum follow-up study of second-generation cement techniques. *J Arthroplasty*. 1996;11(3):267-71.

881. Piston RW, Engh CA, De Carvalho PI, Suthers K. Osteonecrosis of the femoral head treated with total hip arthroplasty without cement. *J Bone Joint Surg Am*. 1994;76(2):202-14.

882. Chiu KH, Shen WY, Ko CK, Chan KM. Osteonecrosis of the femoral head treated with cementless total hip arthroplasty. A comparison with other diagnoses. *J Arthroplasty*. 1997;12(6):683-8.

883. Garino JP, Steinberg ME. Total hip arthroplasty in patients with avascular necrosis of the femoral head: a 2- to 10-year follow-up. *Clin Orthop Relat Res.* 1997(334):108-15.

884. Stulberg BN, Singer R, Goldner J, Stulberg J. Uncemented total hip arthroplasty in osteonecrosis: a 2- to 10-year evaluation. *Clin Orthop Relat Res.* 1997(334):116-23.

885. Fye MA, Huo MH, Zatorski LE, Keggi KJ. Total hip arthroplasty performed without cement in patients with femoral head osteonecrosis who are less than 50 years old. *J Arthroplasty*. 1998;13(8):876-81.

886. Taylor AH, Shannon M, Whitehouse SL, Lee MB, Learmonth ID. Harris Galante cementless acetabular replacement in avascular necrosis. *J Bone Joint Surg Br.* 2001;83(2):177-82.

887. Xenakis TA, Gelalis J, Koukoubis TA, Zaharis KC, Soucacos PN. Cementless hip arthroplasty in the treatment of patients with femoral head necrosis. *Clin Orthop Relat Res*. 2001(386):93-9.

888. Brodner W, Bitzan P, Meisinger V, Kaider A, Gottsauner-Wolf F, Kotz R. Serum cobalt levels after metalon-metal total hip arthroplasty. *J Bone Joint Surg Am*. 2003;85-A(11):2168-73.

889. Kim YH, Oh SW, Kim JS. Prevalence of fat embolism following bilateral simultaneous and unilateral total hip arthroplasty performed with or without cement : a prospective, randomized clinical study. *J Bone Joint Surg Am*. 2002;84-A(8):1372-9.

890. Neumayr LD, Aguilar C, Earles AN, et al. Physical therapy alone compared with core decompression and physical therapy for femoral head osteonecrosis in sickle cell disease. Results of a multicenter study at a mean of three years after treatment. *J Bone Joint Surg Am.* 2006;88(12):2573-82.

891. Kim YH. Comparison of polyethylene wear associated with cobalt-chromium and zirconia heads after total hip replacement. A prospective, randomized study. *J Bone Joint Surg Am.* 2005;87(8):1769-76.

892. Seyler TM, Bonutti PM, Shen J, Naughton M, Kester M. Use of an alumina-on-alumina bearing system in total hip arthroplasty for osteonecrosis of the hip. *J Bone Joint Surg Am.* 2006;88 Suppl 3116-25.

893. Gangji V, Hauzeur JP. Treatment of osteonecrosis of the femoral head with implantation of autologous bone-marrow cells. Surgical technique. *J Bone Joint Surg Am.* 2005;87 Suppl 1(Pt 1):106-12.

894. Holmich P, Uhrskou P, Ulnits L, et al. Effectiveness of active physical training as treatment for longstanding adductor-related groin pain in athletes: randomised trial. *Lancet*. 1999;353(9151):439-43.

895. Cibulka MT, Rose SJ, Delitto A, Sinacore DR. Hamstring muscle strain treated by mobilizing the sacroiliac joint. *Phys Ther.* 1986;66(8):1220-3.

896. Croisier JL, Forthomme B, Namurois MH, Vanderthommen M, Crielaard JM. Hamstring muscle strain recurrence and strength performance disorders. *Am J Sports Med.* 2002;30(2):199-203.

897. Schache AG, Wrigley TV, Baker R, Pandy MG. Biomechanical response to hamstring muscle strain injury. *Gait Posture*. 2009;29(2):332-8.

Heiderscheit BC, Hoerth DM, Chumanov ES, Swanson SC, Thelen BJ, Thelen DG. Identifying the time of occurrence of a hamstring strain injury during treadmill running: a case study. *Clin Biomech*. 2005;20(10):1072-8.
Askling C, Karlsson J, Thorstensson A. Hamstring injury occurrence in elite soccer players after preseason

strength training with eccentric overload. Scand J Med Sci Sports. 2003;13(4):244-50.

900. Sherry MA, Best TM. A comparison of 2 rehabilitation programs in the treatment of acute hamstring strains. *J Orthop Sports Phys Ther.* 2004;34(3):116-25.

901. Hartig DE, Henderson JM. Increasing hamstring flexibility decreases lower extremity overuse injuries in military basic trainees. *Am J Sports Med.* 1999;27(2):173-6.

902. Devers A, Galer BS. Topical lidocaine patch relieves a variety of neuropathic pain conditions: an open-label study. *Clin J Pain*. 2000;16(3):205-8.

903. Russo MJ, Firestone LB, Mandler RN, Kelly JJ, Jr. Nerve conduction studies of the lateral femoral cutaneous nerve. Implications in the diagnosis of meralgia paresthetica. *Am J Electroneurodiagnostic Technol.* 2005;45(3):180-5.

904. Barna SA, Hu MM, Buxo C, Trella J, Cosgrove GR. Spinal cord stimulation for treatment of meralgia paresthetica. *Pain Physician*. 2005;8(3):315-8.

905. Johnell O, Kanis JA. An estimate of the worldwide prevalence, mortality and disability associated with hip fracture. *Osteoporos Int.* 2004;15(11):897-902.

906. Johnell O, Kanis JA. An estimate of the worldwide prevalence and disability associated with osteoporotic fractures. *Osteoporos Int.* 2006;17(12):1726-33.

907. van Balen R, Steyerberg EW, Polder JJ, Ribbers TL, Habbema JD, Cools HJ. Hip fracture in elderly patients: outcomes for function, quality of life, and type of residence. *Clin Orthop Relat Res.* 2001(390):232-43.
908. Osnes EK, Lofthus CM, Meyer HE, et al. Consequences of hip fracture on activities of daily life and residential needs. *Osteoporos Int.* 2004;15(7):567-74.

909. White BL, Fisher WD, Laurin CA. Rate of mortality for elderly patients after fracture of the hip in the 1980's. *J Bone Joint Surg Am.* 1987;69(9):1335-40.

910. Estrada LS, Volgas DA, Stannard JP, Alonso JE. Fixation failure in femoral neck fractures. *Clin Orthop Relat Res.* 2002(399):110-8.

911. Hornby R, Evans JG, Vardon V. Operative or conservative treatment for trochanteric fractures of the femur. A randomised epidemiological trial in elderly patients. *J Bone Joint Surg Br*. 1989;71(4):619-23.

912. Miedel R, Ponzer S, Tornkvist H, Soderqvist A, Tidermark J. The standard Gamma nail or the Medoff sliding plate for unstable trochanteric and subtrochanteric fractures. A randomised, controlled trial. *J Bone Joint Surg Br.* 2005;87(1):68-75.

913. Harrington P, Nihal A, Singhania AK, Howell FR. Intramedullary hip screw versus sliding hip screw for unstable intertrochanteric femoral fractures in the elderly. *Injury*. 2002;33(1):23-8.

914. Hardy DC, Drossos K. Slotted intramedullary hip screw nails reduce proximal mechanical unloading. *Clin Orthop Relat Res.* 2003(406):176-84.

915. Lofthus CM, Osnes EK, Falch JA, et al. Epidemiology of hip fractures in Oslo, Norway. *Bone*. 2001;29(5):413-8.

916. Frihagen F, Nordsletten L, Madsen J. Hemiarthroplasty or internal fixation for intracapsular displaced femoral neck fractures: randomised controlled trial. *Br Med J*. 2007;335(7632):1251-4.

917. Bong SC, Lau HK, Leong JC, Fang D, Lau MT. The treatment of unstable intertrochanteric fractures of the hip: a prospective trial of 150 cases. *Injury*. 1981;13(2):139-46.

918. Sherlock DA, Gibson PH, Benson MK. Congenital subluxation of the hip. A long-term review. *J Bone Joint Surg Br.* 1985;67(3):390-8.

919. Hansen F. Conservative vs surgical treatment of impacted, subcapital fractures of the femoral neck. *Acta Orthop Scand.* 1994;Suppl 256(65):9.

920. Radford PJ, Needoff M. Intramedullary or extramedullary fixation for pertrochanteric fractures of the femur? *J Bone Joint Surg Br.* 1992;74(Suppl 3):281.

921. Macaulay W, Pagnotto MR, Iorio R, Mont MA, Saleh KJ. Displaced femoral neck fractures in the elderly: hemiarthroplasty versus total hip arthroplasty. *J Am Acad Orthop Surg.* 2006;14(5):287-93.

922. Watson JT, Moed BR, Cramer KE, Karges DE. Comparison of the compression hip screw with the Medoff sliding plate for intertrochanteric fractures. *Clin Orthop Relat Res.* 1998(348):79-86.

923. Sabharwal S, O'Brien PJ, Meek RN, al. e. intertrochanteric hip fracture fixation-Gamma nail versus dynamic screw. A randomized propsective study. *J Bone Joint Surg Br.* 1992;74(Suppl 3):281.

924. Stromquist B, Ross H, Hansson LI, Ohlin P. [Fixation of fractures of the femoral neck using screws or hookpins. Radionuclide study and short-term results]. *Rev Chir Orthop Reparatrice Appar Mot.* 1988;74(7):609-13.

925. Olsson O. Alternative techniques in trochanteric hip fracture surgery. Clinical and biomechanical studies on the Medoff sliding plate and the Twin hook. *Acta Orthop Scand Suppl.* 2000;2951-31.

926. Vossinakis IC, Badras LS. Management of pertrochanteric fractures in high-risk patients with an external fixation. *Int Orthop.* 2001;25(4):219-22.

927. Kosygan KP, Mohan R, Newman RJ. The Gotfried percutaneous compression plate compared with the conventional classic hip screw for the fixation of intertrochanteric fractures of the hip. *J Bone Joint Surg Br.* 2002;84(1):19-22.

928. Peyser A, Weil Y, Brocke L, Manor O, Mosheiff R, Liebergall M. Percutaneous compression plating versus compression hip screw fixation for the treatment of intertrochanteric hip fractures. *Injury*. 2005;36(11):1343-9.
929. Birrell F, Johnell O, Silman A. Projecting the need for hip replacement over the next three decades: influence of changing demography and threshold for surgery. *Ann Rheum Dis*. 1999;58(9):569-72.

930. Danielsson L, Lindberg H. Prevalence of coxarthrosis in an urban population during four decades. *Clin Orthop Relat Res.* 1997(342):106-10.

931. Moreschini OG, M.C. Margertini, F. Chiatti, R. A clinical and electromyographic review of the lateral and postero-lateral approaches to the hip after prosthetic replacement. *Hip International*. 1996;6(1):40-7.

932. Parker MJ, Handoll HH, Bhargara A. Conservative versus operative treatment for hip fractures. *Cochrane Database Syst Rev.* 2000(4):CD000337.

933. Webb MR, Borrill JK. Early and delayed fixation of hip fractures. *J Bone Joint Surg Am*. 2003;85-A(11):2247; author reply

934. Jain R, Basinski A, Kreder HJ. Nonoperative treatment of hip fractures. Int Orthop. 2003;27(1):11-7.

935. Manninger J, Kazar G, Fekete G, et al. Significance of urgent (within 6h) internal fixation in the management of fractures of the neck of the femur. *Injury*. 1989;20(2):101-5.

936. Orosz GM, Magaziner J, Hannan EL, et al. Association of timing of surgery for hip fracture and patient outcomes. *JAMA*. 2004;291(14):1738-43.

937. Lovell D. Skin bacteria: their location with reference to skin sterilization. *Surg, Gynec & Obst* 1945;80174-7.
938. Shepherd RC, Kinmonth JB. Skin preparation and towelling in prevention of wound infection. *Br Med J.*1962;2(5298):151-3.

939. Chiu KY, Lau SK, Fung B, Ng KH, Chow SP. Plastic adhesive drapes and wound infection after hip fracture surgery. *Aust N Z J Surg.* 1993;63(10):798-801.

940. Cruse PJ, Foord R. The epidemiology of wound infection. A 10-year prospective study of 62,939 wounds. *Surg Clin North Am.* 1980;60(1):27-40.

941. Cole WR. Wound isolation in the prevention of post-operative wound infection. *Surgery, gynecology and obstetrics*. 1967;125257-60.

942. Keating JF, Grant A, Masson M, Scott NW, Forbes JF. Randomized comparison of reduction and fixation, bipolar hemiarthroplasty, and total hip arthroplasty. Treatment of displaced intracapsular hip fractures in healthy older patients. *J Bone Joint Surg Am.* 2006;88(2):249-60.

943. Baker RP, Squires B, Gargan MF, Bannister GC. Total hip arthroplasty and hemiarthroplasty in mobile, independent patients with a displaced intracapsular fracture of the femoral neck. A randomized, controlled trial. *J Bone Joint Surg Am.* 2006;88(12):2583-9.

944. Kim SY, Kim YG, Hwang JK. Cementless calcar-replacement hemiarthroplasty compared with intramedullary fixation of unstable intertrochanteric fractures. A prospective, randomized study. *J Bone Joint Surg Am.* 2005;87(10):2186-92.

945. Blomfeldt R, Tornkvist H, Ponzer S, Soderqvist A, Tidermark J. Comparison of internal fixation with total hip replacement for displaced femoral neck fractures. Randomized, controlled trial performed at four years. *J Bone Joint Surg Am.* 2005;87(8):1680-8.

946. Dorr LD, Glousman R, Hoy AL, Vanis R, Chandler R. Treatment of femoral neck fractures with total hip replacement versus cemented and noncemented hemiarthroplasty. *J Arthroplasty*. 1986;1(1):21-8.

947. Sikorski JM, Barrington R. Internal fixation versus hemiarthroplasty for the displaced subcapital fracture of the femur. A prospective randomised study. *J Bone Joint Surg Br.* 1981;63-B(3):357-61.

948. Skinner P, Riley D, Ellery J, Beaumont A, Coumine R, Shafighian B. Displaced subcapital fractures of the femur: a prospective randomized comparison of internal fixation, hemiarthroplasty and total hip replacement. *Injury*. 1989;20(5):291-3.

949. Parker MJ, Handoll HH. Replacement arthroplasty versus internal fixation for extracapsular hip fractures in adults. *Cochrane Database Syst Rev.* 2006(2):CD000086.

950. Swiontkowski MF, Harrington RM, Keller TS, Van Patten PK. Torsion and bending analysis of internal fixation techniques for femoral neck fractures: the role of implant design and bone density. *J Orthop Res.* 1987;5(3):433-44.

951. Deneka DA, Simonian PT, Stankewich CJ, Eckert D, Chapman JR, Tencer AF. Biomechanical comparison of internal fixation techniques for the treatment of unstable basicervical femoral neck fractures. *J Orthop Trauma*. 1997;11(5):337-43.

952. Husby T, Alho A, Hoiseth A, Fonstelien E. Strength of femoral neck fracture fixation. Comparison of six techniques in cadavers. *Acta Orthop Scand.* 1987;58(6):634-7.

953. Mizrahi J, Hurlin RS, Taylor JK, Solomon L. Investigation of load transfer and optimum pin configuration in the internal fixation, by Muller screws, of fractured femoral necks. *Med Biol Eng Comput.* 1980;18(3):319-25.

954. Engesaeter LB, Asserson O, Molster A, Gjerdet NR, Langeland N. Stability of femoral neck osteotomies fixed by von Bahr screws or by compression hip screw. *Eur Surg Res.* 1984;16 Suppl 237-40.

955. Rubin R, Trent P, Arnold W, Burstein A. Knowles pinning of experimental femoral neck fractures: biomechanical study. *J Trauma*. 1981;21(12):1036-9.

956. Moroni A, Faldini C, Pegreffi F, Hoang-Kim A, Vannini F, Giannini S. Dynamic hip screw compared with external fixation for treatment of osteoporotic pertrochanteric fractures. A prospective, randomized study. *J Bone Joint Surg Am*. 2005;87(4):753-9.

957. Banks H. Factors influencing the result in fractures of the femoral neck. *J Bone Joint Surg.* 1962;44-A(931).

958. Banks HH. Nonunion in fractures of the femoral neck. *Orthop Clin North Am.* 1974;5(4):865-85.

959. Kaplan K, Miyamoto R, Levine BR, Egol KA, Zuckerman JD. Surgical management of hip fractures: an evidence-based review of the literature. II: intertrochanteric fractures. *J Am Acad Orthop Surg.* 2008;16(11):665-73.
960. Crane JG, Kernek CB. Mortality associated with hip fractures in a single geriatric hospital and residential health facility: a ten-year review. *J Am Geriatr Soc.* 1983;31(8):472-5.

961. Dahl E. Mortality and life expectancy after hip fractures. Acta Orthop Scand. 1980;51(1):163-70.

962. Parker MJ, Handoll HH. Gamma and other cephalocondylic intramedullary nails versus extramedullary implants for extracapsular hip fractures in adults. *Cochrane Database Syst Rev.* 2008(3):CD000093.

963. Parker MJ, Handoll HH. Intramedullary nails for extracapsular hip fractures in adults. *Cochrane Database Syst Rev.* 2006;3CD004961.

964. Parker MJ, Handoll HH. Extramedullary fixation implants and external fixators for extracapsular hip fractures. *Cochrane Database Syst Rev.* 2006(1):CD000339.

965. Alobaid A, Harvey EJ, Elder GM, Lander P, Guy P, Reindl R. Minimally invasive dynamic hip screw: prospective randomized trial of two techniques of insertion of a standard dynamic fixation device. *J Orthop Trauma*. 2004;18(4):207-12.

966. Starr AJ, Hay MT, Reinert CM, Borer DS, Christensen KC. Cephalomedullary nails in the treatment of highenergy proximal femur fractures in young patients: a prospective, randomized comparison of trochanteric versus piriformis fossa entry portal. *J Orthop Trauma*. 2006;20(4):240-6.

967. Janzing HM, Houben BJ, Brandt SE, et al. The Gotfried PerCutaneous Compression Plate versus the Dynamic Hip Screw in the treatment of pertrochanteric hip fractures: minimal invasive treatment reduces operative time and postoperative pain. *J Trauma*. 2002;52(2):293-8.

968. Schipper IB, Steyerberg EW, Castelein RM, et al. Treatment of unstable trochanteric fractures.
Randomised comparison of the gamma nail and the proximal femoral nail. *J Bone Joint Surg Br.* 2004;86(1):86-94.
969. McLaren CA, Buckley JR, Rowley DI. Intertrochanteric fractures of the femur: a randomized prospective trial comparing the Pugh nail with the dynamic hip screw. *Injury.* 1991;22(3):193-6.

970. Utrilla AL, Reig JS, Munoz FM, Tufanisco CB. Trochanteric gamma nail and compression hip screw for trochanteric fractures: a randomized, prospective, comparative study in 210 elderly patients with a new design of the gamma nail. *J Orthop Trauma*. 2005;19(4):229-33.

971. Park SR, Kang JS, Kim HS, Lee WH, Kim YH. Treatment of intertrochanteric fracture with the Gamma AP locking nail or by a compression hip screw--a randomised prospective trial. *Int Orthop.* 1998;22(3):157-60.

972. Fritz T, Hiersemann K, Krieglstein C, Friedl W. Prospective randomized comparison of gliding nail and gamma nail in the therapy of trochanteric fractures. *Arch Orthop Trauma Surg.* 1999;119(1-2):1-6.

973. Barker R, Kober A, Hoerauf K, et al. Out-of-hospital auricular acupressure in elder patients with hip fracture: a randomized double-blinded trial. *Acad Emerg Med.* 2006;13(1):19-23.

974. Usichenko TI, Dinse M, Hermsen M, Witstruck T, Pavlovic D, Lehmann C. Auricular acupuncture for pain relief after total hip arthroplasty - a randomized controlled study. *Pain.* 2005;114(3):320-7.

975. Varley GW, Milner SA. Wound drains in proximal femoral fracture surgery: a randomized prospective trial of 177 patients. *J R Coll Surg Edinb.* 1995;40(6):416-8.

976. Wilkinson JM, Stockley I, Peel NF, et al. Effect of pamidronate in preventing local bone loss after total hip arthroplasty: a randomized, double-blind, controlled trial. *J Bone Miner Res.* 2001;16(3):556-64.

977. Hoffman CW, Lynskey TG. Intertrochanteric fractures of the femur: a randomized prospective comparison of the Gamma nail and the Ambi hip screw. *Aust N Z J Surg.* 1996;66(3):151-5.

978. Adams CI, Robinson CM, Court-Brown CM, McQueen MM. Prospective randomized controlled trial of an intramedullary nail versus dynamic screw and plate for intertrochanteric fractures of the femur. *J Orthop Trauma*. 2001;15(6):394-400.

979. Ekstrom W, Karlsson-Thur C, Larsson S, Ragnarsson B, Alberts KA. Functional outcome in treatment of unstable trochanteric and subtrochanteric fractures with the proximal femoral nail and the Medoff sliding plate. *J Orthop Trauma*. 2007;21(1):18-25.

980. O'Brien PJ, Meek RN, Blachut PA, Broekhuyse HM, Sabharwal S. Fixation of intertrochanteric hip fractures: gamma nail versus dynamic hip screw. A randomized, prospective study. *Can J Surg.* 1995;38(6):516-20.
981. Sadowski C, Lubbeke A, Saudan M, Riand N, Stern R, Hoffmeyer P. Treatment of reverse oblique and transverse intertrochanteric fractures with use of an intramedullary nail or a 95 degrees screw-plate: a prospective

transverse intertrochanteric fractures with use of an intramedullary nail or a 95 degrees screw-plate: a prospective, randomized study. *J Bone Joint Surg Am*. 2002;84-A(3):372-81.

982. Saudan M, Lubbeke A, Sadowski C, Riand N, Stern R, Hoffmeyer P. Pertrochanteric fractures: is there an advantage to an intramedullary nail?: a randomized, prospective study of 206 patients comparing the dynamic hip screw and proximal femoral nail. *J Orthop Trauma*. 2002;16(6):386-93.

983. Vossinakis IC, Badras LS. The external fixator compared with the sliding hip screw for pertrochanteric fractures of the femur. *J Bone Joint Surg Br.* 2002;84(1):23-9.

984. Brandt SE, Lefever S, Janzing HM, Broos PL, Pilot P, Houben BJ. Percutaneous compression plating (PCCP) versus the dynamic hip screw for pertrochanteric hip fractures: preliminary results. *Injury*. 2002;33(5):413-8.

985. Baumgaertner MR, Curtin SL, Lindskog DM. Intramedullary versus extramedullary fixation for the treatment of intertrochanteric hip fractures. *Clin Orthop Relat Res.* 1998(348):87-94.

986. Olsson O, Ceder L, Hauggaard A. Femoral shortening in intertrochanteric fractures. A comparison between the Medoff sliding plate and the compression hip screw. *J Bone Joint Surg Br.* 2001;83(4):572-8.

987. Pajarinen J, Lindahl J, Michelsson O, Savolainen V, Hirvensalo E. Pertrochanteric femoral fractures treated with a dynamic hip screw or a proximal femoral nail. A randomised study comparing post-operative rehabilitation. *J Bone Joint Surg Br.* 2005;87(1):76-81.

988. Ahrengart L, Tornkvist H, Fornander P, et al. A randomized study of the compression hip screw and Gamma nail in 426 fractures. *Clin Orthop Relat Res.* 2002(401):209-22.

989. Bridle SH, Patel AD, Bircher M, Calvert PT. Fixation of intertrochanteric fractures of the femur. A randomised prospective comparison of the gamma nail and the dynamic hip screw. *J Bone Joint Surg Br.* 1991;73(2):330-4.

990. Lunsjo K, Ceder L, Thorngren KG, et al. Extramedullary fixation of 569 unstable intertrochanteric fractures: a randomized multicenter trial of the Medoff sliding plate versus three other screw-plate systems. *Acta Orthop Scand.* 2001;72(2):133-40.

991. Leung KS, So WS, Shen WY, Hui PW. Gamma nails and dynamic hip screws for peritrochanteric fractures. A randomised prospective study in elderly patients. *J Bone Joint Surg Br.* 1992;74(3):345-51.

992. Vidyadhara S, Rao SK. One and two femoral neck screws with intramedullary nails for unstable trochanteric fractures of femur in the elderly--randomised clinical trial. *Injury*. 2007;38(7):806-14.

993. Mattsson P, Larsson S. Unstable trochanteric fractures augmented with calcium phosphate cement. A prospective randomized study using radiostereometry to measure fracture stability. *Scand J Surg.* 2004;93(3):223-8.

994. Hardy DC, Delince PE. Intramedullary hip screw (IMIS) versus compression hip screw plate (CHSP) for intertrochanteric hip fractures. A prospective randomised trial of 160 patients. *J Bone Joint Surg.* 1999;81(Suppl 2):163-4.

995. Goldhagen PR, O'Connor DR, Schwarze D, Schwartz E. A prospective comparative study of the compression hip screw and the gamma nail. *J Orthop Trauma*. 1994;8(5):367-72.

996. Fornander P, Thorngren KG, Tornqvist H, Ahrengart L, Lindgren U. Swedish experience with the gamma nail versus sliding hip screw in 209 randomised cases. *Intl J Orthop Trauma*. 1994;4(3):118-22.

997. Dujardin FH, Benez C, Polle G, Alain J, Biga N, Thomine JM. Prospective randomized comparison between a dynamic hip screw and a mini-invasive static nail in fractures of the trochanteric area: preliminary results. *J Orthop Trauma*. 2001;15(6):401-6.

998. Papasimos S, Koutsojannis CM, Panagopoulos A, Megas P, Lambiris E. A randomised comparison of AMBI, TGN and PFN for treatment of unstable trochanteric fractures. *Arch Orthop Trauma Surg.* 2005;125(7):462-8.

999. Esser MP, Kassab JY, Jones DH. Trochanteric fractures of the femur. A randomised prospective trial comparing the Jewett nail-plate with the dynamic hip screw. *J Bone Joint Surg Br.* 1986;68(4):557-60.

1000. Davis TR, Sher JL, Checketts RG, Porter BB. Intertrochanteric fractures of the femur: a prospective study comparing the use of the Kuntscher-Y nail and a sliding hip screw. *Injury*. 1988;19(6):421-6.

1001. Butt MS, Krikler SJ, Nafie S, Ali MS. Comparison of dynamic hip screw and gamma nail: a prospective, randomized, controlled trial. *Injury*. 1995;26(9):615-8.

1002. Cornell CN, Levine D, O'Doherty J, Lyden J. Unipolar versus bipolar hemiarthroplasty for the treatment of femoral neck fractures in the elderly. *Clin Orthop Relat Res.* 1998(348):67-71.

1003. Macaulay W, Nellans KW, Garvin KL, Iorio R, Healy WL, Rosenwasser MP. Prospective randomized clinical trial comparing hemiarthroplasty to total hip arthroplasty in the treatment of displaced femoral neck fractures: winner of the Dorr Award. *J Arthroplasty*. 2008;23(6 Suppl 1):2-8.

1004. Parker MJ, Khan RJ, Crawford J, Pryor GA. Hemiarthroplasty versus internal fixation for displaced intracapsular hip fractures in the elderly. A randomised trial of 455 patients. *J Bone Joint Surg Br.* 2002;84(8):1150-5.

1005. Lamade WR, Friedl W, Schmid B, Meeder PJ. Bone cement implantation syndrome. A prospective randomised trial for use of antihistamine blockade. *Arch Orthop Trauma Surg.* 1995;114(6):335-9.

1006. Calder SJ, Anderson GH, Jagger C, Harper WM, Gregg PJ. Unipolar or bipolar prosthesis for displaced intracapsular hip fracture in octogenarians: a randomised prospective study. *J Bone Joint Surg Br.* 1996;78(3):391-4.

1007. Raia FJ, Chapman CB, Herrera MF, Schweppe MW, Michelsen CB, Rosenwasser MP. Unipolar or bipolar hemiarthroplasty for femoral neck fractures in the elderly? *Clin Orthop Relat Res*. 2003(414):259-65.

1008. Field RE, Rushton N. Five-year clinical, radiological and postmortem results of the Cambridge Cup in patients with displaced fractures of the neck of the femur. *J Bone Joint Surg Br.* 2005;87(10):1344-51.

1009. El-Abed K, McGuinness A, Brunner J, Dallovedova P, O'Connor P, Kennedy JG. Comparison of outcomes following uncemented hemiarthroplasty and dynamic hip screw in the treatment of displaced subcapital hip fractures in patients aged greater than 70 years. *Acta Orthop Belg.* 2005;71(1):48-54.

1010. Emery RJ, Broughton NS, Desai K, Bulstrode CJ, Thomas TL. Bipolar hemiarthroplasty for subcapital fracture of the femoral neck. A prospective randomised trial of cemented Thompson and uncemented Moore stems. *J Bone Joint Surg Br.* 1991;73(2):322-4.

1011. Santini S, Rebeccato A, Bolgan I, Turi G. Hip fractures in elderly patients treated with hemiarthoplasty: comparison between cemented and cementless hip implants. *Ital J Orthop Traumatol.* 2005;680-7.

1012. Cameron CD, Meek RN, Blachut PA, O'Brien PJ, Pate GC. Intramedullary nailing of the femoral shaft: a prospective, randomized study. *J Orthop Trauma*. 1992;6(4):448-51.

1013. Mattsson P, Alberts A, Dahlberg G, Sohlman M, Hyldahl HC, Larsson S. Resorbable cement for the augmentation of internally-fixed unstable trochanteric fractures. A prospective, randomised multicentre study. *J Bone Joint Surg Br.* 2005;87(9):1203-9.

1014. Lilly HA, Lowbury EJ, London PS, Porter MF. Effects of adhesive drapes on contamination of operation wounds. *Lancet*. 1970;2(7670):431-2.

1015. Usichenko TI, Dinse M, Lysenyuk VP, Wendt M, Pavlovic D, Lehmann C. Auricular acupuncture reduces intraoperative fentanyl requirement during hip arthroplasty--a randomized double-blinded study. *Acupunct Electrother Res.* 2006;31(3-4):213-21.

1016. Sonne-Holm S, Walter S, Jensen JS. Moore hemi-arthroplasty with and without bone cement in femoral neck fractures. A clinical controlled trial. *Acta Orthop Scand.* 1982;53(6):953-6.

1017. Raahave D. Effect of plastic skin and wound drapes on the density of bacteria in operation wounds. *Br J Surg.* 1976;63(6):421-6.

1018. Jackson DW, Pollock AV, Tindal DS. The value of a plastic adhesive drape in the prevention of wound infection. A controlled trial. *Br J Surg.* 1971;58(5):340-2.

1019. Buciuto R, Hammer R, Herder A. Spontaneous subcapital femoral neck fracture after healed trochanteric fracture. *Clin Orthop Relat Res.* 1997(342):156-63.

1020. Buciuto R, Uhlin B, Hammerby S, Hammer R. RAB-plate vs Richards CHS plate for unstable trochanteric hip fractures. A randomized study of 233 patients with 1-year follow-up. *Acta Orthop Scand*. 1998;69(1):25-8.

1021. Mehdi S, Kinninmonth A, Macleod C, al. e. Extrascapular hip fracture fixation: a perspective randomised comparison of the intramedullary hip screw with the sliding hip screw. *Injury*. 2000;31287.

1022. Benum P, Grontvedt T, Braten M, al. e. Gamma nailing versus CHS in intertrochanteric and subtrochanteric femoral fractures: a prospective randomized multicentre study. *Acta Orthop Scand Suppl.* 1994;26033-4.

1023. Hogh J, Andersen K, Duus B, Hansen D, Hellberg S, Jakobsen B, et al. Gamma nail versus DHS in the treatment of trochanteric and subtrochanteric fractures. *Orthopaedic Transactions*. 1993;171049.

1024. Sadr B, Arden GP. A comparison of the stability of proplast-coated and cemented Thompson prostheses in the treatment of subcapital femoral fractures. *Injury*. 1977;8(3):234-7.

1025. Calder SJ, Anderson GH, Harper WM, Jagger C, Gregg PJ. A subjective health indicator for follow-up. A randomised trial after treatment of displaced intracapsular hip fractures. *J Bone Joint Surg Br.* 1995;77(3):494-6. 1026. Herrera A, Domingo LJ, Calvo A, Martinez A, Cuenca J. A comparative study of trochanteric fractures treated with the Gamma nail or the proximal femoral nail. *Int Orthop.* 2002;26(6):365-9.

1027. Bannister GC, Gibson AG, Ackroyd CE, Newman JH. The fixation and prognosis of trochanteric fractures. A randomized prospective controlled trial. *Clin Orthop Relat Res.* 1990(254):242-6.

1028. Pitsaer E, Samuel AW. Functional outcome after intertrochanteric fractures of the femur: does the implant matter? A prospective study of 100 consecutive cases. *Injury*. 1993;24(1):35-6.

1029. Ekeland A, Aune AK, Odegaard B, al. e. Reoperations after use of gamma nail or hip compression screw for proximal femoral fractures. *J Bone Joint Surg.* 1993;75(Suppl 2):199.

1030. Madsen JE, Naess L, Aune AK, al. e. Unstable per and subtrochanteric femoral fractures- a comparison of treatment with the Gamma nail, compression hip screw, or dynamic hip screw with a trochanter stabilizing plate. *Acta Orthop Scand Suppl.* 1996;27035-6.
1031. Aune A, Odegaard B, Grogaard B, Alho A. Complications after Gamma nailing of proximal femoral fractures. *Orthopaedic Transactions*. 1993;171049.

1032. Michos I, Brakoulakis E, Pastroudis A, Loutriotis A. The Gamma nail system compared to sliding nail and plate for peritrochanteric fractures *J Bone Joint Surg*. 2001;83(Suppl 2):193.

1033. Harrington P, Nihal A, Singania A, Howell F. Compression hip syndrome or intramedullary hip screw for unstable peritrochanteric fracutres? A prospective randomized trial. *J Bone Joint Surg Br.* 1999;81(Suppl 3):296. 1034. Saudan M, Lubbeke A, Sadowski C, Riand N, Stern R, Hoffmeyer P. The proximal femoral nail (PEN) and the dynamic hip screw (DHS): a prospective clinical trial. *J Bone Joint Surg Br.* 1999;81(Suppl 2):163.

1035. Mott M, Kronik J, Fitzgerald R. Gamma nail versus the sliding hip screw: A perspective randomized comparison *Orthoaepedic Transaction*. 1993;171049.

1036. Rorabeck CH, Bourne RB, Laupacis A, et al. A double-blind study of 250 cases comparing cemented with cementless total hip arthroplasty. Cost-effectiveness and its impact on health-related quality of life. *Clin Orthop Relat Res.* 1994(298):156-64.

1037. Rorabeck C, Bourne R, Mulliken B, et al. The Nicolas Andry award: comparative results of cemented and cementless total hip arthroplasty. *Clin Orthop Relat Res.* 1996;325330-44.

1038. Laupacis A, Bourne R, Rorabeck C, Feeny D, Tugwell P, Wong C. Comparison of total hip arthroplasty performed with and without cement : a randomized trial. *J Bone Joint Surg Am*. 2002;84-A(10):1823-8.

1039. Laupacis A, Bourne R, Rorabeck C, et al. The effect of elective total hip replacement on health-related quality of life. *J Bone Joint Surg Am.* 1993;75(11):1619-26.

1040. Havelin LI, Engesaeter LB, Espehaug B, Furnes O, Lie SA, Vollset SE. The Norwegian Arthroplasty Register: 11 years and 73,000 arthroplasties. *Acta Orthop Scand*. 2000;71(4):337-53.

1041. Malchau H, Herberts P, Ahnfelt L. Prognosis of total hip replacement in Sweden. Follow-up of 92,675 operations performed 1978-1990. *Acta Orthop Scand*. 1993;64(5):497-506.

1042. Capello WN, D'Antonio JA, Feinberg JR, Manley MT. Hydroxyapatite-coated total hip femoral components in patients less than fifty years old. Clinical and radiographic results after five to eight years of follow-up. *J Bone Joint Surg Am.* 1997;79(7):1023-9.

1043. Colizza WA, Insall JN, Scuderi GR. The posterior stabilized total knee prosthesis. Assessment of polyethylene damage and osteolysis after a ten-year-minimum follow-up. *J Bone Joint Surg Am*. 1995;77(11):1713-20.

1044. Keggi KJ, Huo MH, Zatorski LE. Anterior approach to total hip replacement: surgical technique and clinical results of our first one thousand cases using non-cemented prostheses. *Yale J Biol Med.* 1993;66(3):243-56. 1045. Zimmerman S, Hawkes W, JI H, al e. Outcomes of surgical management of total HIP replacement in patients aged 65 years and older; competed versus competed compete

patients aged 65 years and older: cemented versus cementless femoral components and lateral or anterolateral versus posterior anatomical approach. *J Orthop Res.* 2002;20182-91.

1046. Callaghan JJ, Templeton JE, Liu SS, et al. Results of Charnley total hip arthroplasty at a minimum of thirty years. A concise follow-up of a previous report. *J Bone Joint Surg Am.* 2004;86-A(4):690-5.

1047. Berry DJ, Harmsen WS, Cabanela ME, Morrey BF. Twenty-five-year survivorship of two thousand consecutive primary Charnley total hip replacements: factors affecting survivorship of acetabular and femoral components. *J Bone Joint Surg Am*. 2002;84-A(2):171-7.

1048. Diduch DR, Insall JN, Scott WN, Scuderi GR, Font-Rodriguez D. Total knee replacement in young, active patients. Long-term follow-up and functional outcome. *J Bone Joint Surg Am.* 1997;79(4):575-82.

1049. Engh CA, Jr., Culpepper WJ, 2nd, Engh CA. Long-term results of use of the anatomic medullary locking prosthesis in total hip arthroplasty. *J Bone Joint Surg Am*. 1997;79(2):177-84.

1050. Schulte KR, Callaghan JJ, Kelley SS, Johnston RC. The outcome of Charnley total hip arthroplasty with cement after a minimum twenty-year follow-up. The results of one surgeon. *J Bone Joint Surg Am.* 1993;75(7):961-75.

1051. Smith SE, Harris WH. Total hip arthroplasty performed with insertion of the femoral component with cement and the acetabular component without cement. Ten to thirteen-year results. *J Bone Joint Surg Am*. 1997;79(12):1827-33.

1052. Collis DK. Cemented total hip replacement in patients who are less than fifty years old. *J Bone Joint Surg Am.* 1984;66(3):353-9.

1053. Ries MD, Philbin EF, Groff GD, Sheesley KA, Richman JA, Lynch F, Jr. Effect of total hip arthroplasty on cardiovascular fitness. *J Arthroplasty*. 1997;12(1):84-90.

1054. Visuri T, Honkanen R. Total hip replacement: its influence on spontaneous recreation exercise habits. *Arch Phys Med Rehabil.* 1980;61(7):325-8.

1055. Gschwend N, Frei T, Morscher E, Nigg B, Loehr J. Alpine and cross-country skiing after total hip replacement: 2 cohorts of 50 patients each, one active, the other inactive in skiing, followed for 5-10 years. *Acta Orthop Scand.* 2000;71(3):243-9.

1056. Mallon WJ, Callaghan JJ. Total hip arthroplasty in active golfers. *J Arthroplasty*. 1992;7 Suppl339-46. 1057. Powell R, Allan JL, Johnston DW, et al. Activity and affect: repeated within-participant assessment in people after joint replacement surgery. *Rehabil Psychol*. 2009;54(1):83-90.

1058. Jacobs CA, Christensen CP, Berend ME. Sport activity after total hip arthroplasty: changes in surgical technique, implant design, and rehabilitation. *J Sport Rehabil.* 2009;18(1):47-59.

1059. Rodway NV, Rodway GW. Return to mountain sports after minimally invasive two-incision hip arthroplasty. *Wilderness Environ Med.* 2008;19(4):316-7.

1060. Healy WL, Sharma S, Schwartz B, Iorio R. Athletic activity after total joint arthroplasty. *J Bone Joint Surg Am.* 2008;90(10):2245-52.

1061. Ong KL, Manley MT, Kurtz SM. Have contemporary hip resurfacing designs reached maturity? A review. *J Bone Joint Surg Am.* 2008;90 Suppl 381-8.

1062. Amstutz HC, Le Duff MJ, Harvey N, Hoberg M. Improved survivorship of hybrid metal-on-metal hip resurfacing with second-generation techniques for Crowe-I and II developmental dysplasia of the hip. *J Bone Joint Surg Am.* 2008;90 Suppl 312-20.

1063. Buergi ML, Walter WL. Hip resurfacing arthroplasty: the Australian experience. *J Arthroplasty*. 2007;22(7 Suppl 3):61-5.

1064. Jager M, Begg M, Krauspe R. Partial hemi-resurfacing of the hip joint--a new approach to treat local osteochondral defects? *Biomed Tech.* 2006;51(5-6):371-6.

1065. Grecula MJ. Resurfacing arthroplasty in osteonecrosis of the hip. *Orthop Clin North Am.* 2005;36(2):231-42, x.

1066. Schmalzried TP. Total resurfacing for osteonecrosis of the hip. *Clin Orthop Relat Res.* 2004(429):151-6.

1067. Howie DW, McGee MA, Costi K, Graves SE. Metal-on-metal resurfacing versus total hip replacement-the value of a randomized clinical trial. *Orthop Clin North Am.* 2005;36(2):195-201, ix.

1068. Altman RD, Abadie E, Avouac B, et al. Total joint replacement of hip or knee as an outcome measure for structure modifying trials in osteoarthritis. *Osteoarthritis Cartilage*. 2005;13(1):13-9.

1069. Hartl A, Schillinger M, Wanivenhaus A. Cemented versus cementless total hip arthroplasty for osteoarthrosis and other non-traumatic diseases (Protocol). *Cochrane Database Syst Rev.* 2004;Art. No.: CD004850. DOI: 10.1002/14651858.CD004850.(3).

1070. Greenfield S, Apolone G, McNeil BJ, Cleary PD. The importance of co-existent disease in the occurrence of postoperative complications and one-year recovery in patients undergoing total hip replacement. Comorbidity and outcomes after hip replacement. *Med Care*. 1993;31(2):141-54.

1071. Onsten I, Carlsson AS, Ohlin A, Nilsson JA. Migration of acetabular components, inserted with and without cement, in one-stage bilateral hip arthroplasty. A controlled, randomized study using

roentgenstereophotogrammetric analysis. J Bone Joint Surg Am. 1994;76(2):185-94.

1072. Altman RD, Akermark C, Beaulieu AD, Schnitzer T. Efficacy and safety of a single intra-articular injection of non-animal stabilized hyaluronic acid (NASHA) in patients with osteoarthritis of the knee. *Osteoarthritis Cartilage*. 2004;12(8):642-9.

1073. Harris WH. Surgical approach and technique of cup arthroplasty. *Surg Clin North Am.* 1969;49(4):763-74. 1074. Lavigne M, Therrien M, Nantel J, Roy A, Prince F, Vendittoli PA. The John Charnley Award: The functional outcome of hip resurfacing and large-head THA is the same: a randomized, double-blind study. *Clin Orthop Relat Res.* 2010;468(2):326-36.

1075. Garbuz DS, Tanzer M, Greidanus NV, Masri BA, Duncan CP. The John Charnley Award: Metal-on-metal hip resurfacing versus large-diameter head metal-on-metal total hip arthroplasty: a randomized clinical trial. *Clin Orthop Relat Res.* 2010;468(2):318-25.

1076. Back DL, Dalziel R, Young D, Shimmin A. Early results of primary Birmingham hip resurfacings. An independent prospective study of the first 230 hips. *J Bone Joint Surg Br.* 2005;87(3):324-9.

1077. Girard J, Lavigne M, Vendittoli PA, Roy AG. Biomechanical reconstruction of the hip: a randomised study comparing total hip resurfacing and total hip arthroplasty. *J Bone Joint Surg Br.* 2006;88(6):721-6.

1078. Vale L, Wyness L, McCormack K, McKenzie L, Brazzelli M, Stearns SC. A systematic review of the effectiveness and cost-effectiveness of metal-on-metal hip resurfacing arthroplasty for treatment of hip disease. *Health Technol Assess*. 2002;6(15):1-109.

1079. Vendittoli PA, Lavigne M, Girard J, Roy AG. A randomised study comparing resection of acetabular bone at resurfacing and total hip replacement. *J Bone Joint Surg Br.* 2006;88(8):997-1002.

1080. Jolles BM, Bogoch ER. Posterior versus lateral surgical approach for total hip arthroplasty in adults with osteoarthritis. *Cochrane Database Syst Rev.* 2006;3CD003828.

1081. Baker AS, Bitounis VC. Abductor function after total hip replacement. An electromyographic and clinical review. *J Bone Joint Surg Br.* 1989;71(1):47-50.

1082. Barber TC, Roger DJ, Goodman SB, Schurman DJ. Early outcome of total hip arthroplasty using the direct lateral vs the posterior surgical approach. *Orthopedics*. 1996;19(10):873-5.

1083. Downing ND, Clark DI, Hutchinson JW, Colclough K, Howard PW. Hip abductor strength following total hip arthroplasty: a prospective comparison of the posterior and lateral approach in 100 patients. *Acta Orthop Scand*. 2001;72(3):215-20.

1084. Weale AE, Newman P, Ferguson IT, Bannister GC. Nerve injury after posterior and direct lateral approaches for hip replacement. A clinical and electrophysiological study. *J Bone Joint Surg Br.* 1996;78(6):899-902.

1085. Pellicci PM, Bostrom M, Poss R. Posterior approach to total hip replacement using enhanced posterior soft tissue repair. *Clin Orthop Relat Res.* 1998(355):224-8.

1086. Mayr E, Krismer M, Ertl M, Kessler O, Thaler M, Nogler M. Uncompromised quality of the cement mantle in Exeter femoral components implanted through a minimally-invasive direct anterior approach. A prospective, randomised cadaver study. *J Bone Joint Surg Br.* 2006;88(9):1252-6.

1087. Berger RA. Total hip arthroplasty using the minimally invasive two-incision approach. *Clin Orthop Relat Res.* 2003(417):232-41.

1088. Berger RA, Jacobs JJ, Meneghini RM, Della Valle C, Paprosky W, Rosenberg AG. Rapid rehabilitation and recovery with minimally invasive total hip arthroplasty. *Clin Orthop Relat Res.* 2004(429):239-47.

1089. Berry DJ, Berger RA, Callaghan JJ, et al. Minimally invasive total hip arthroplasty. Development, early results, and a critical analysis. Presented at the Annual Meeting of the American Orthopaedic Association, Charleston, South Carolina, USA, June 14, 2003. *J Bone Joint Surg Am.* 2003;85-A(11):2235-46.

1090. DiGioia AM, 3rd, Plakseychuk AY, Levison TJ, Jaramaz B. Mini-incision technique for total hip arthroplasty with navigation. *J Arthroplasty*. 2003;18(2):123-8.

1091. Goldstein WM, Branson JJ, Berland KA, Gordon AC. Minimal-incision total hip arthroplasty. *J Bone Joint Surg Am.* 2003;85-A Suppl 433-8.

1092. Waldman BJ. Minimally invasive total hip replacement and perioperative management: early experience. *J South Orthop Assoc.* 2002;11(4):213-7.

1093. Wenz JF, Gurkan I, Jibodh SR. Mini-incision total hip arthroplasty: a comparative assessment of perioperative outcomes. *Orthopedics*. 2002;25(10):1031-43.

1094. Fick D, Nivbrant B. Minimally invasive surgical approaches for total hip arthroplasty in adults with osteoarthritis (Protocol). *Cochrane Database of Systematic Reviews*. 2004(2):Art. No.: CD004798. DOI: 10.1002/14651858.CD004798.

1095. Widman J, Isacson J. Lateral position reduces blood loss in hip replacement surgery: a prospective randomized study of 74 patients. *Int Orthop.* 2001;25(4):226-7.

1096. Ogonda L, Wilson R, Archbold P, et al. A minimal-incision technique in total hip arthroplasty does not improve early postoperative outcomes. A prospective, randomized, controlled trial. *J Bone Joint Surg Am.* 2005;87(4):701-10.

1097. MacDonald SJ, Rosenzweig S, Guerin JS, et al. Proximally versus fully porous-coated femoral stems: a multicenter randomized trial. *Clin Orthop Relat Res.* 2010;468(2):424-32.

1098. Song Y, Goodman SB, Jaffe RA. An in vitro study of femoral intramedullary pressures during hip replacement using modern cement technique. *Clin Orthop Relat Res.* 1994(302):297-304.

1099. Mallory TH. A plastic intermedullary plug for total hip arthroplasty. *Clin Orthop Relat Res.* 1981(155):37-40. 1100. Schauss SM, Hinz M, Mayr E, Bach CM, Krismer M, Fischer M. Inferior stability of a biodegradable cement plug. 122 total hip replacements randomized to degradable or non-degradable cement restrictor. *Arch Orthop Trauma Surg.* 2006;126(5):324-9.

1101. Prendergast PJ, Birthistle P, Waide DV, Kumar NV. An investigation of the performance of Biostop G and Hardinge bone plugs. *Proc Inst Mech Eng H.* 1999;213(4):361-5.

1102. Heisel C, Norman T, Rupp R, Pritsch M, Ewerbeck V, Breusch SJ. In vitro performance of intramedullary cement restrictors in total hip arthroplasty. *J Biomech*. 2003;36(6):835-43.

1103. Yee AJ, Binnington AG, Hearn T, Protzner K, Fornasier VL, Davey JR. Use of a polyglycolide lactide cement plug restrictor in total hip arthroplasty. *Clin Orthop Relat Res.* 1999(364):254-66.

1104. Thomsen NO, Jensen TT, Uhrbrand B, Mossing NB. Intramedullary plugs in total hip arthroplasty. A comparative study. *J Arthroplasty*. 1992;7 Suppl415-8.

1105. Wembridge KR, Hamer AJ. A prospective comparison of cement restrictor migration in primary total hip arthroplasty. *J Arthroplasty*. 2006;21(1):92-6.

1106. Kroon M, Visser CP, Mootanah R, Brand R. Performance of 3 gelatine-based resorbable cement plugs: a study on 15 synthetic femurs and a prospective randomized study on 103 patients. *Acta Orthop.* 2006;77(6):893-8. 1107. Black, Malcolm A, Hamer A. Femoral cement restrictors- friend or foe? *J Bone Joint Surg.* 2001;83-B(Suppl ii):214-?

1108. Howie DW, Cornish BL, Vernon-Roberts B. The viability of the femoral head after resurfacing hip arthroplasty in humans. *Clin Orthop Relat Res.* 1993(291):171-84.

1109. Northmore-Ball MD, Narang OV, Vergroesen D. Distal femoral plug migration with cement pressurization in revision surgery and a simple technique for its prevention. *J Arthroplasty*. 1991;6(3):199-201.

1110. Maltry JA, Noble PC, Kamaric E, Tullos HS. Factors influencing pressurization of the femoral canal during cemented total hip arthroplasty. *J Arthroplasty*. 1995;10(4):492-7.

1111. Davies JP, Harris WH. In vitro and in vivo studies of pressurization of femoral cement in total hip arthroplasty. *J Arthroplasty*. 1993;8(6):585-91.

1112. Johnson JA, Johnston D, el Hawary R, Tan SR, Wong LA, Gross M. Occlusion and stability of synthetic femoral canal plugs used in cemented hip arthroplasty. *J Appl Biomater*. 1995;6(3):213-8.

1113. Noble PC, Collier MB, Maltry JA, Kamaric E, Tullos HS. Pressurization and centralization enhance the quality and reproducibility of cement mantles. *Clin Orthop Relat Res.* 1998(355):77-89.

1114. Duncan JA. Intra-operative collapse or death related to the use of acrylic cement in hip surgery. *Anaesthesia*. 1989;44(2):149-53.

1115. Powell JN, McGrath PJ, Lahiri SK, Hill P. Cardiac arrest associated with bone cement. *Br Med J*. 1970;3(5718):326.

1116. Charnley J. Total hip replacement by low-friction arthroplasty. *Clin Orthop Relat Res.* 1970;727-21. 1117. Jones RH. Physiologic emboli changes observed during total hip replacement arthroplasty. A clinical prospective study. *Clin Orthop Relat Res.* 1975(112):192-200.

1118. Rasquinha VJ, Ranawat CS, Dua V, Ranawat AS, Rodriguez JA. A prospective, randomized, double-blind study of smooth versus rough stems using cement fixation: minimum 5-year follow-up. *J Arthroplasty*. 2004;19(7 Suppl 2):2-9.

1119. Nayak NK, Mulliken B, Rorabeck CH, Bourne RB, Robinson EJ. Osteolysis in cemented versus cementless acetabular components. *J Arthroplasty*. 1996;11(2):135-40.

1120. Karnezis TA, Stulberg SD, Wixson RL, Reilly P. The hemostatic effects of desmopressin on patients who had total joint arthroplasty. A double-blind randomized trial. *J Bone Joint Surg Am.* 1994;76(10):1545-50.

1121. Ostgaard HC, Helger L, Regner H, Garellick G. Femoral alignment of the Charnley stem: a randomized trial comparing the original with the new instrumentation in 123 hips. *Acta Orthop Scand*. 2001;72(3):228-32.

1122. Lachiewicz PF, Kelley SS, Soileau ES. Survival of polished compared with precoated roughened cemented femoral components. A prospective, randomized study. *J Bone Joint Surg Am*. 2008;90(7):1457-63.

1123. Garellick G, Malchau H, Herberts P. The Charnley versus the Spectron hip prosthesis: clinical evaluation of a randomized, prospective study of 2 different hip implants. *J Arthroplasty*. 1999;14(4):407-13.

1124. Nivbrant B, Karrholm J, Soderlund P. Increased migration of the SHP prosthesis: radiostereometric comparison with the Lubinus SP2 design in 40 cases. *Acta Orthop Scand*. 1999;70(6):569-77.

1125. Karrholm J, Malchau H, Snorrason F, Herberts P. Micromotion of femoral stems in total hip arthroplasty. A randomized study of cemented, hydroxyapatite-coated, and porous-coated stems with roentgen stereophotogrammetric analysis. *J Bone Joint Surg Am.* 1994;76(11):1692-705.

1126. Pabinger C, Kroner A, Lange A, Eyb R. Cemented titanium stems show high migration: transprosthetic drainage system has no advantage over third-generation cementation technique. *Arch Orthop Trauma Surg.* 2004;124(7):489-94.

1127. Incavo SJ, Schneider R, Elting J. The effect of surface coating of femoral prostheses implanted without cement: a 2- to 4-year follow-up study. *Am J Orthop*. 1998;27(5):355-61.

1128. Karrholm J, Anderberg C, Snorrason F, et al. Evaluation of a femoral stem with reduced stiffness. A randomized study with use of radiostereometry and bone densitometry. *J Bone Joint Surg Am.* 2002;84-A(9):1651-8.

1129. Christie J, Robinson CM, Singer B, Ray DC. Medullary lavage reduces embolic phenomena and cardiopulmonary changes during cemented hemiarthroplasty. *J Bone Joint Surg Br.* 1995;77(3):456-9.

1130. Faris PM, Ritter MA, Keating EM, Thong AE, Davis KE, Meding JB. The cemented all-polyethylene acetabular cup: factors affecting survival with emphasis on the integrated polyethylene spacer: an analysis of the effect of cement spacers, cement mantle thickness, and acetabular angle on the survival of total hip arthroplasty. *J Arthroplasty*. 2006;21(2):191-8.

1131. Rohrl SM, Nivbrant B, Strom H, Nilsson KG. Effect of augmented cup fixation on stability, wear, and osteolysis: a 5-year follow-up of total hip arthroplasty with RSA. *J Arthroplasty*. 2004;19(8):962-71.

1132. Thanner J, Karrholm J, Herberts P, Malchau H. Hydroxyapatite and tricalcium phosphate-coated cups with and without screw fixation: a randomized study of 64 hips. *J Arthroplasty*. 2000;15(4):405-12.

1133. Flivik G, Kristiansson I, Kesteris U, Ryd L. Is removal of subchondral bone plate advantageous in cemented cup fixation? A randomized RSA study. *Clin Orthop Relat Res.* 2006;448164-72.

1134. Devane PA, Robinson EJ, Bourne RB, Rorabeck CH, Nayak NN, Horne JG. Measurement of polyethylene wear in acetabular components inserted with and without cement. A randomized trial. *J Bone Joint Surg Am*. 1997;79(5):682-9.

1135. Pitto RP, Koessler M, Kuehle JW. Comparison of fixation of the femoral component without cement and fixation with use of a bone-vacuum cementing technique for the prevention of fat embolism during total hip arthroplasty. A prospective, randomized clinical trial. *J Bone Joint Surg Am.* 1999;81(6):831-43.

1136. Wykman A, Olsson E, Axdorph G, Goldie I. Total hip arthroplasty. A comparison between cemented and press-fit noncemented fixation. *J Arthroplasty*. 1991;6(1):19-29.

1137. Digas G, Thanner J, Anderberg C, Karrholm J. Bioactive cement or ceramic/porous coating vs. conventional cement to obtain early stability of the acetabular cup. Randomised study of 96 hips followed with radiostereometry. *J Orthop Res.* 2004;22(5):1035-43.

1138. Reigstad A, Rokkum M, Bye K, Brandt M. Femoral remodeling after arthroplasty of the hip. Prospective randomized 5-year comparison of 120 cemented/uncemented cases of arthrosis. *Acta Orthop Scand.* 1993;64(4):411-6.

1139. Carlsson AS, Nilsson JA, Blomgren G, Josefsson G, Lindberg LT, Onnerfalt R. Low- vs high-viscosity cement in hip arthroplasty. No radiographic difference in 226 arthrosis cases followed for 5 years. *Acta Orthop Scand.* 1993;64(3):257-62.

1140. Flivik G, Wulff K, Sanfridsson J, Ryd L. Improved acetabular pressurization gives better cement penetration: in vivo measurements during total hip arthroplasty. *J Arthroplasty*. 2004;19(7):911-8.

1141. Hallan G, Aamodt A, Furnes O, Skredderstuen A, Haugan K, Havelin LI. Palamed G compared with Palacos R with gentamicin in Charnley total hip replacement. A randomised, radiostereometric study of 60 HIPS. *J Bone Joint Surg Br.* 2006;88(9):1143-8.

1142. Nelissen RG, Garling EH, Valstar ER. Influence of cement viscosity and cement mantle thickness on migration of the Exeter total hip prosthesis. *J Arthroplasty*. 2005;20(4):521-8.

1143. McCaskie AW, Barnes MR, Lin E, Harper WM, Gregg PJ. Cement pressurisation during hip replacement. *J Bone Joint Surg Br.* 1997;79(3):379-84.

1144. Berger RA, Seel MJ, Wood K, Evans R, D'Antonio J, Rubash HE. Effect of a centralizing device on cement mantle deficiencies and initial prosthetic alignment in total hip arthroplasty. *J Arthroplasty*. 1997;12(4):434-43. 1145. Wykman AG. Acetabular cement temperature in arthroplasty. Effect of water cooling in 19 cases. *Acta Orthop Scand*. 1992;63(5):543-4.

1146. Thanner J, Freij-Larsson C, Karrholm J, Malchau H, Wesslen B. Evaluation of Boneloc. Chemical and mechanical properties, and a randomized clinical study of 30 total hip arthroplasties. *Acta Orthop Scand*. 1995;66(3):207-14.

1147. Nivbrant B, Karrholm J, Rohrl S, Hassander H, Wesslen B. Bone cement with reduced proportion of monomer in total hip arthroplasty: preclinical evaluation and randomized study of 47 cases with 5 years' follow-up. *Acta Orthop Scand*. 2001;72(6):572-84.

1148. Freund KG, Herold N, Rock ND, Riegels-Nielsen P. Poor results with the Shuttle Stop: resorbable versus nonresorbable intramedullar cement restrictor in a prospective and randomized study with a 2-year follow-up. *Acta Orthop Scand.* 2003;74(1):37-41.

1149. Visser CP, Eygendaal D, Coene LN, Tavy DL. Comparative prospective trial of 3 intramedullary plugs in cemented total hip arthroplasty. *J Arthroplasty*. 2002;17(5):576-8.

1150. Garneti N, Field J. Bone bleeding during total hip arthroplasty after administration of tranexamic acid. *J Arthroplasty*. 2004;19(4):488-92.

1151. Motobe T, Hashiguchi T, Uchimura T, et al. Endogenous cannabinoids are candidates for lipid mediators of bone cement implantation syndrome. *Shock*. 2004;21(1):8-12.

1152. Digas G, Thanner J, Anderberg C, Karrholm J. Fluoride-containing acrylic bone cement in total hip arthroplasty. Randomized evaluation of 97 stems using radiostereometry and dual-energy x-ray absorptiometry. *J Arthroplasty*. 2005;20(6):784-92.

1153. Digas G, Karrholm J, Thanner J. Different loss of BMD using uncemented press-fit and whole polyethylene cups fixed with cement: repeated DXA studies in 96 hips randomized to 3 types of fixation. *Acta Orthop.* 2006;77(2):218-26.

1154. Lindberg L, Onnerfalt R, Dingeldein E, Wahlig H. The release of gentamicin after total hip replacement using low or high viscosity bone cement. A prospective, randomized study. *Int Orthop.* 1991;15(4):305-9.
1155. Bhandari M, Bajammal S, Guyatt GH, et al. Effect of bisphosphonates on periprosthetic bone mineral

density after total joint arthroplasty. A meta-analysis. J Bone Joint Surg Am. 2005;87(2):293-301.

1156. Venesmaa PK, Kroger HP, Miettinen HJ, Jurvelin JS, Suomalainen OT, Alhav EM. Alendronate reduces periprosthetic bone loss after uncemented primary total hip arthroplasty: a prospective randomized study. *J Bone Miner Res.* 2001;16(11):2126-31.

1157. Soininvaara TA, Jurvelin JS, Miettinen HJ, Suomalainen OT, Alhava EM, Kroger PJ. Effect of alendronate on periprosthetic bone loss after total knee arthroplasty: a one-year, randomized, controlled trial of 19 patients. *Calcif Tissue Int*. 2002;71(6):472-7.

1158. Hennigs T, Arabmotlagh M, Schwarz A, Zichner L. Dose-dependent prevention of early periprosthetic bone loss by alendronate. *Z Orthop Ihre Grenzgeb*. 2002;140(1):42-7.

1159. Josefsson G, Lindberg L, Wiklander B. Systemic antibiotics and gentamicin-containing bone cement in the prophylaxis of postoperative infections in total hip arthroplasty. *Clin Orthop Relat Res.* 1981(159):194-200.

1160. Buchholz HW, Engelbrecht H. Depot effects of various antibiotics mixed with Palacos resins. *Chirurg*. 1970;41(11):511-5.

1161. Pavel A, Smith RL, Ballard A, Larsen IJ. Prophylactic antibiotics in clean orthopaedic surgery. *J Bone Joint Surg Am.* 1974;56(4):777-82.

1162. Carlsson AK, Lidgren L, Lindberg L. Prophylactic antibiotics against early and late deep infections after total hip replacements. *Acta Orthop Scand.* 1977;48(4):405-10.

1163. Ericson C, Lidgren L, Lindberg L. Cloxacillin in the prophylaxis of postoperative infections of the hip. *J Bone Joint Surg Am.* 1973;55(4):808-13, 43.

1164. Nelson RC, Hoffman RO, Burton TA. The effect of antibiotic additions on the mechanical properties of acrylic cement. *J Biomed Mater Res.* 1978;12(4):473-90.

1165. Elson RA. [Prophylactic use of gentamycin-Palacos in the Northern General Hospital, Sheffield, England]. *Aktuelle Probl Chir Orthop.* 1979(12):206.

1166. Reichelt A, Wahlig H, Riedl K. Antibiotic prophylaxis in allo-arthroplastic hip joint surgery. Concentration assays in the wound exudate after parenteral administration of gentamicin. *Arch Orthop Unfallchir*. 1976;84(2):249-55.

1167. Tice AD, Rehm SJ, Dalovisio JR, et al. Practice guidelines for outpatient parenteral antimicrobial therapy. IDSA guidelines. *Clin Infect Dis.* 2004;38(12):1651-72.

1168. Kayley J, Berendt AR, Snelling MJ, et al. Safe intravenous antibiotic therapy at home: experience of a UK based programme. *J Antimicrob Chemother*. 1996;37(5):1023-9.

1169. Harris WH, McGann WA. Loosening of the femoral component after use of the medullary-plug cementing technique. Follow-up note with a minimum five-year follow-up. *J Bone Joint Surg Am.* 1986;68(7):1064-6.

1170. Wahlig H. Kinetics of the liberation of antibiotics from bone cements--results of comparative studies in vitro and in vivo. *Aktuelle Probl Chir Orthop.* 1987;31221-6.

1171. Wahlig H, Dingeldein E, Buchholz HW, Buchholz M, Bachmann F. Pharmacokinetic study of gentamicinloaded cement in total hip replacements. Comparative effects of varying dosage. *J Bone Joint Surg Br*. 1984;66(2):175-9.

1172. Espehaug B, Engesaeter LB, Vollset SE, Havelin LI, Langeland N. Antibiotic prophylaxis in total hip arthroplasty. Review of 10,905 primary cemented total hip replacements reported to the Norwegian arthroplasty register, 1987 to 1995. *J Bone Joint Surg Br.* 1997;79(4):590-5.

1173. Josefsson G, Gudmundsson G, Kolmert L, Wijkstrom S. Prophylaxis with systemic antibiotics versus gentamicin bone cement in total hip arthroplasty. A five-year survey of 1688 hips. *Clin Orthop Relat Res*. 1990(253):173-8.

1174. Josefsson G, Kolmert L. Prophylaxis with systematic antibiotics versus gentamicin bone cement in total hip arthroplasty. A ten-year survey of 1,688 hips. *Clin Orthop Relat Res.* 1993(292):210-4.

1175. McQueen MM, Hughes SP, May P, Verity L. Cefuroxime in total joint arthroplasty. Intravenous or in bone cement. *J Arthroplasty*. 1990;5(2):169-72.

1176. Engesaeter LB, Lie SA, Espehaug B, Furnes O, Vollset SE, Havelin LI. Antibiotic prophylaxis in total hip arthroplasty: effects of antibiotic prophylaxis systemically and in bone cement on the revision rate of 22,170 primary hip replacements followed 0-14 years in the Norwegian Arthroplasty Register. *Acta Orthop Scand.* 2003;74(6):644-51.

1177. Bodoky A, Neff U, Heberer M, Harder F. Antibiotic prophylaxis with two doses of cephalosporin in patients managed with internal fixation for a fracture of the hip. *J Bone Joint Surg Am.* 1993;75(1):61-5.

1178. Gatell JM, Riba J, Lozano ML, Mana J, Ramon R, Garcia SanMiguel J. Prophylactic cefamandole in orthopaedic surgery. *J Bone Joint Surg Am*. 1984;66(8):1219-22.

1179. McQueen M, Littlejohn A, Hughes SP. A comparison of systemic cefuroxime and cefuroxime loaded bone cement in the prevention of early infection after total joint replacement. *Int Orthop.* 1987;11(3):241-3.

1180. Khan RJ, Carey Smith RL, Alakeson R, Fick DP, Wood D. Operative and non-operative treatment options for dislocation of the hip following total hip arthroplasty. *Cochrane Database Syst Rev.* 2006(4):CD005320.

1181. Peak EL, Parvizi J, Ciminiello M, et al. The role of patient restrictions in reducing the prevalence of early dislocation following total hip arthroplasty. A randomized, prospective study. *J Bone Joint Surg Am*. 2005;87(2):247-53.

1182. Hedlundh U, Ahnfelt L, Hybbinette CH, Wallinder L, Weckstrom J, Fredin H. Dislocations and the femoral head size in primary total hip arthroplasty. *Clin Orthop Relat Res.* 1996(333):226-33.

1183. Espehaug B, Havelin LI, Engesaeter LB, Langeland N, Vollset SE. Patient satisfaction and function after primary and revision total hip replacement. *Clin Orthop Relat Res.* 1998(351):135-48.

1184. Schmalzried TP, Callaghan JJ. Wear in total hip and knee replacements. *J Bone Joint Surg Am.* 1999;81(1):115-36.

1185. Schmalzried TP, Shepherd EF, Dorey FJ, et al. The John Charnley Award. Wear is a function of use, not time. *Clin Orthop Relat Res.* 2000(381):36-46.

1186. Schmalzried TP, Szuszczewicz ES, Northfield MR, et al. Quantitative assessment of walking activity after total hip or knee replacement. *J Bone Joint Surg Am.* 1998;80(1):54-9.

1187. Seedhom BB, Wallbridge NC. Walking activities and wear of prostheses. *Ann Rheum Dis.* 1985;44(12):838-43.

1188. Kilgus DJ, Dorey FJ, Finerman GA, Amstutz HC. Patient activity, sports participation, and impact loading on the durability of cemented total hip replacements. *Clin Orthop Relat Res.* 1991(269):25-31.

1189. Hirakawa K, Jacobs JJ, Urban R, Saito T. Mechanisms of failure of total hip replacements: lessons learned from retrieval studies. *Clin Orthop Relat Res.* 2004(420):10-7.

1190. Maloney WJ, Harris WH. Comparison of a hybrid with an uncemented total hip replacement. A retrospective matched-pair study. *J Bone Joint Surg Am.* 1990;72(9):1349-52.

1191. Havelin LI, Espehaug B, Vollset SE, Engesaeter LB. Early failures among 14,009 cemented and 1,326 uncemented prostheses for primary coxarthrosis. The Norwegian Arthroplasty Register, 1987-1992. *Acta Orthop Scand.* 1994;65(1):1-6.

1192. Wong J, Wong S, Nolde T, Yabsley RH. Effects of an experimental program on post-hospital adjustment of early discharged patients. *Int J Nurs Stud.* 1990;27(1):7-20.

1193. Gammon J, Mulholland CW. Effect of preparatory information prior to elective total hip replacement on psychological coping outcomes. *J Adv Nurs*. 1996;24(2):303-8.

1194. Gammon J, Mulholland CW. Effect of preparatory information prior to elective total hip replacement on post-operative physical coping outcomes. *Int J Nurs Stud.* 1996;33(6):589-604.

1195. Johnston M, Vogele C. Benefits of psychological preparation for surgery: a meta-analysis. *Ann Behav Med.* 1993;15(4):245-56.

1196. Daltroy LH, Morlino CI, Eaton HM, Poss R, Liang MH. Preoperative education for total hip and knee replacement patients. *Arthritis Care Res.* 1998;11(6):469-78.

1197. Wong J, Wong S. A randomized controlled trial of a new approach to preoperative teaching and patient compliance. *Int J Nurs Stud.* 1985;22(2):105-15.

1198. Siggeirsdottir K, Olafsson O, Jonsson H, Iwarsson S, Gudnason V, Jonsson BY. Short hospital stay augmented with education and home-based rehabilitation improves function and quality of life after hip

replacement: randomized study of 50 patients with 6 months of follow-up. *Acta Orthop.* 2005;76(4):555-62. 1199. Pour AE, Parvizi J, Sharkey PF, Hozack WJ, Rothman RH. Minimally invasive hip arthroplasty: what role does patient preconditioning play? *J Bone Joint Surg Am.* 2007;89(9):1920-7.

1200. Gocen Z, Sen A, Unver B, Karatosun V, Gunal I. The effect of preoperative physiotherapy and education on the outcome of total hip replacement: a prospective randomized controlled trial. *Clin Rehabil.* 2004;18(4):353-8. 1201. Giraudet-Le Quintrec J, Coste J, Vastel L, Pacault V, Jeanne L, Lamas JP, Kerboull L, Fougeray M,

Conseiller C, Kahan A, Courpied JP. Positive effect of patient education for hip surgery: a randomized trial. *Clin Orthop Relat Res.* 2003(414):112-20.

1202. Mancuso CA, Graziano S, Briskie LM, et al. Randomized trials to modify patients' preoperative expectations of hip and knee arthroplasties. *Clin Orthop Relat Res.* 2008;466(2):424-31.

1203. Vukomanovic A, Popovic Z, Durovic A, Krstic L. The effects of short-term preoperative physical therapy and education on early functional recovery of patients younger than 70 undergoing total hip arthroplasty. *Vojnosanit Pregl.* 2008;65(4):291-7.

1204. Butler GS, Hurley CA, Buchanan KL, Smith-VanHorne J. Prehospital education: effectiveness with total hip replacement surgery patients. *Patient Educ Couns*. 1996;29(2):189-97.

1205. McGregor AH, Rylands H, Owen A, Dore CJ, Hughes SP. Does preoperative hip rehabilitation advice improve recovery and patient satisfaction? *J Arthroplasty*. 2004;19(4):464-8.

1206. Lilja Y, Ryden S, Fridlund B. Effects of extended preoperative information on perioperative stress: an anaesthetic nurse intervention for patients with breast cancer and total hip replacement. *Intensive Crit Care Nurs*. 1998;14(6):276-82.

1207. Santavirta N, Lillqvist G, Sarvimaki A, Honkanen V, Konttinen YT, Santavirta S. Teaching of patients undergoing total hip replacement surgery. *Int J Nurs Stud.* 1994;31(2):135-42.

1208. Burns A, Park K. Proximal femoral fractures in the female patien,t a controlled trial: the role of the occupational therapist and physiotherapist. *Br J Occup Ther* 1992;55(10):397-400.

1209. Clarke MT, Green JS, Harper WM, Gregg PJ. Cement as a risk factor for deep-vein thrombosis. Comparison of cemented TKR, uncemented TKR and cemented THR. *J Bone Joint Surg Br.* 1998;80(4):611-3. 1210. Eriksson BI, Wille-Jorgensen P, Kalebo P, et al. A comparison of recombinant hirudin with a low-molecularweight heparin to prevent thromboembolic complications after total hip replacement. *N Engl J Med*. 1997;337(19):1329-35.

1211. Prevention of venous thromboembolism in orthopedic surgery. The Medical Letter, 2008:86.

1212. Eikelboom JW, Quinlan DJ, Douketis JD. Extended-duration prophylaxis against venous thromboembolism after total hip or knee replacement: a meta-analysis of the randomised trials. *Lancet.* 2001;358(9275):9-15.

1213. Kalodiki EP, Hoppensteadt DA, Nicolaides AN, et al. Deep venous thrombosis prophylaxis with low molecular weight heparin and elastic compression in patients having total hip replacement. A randomised controlled trial. *Int Angiol.* 1996;15(2):162-8.

1214. Hui AC, Heras-Palou C, Dunn I, et al. Graded compression stockings for prevention of deep-vein thrombosis after hip and knee replacement. *J Bone Joint Surg Br.* 1996;78(4):550-4.

1215. Hull RD, Raskob GE, Gent M, et al. Effectiveness of intermittent pneumatic leg compression for preventing deep vein thrombosis after total hip replacement. *JAMA*. 1990;263(17):2313-7.

1216. Bradley JG, Krugener GH, Jager HJ. The effectiveness of intermittent plantar venous compression in prevention of deep venous thrombosis after total hip arthroplasty. *J Arthroplasty*. 1993;8(1):57-61.

1217. Gallus A, Raman K, Darby T. Venous thrombosis after elective hip replacement--the influence of preventive intermittent calf compression and of surgical technique. *Br J Surg.* 1983;70(1):17-9.

1218. Pitto RP, Hamer H, Heiss-Dunlop W, Kuehle J. Mechanical prophylaxis of deep-vein thrombosis after total hip replacement a randomised clinical trial. *J Bone Joint Surg Br.* 2004;86(5):639-42.

1219. Planes A, Vochelle N, Darmon JY, et al. Efficacy and safety of postdischarge administration of enoxaparin in the prevention of deep venous thrombosis after total hip replacement. A prospective randomised double-blind placebo-controlled trial. *Drugs*. 1996;52 Suppl 747-54.

1220. Planes A, Vochelle N, Darmon JY, Fagola M, Bellaud M, Huet Y. Risk of deep-venous thrombosis after hospital discharge in patients having undergone total hip replacement: double-blind randomised comparison of enoxaparin versus placebo. *Lancet.* 1996;348(9022):224-8.

1221. Turpie AG, Levine MN, Hirsh J, et al. A randomized controlled trial of a low-molecular-weight heparin (enoxaparin) to prevent deep-vein thrombosis in patients undergoing elective hip surgery. *N Engl J Med*. 1986;315(15):925-9.

1222. Comp PC, Spiro TE, Friedman RJ, et al. Prolonged enoxaparin therapy to prevent venous thromboembolism after primary hip or knee replacement. Enoxaparin Clinical Trial Group. *J Bone Joint Surg Am.* 2001;83-A(3):336-45.

1223. Heit JA, Elliott CG, Trowbridge AA, Morrey BF, Gent M, Hirsh J. Ardeparin sodium for extended out-ofhospital prophylaxis against venous thromboembolism after total hip or knee replacement. A randomized, doubleblind, placebo-controlled trial. *Ann Intern Med.* 2000;132(11):853-61.

1224. Lassen MR, Borris LC, Anderson BS, et al. Efficacy and safety of prolonged thromboprophylaxis with a low molecular weight heparin (dalteparin) after total hip arthroplasty--the Danish Prolonged Prophylaxis (DaPP) Study. *Thromb Res.* 1998;89(6):281-7.

1225. Arnesen H, Dahl OE, Aspelin T, Seljeflot I, Kierulf P, Lyberg T. Sustained prothrombotic profile after hip replacement surgery: the influence of prolonged prophylaxis with dalteparin. *J Thromb Haemost*. 2003;1(5):971-5. 1226. Jorgensen PS, Knudsen JB, Broeng L, et al. The thromboprophylactic effect of a low-molecular-weight heparin (Fragmin) in hip fracture surgery. A placebo-controlled study. *Clin Orthop Relat Res*. 1992(278):95-100.

1227. Bergqvist D, Benoni G, Bjorgell O, et al. Low-molecular-weight heparin (enoxaparin) as prophylaxis against venous thromboembolism after total hip replacement. *N Engl J Med*. 1996;335(10):696-700.

1228. Dahl OE, Andreassen G, Aspelin T, et al. Prolonged thromboprophylaxis following hip replacement surgery--results of a double-blind, prospective, randomised, placebo-controlled study with dalteparin (Fragmin). *Thromb Haemost.* 1997;77(1):26-31.

1229. Hoek JA, Nurmohamed MT, Hamelynck KJ, et al. Prevention of deep vein thrombosis following total hip replacement by low molecular weight heparinoid. *Thromb Haemost.* 1992;67(1):28-32.

1230. RD heparin compared with warfarin for prevention of venous thromboembolic disease following total hip or knee arthroplasty. RD Heparin Arthroplasty Group. *J Bone Joint Surg Am.* 1994;76(8):1174-85.

1231. Planes A, Vochelle N, Fagola M, Bellaud M. Comparison of two low-molecular-weight heparins for the prevention of postoperative venous thromboembolism after elective hip surgery. Reviparin Study Group. *Blood Coagul Fibrinolysis*. 1998;9(6):499-505.

1232. Spiro TE, Johnson GJ, Christie MJ, et al. Efficacy and safety of enoxaparin to prevent deep venous thrombosis after hip replacement surgery. Enoxaparin Clinical Trial Group. *Ann Intern Med.* 1994;121(2):81-9.
1233. Bara L, Planes A, Samama MM. Occurrence of thrombosis and haemorrhage, relationship with anti-Xa,

anti-IIa activities, and D-dimer plasma levels in patients receiving a low molecular weight heparin, enoxaparin or tinzaparin, to prevent deep vein thrombosis after hip surgery. *Br J Haematol.* 1999;104(2):230-40.

1234. Eriksson BI, Borris L, Dahl OE, et al. Oral, direct Factor Xa inhibition with BAY 59-7939 for the prevention of venous thromboembolism after total hip replacement. *J Thromb Haemost*. 2006;4(1):121-8.

1235. Eriksson BI, Borris LC, Dahl OE, et al. Dose-escalation study of rivaroxaban (BAY 59-7939)--an oral, direct Factor Xa inhibitor--for the prevention of venous thromboembolism in patients undergoing total hip replacement. *Thromb Res.* 2007;120(5):685-93.

1236. Eriksson BI, Borris LC, Dahl OE, et al. A once-daily, oral, direct Factor Xa inhibitor, rivaroxaban (BAY 59-7939), for thromboprophylaxis after total hip replacement. *Circulation*. 2006;114(22):2374-81.

1237. Eriksson BI, Bauer KA, Lassen MR, Turpie AG. Fondaparinux compared with enoxaparin for the prevention of venous thromboembolism after hip-fracture surgery. *N Engl J Med*. 2001;345(18):1298-304.

1238. Eriksson BI, Lassen MR. Duration of prophylaxis against venous thromboembolism with fondaparinux after hip fracture surgery: a multicenter, randomized, placebo-controlled, double-blind study. *Arch Intern Med.* 2003;163(11):1337-42.

1239. Agnelli G, Haas S, Ginsberg JS, Krueger KA, Dmitrienko A, Brandt JT. A phase II study of the oral factor Xa inhibitor LY517717 for the prevention of venous thromboembolism after hip or knee replacement. *J Thromb Haemost.* 2007;5(4):746-53.

1240. Beisaw NE, Comerota AJ, Groth HE, et al. Dihydroergotamine/heparin in the prevention of deep-vein thrombosis after total hip replacement. A controlled, prospective, randomized multicenter trial. *J Bone Joint Surg Am.* 1988;70(1):2-10.

1241. Powers PJ, Gent M, Jay RM, et al. A randomized trial of less intense postoperative warfarin or aspirin therapy in the prevention of venous thromboembolism after surgery for fractured hip. *Arch Intern Med.* 1989;149(4):771-4.

1242. Prevention of pulmonary embolism and deep vein thrombosis with low dose aspirin: Pulmonary Embolism Prevention (PEP) trial. *Lancet.* 2000;3551295-302.

1243. Hull RD, Brant RF, Pineo GF, Stein PD, Raskob GE, Valentine KA. Preoperative vs postoperative initiation of low-molecular-weight heparin prophylaxis against venous thromboembolism in patients undergoing elective hip replacement. *Arch Intern Med.* 1999;159(2):137-41.

1244. Lee AY, Gent M, Julian JA, et al. Bilateral vs. ipsilateral venography as the primary efficacy outcome measure in thromboprophylaxis clinical trials: a systematic review. *J Thromb Haemost*. 2004;2(10):1752-9. 1245. Heit JA. Low-molecular-weight heparin: the optimal duration of prophylaxis against postoperative venous thromboembolism after total hip or knee replacement. *Thromb Res*. 2001;101(1):V163-73.

1246. Xing KH, Morrison G, Lim W, Douketis J, Odueyungbo A, Crowther M. Has the incidence of deep vein thrombosis in patients undergoing total hip/knee arthroplasty changed over time? A systematic review of randomized controlled trials. *Thromb Res.* 2008;123(1):24-34.

1247. Turpie AG, Bauer KA, Eriksson BI, Lassen MR. Fondaparinux vs enoxaparin for the prevention of venous thromboembolism in major orthopedic surgery: a meta-analysis of 4 randomized double-blind studies. *Arch Intern Med.* 2002;162(16):1833-40.

1248. Cofrancesco E, Cortellaro M, Corradi A, Ravasi F, Bertocchi F. Clinical utility of prothrombin fragment 1+2, thrombin antithrombin III complexes and D-dimer measurements in the diagnosis of deep vein thrombosis following total hip replacement. *Thromb Haemost.* 1998;79(3):509-10.

1249. Santori FS, Vitullo A, Stopponi M, Santori N, Ghera S. Prophylaxis against deep-vein thrombosis in total hip replacement. Comparison of heparin and foot impulse pump. *J Bone Joint Surg Br.* 1994;76(4):579-83.

1250. Geerts WH, Bergqvist D, Pineo GF, et al. Prevention of venous thromboembolism: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines (8th Edition). *Chest.* 2008;133(6 Suppl):381S-453S. 1251. Koch A, Ziegler S, Breitschwerdt H, Victor N. Low molecular weight heparin and unfractionated heparin in thrombosis prophylaxis: meta-analysis based on original patient data. *Thromb Res.* 2001;102(4):295-309. 1252. Warkentin TE, Greinacher A, Koster A, Lincoff AM. Treatment and prevention of heparin-induced thrombosis prophylaxis Children College of Chest Physicians Evidence Research Clinical Practice Cuidelines (9th

thrombocytopenia: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines (8th Edition). *Chest.* 2008;133(6 Suppl):340S-80S.

1253. Brookenthal KR, Freedman KB, Lotke PA, Fitzgerald RH, Lonner JH. A meta-analysis of thromboembolic prophylaxis in total knee arthroplasty. *J Arthroplasty*. 2001;16(3):293-300.

1254. Bergqvist D, Efsing HO, Hallbook T, Hedlund T. Thromboembolism after elective and post-traumatic hip surgery--a controlled prophylactic trial with dextran 70 and low-dose heparin. *Acta Chir Scand*. 1979;145(4):213-8.

1255. Agnelli G, Becattini C. Treatment of DVT: how long is enough and how do you predict recurrence. *J Thromb Thrombolysis*. 2008;25(1):37-44.

1256. Robinson KS, Anderson DR, Gross M, et al. Ultrasonographic screening before hospital discharge for deep venous thrombosis after arthroplasty: the post-arthroplasty screening study. A randomized, controlled trial. *Ann Intern Med.* 1997;127(6):439-45.

1257. Kakkar VV, Howes J, Sharma V, Kadziola Z. A comparative double-blind, randomised trial of a new second generation LMWH (bemiparin) and UFH in the prevention of post-operative venous thromboembolism. The Bemiparin Assessment group. *Thromb Haemost.* 2000;83(4):523-9.

1258. Adolf J, Fritsche HM, Haas S, et al. Comparison of 3,000 IU aXa of the low molecular weight heparin certoparin with 5,000 IU aXa in prevention of deep vein thrombosis after total hip replacement. German Thrombosis Study Group. *Int Angiol.* 1999;18(2):122-6.

1259. Levine MN, Hirsh J, Gent M, et al. Prevention of deep vein thrombosis after elective hip surgery. A randomized trial comparing low molecular weight heparin with standard unfractionated heparin. *Ann Intern Med.* 1991;114(7):545-51.

1260. Eriksson BI, Kalebo P, Anthymyr BA, Wadenvik H, Tengborn L, Risberg B. Prevention of deep-vein thrombosis and pulmonary embolism after total hip replacement. Comparison of low-molecular-weight heparin and unfractionated heparin. *J Bone Joint Surg Am.* 1991;73(4):484-93.

1261. Hull R, Raskob G, Pineo G, et al. A comparison of subcutaneous low-molecular-weight heparin with warfarin sodium for prophylaxis against deep-vein thrombosis after hip or knee implantation. *N Engl J Med.* 1993;329(19):1370-6.

1262. Westrich GH, Salvati EA, Sharrock N, Potter HG, Sanchez PM, Sculco TP. The effect of intraoperative heparin administered during total hip arthroplasty on the incidence of proximal deep vein thrombosis assessed by magnetic resonance venography. *J Arthroplasty*. 2005;20(1):42-50.

1263. Agnelli G, Cosmi B, Di Filippo P, et al. A randomised, double-blind, placebo-controlled trial of dermatan sulphate for prevention of deep vein thrombosis in hip fracture. *Thromb Haemost.* 1992;67(2):203-8.

1264. Eriksson BI, Agnelli G, Cohen AT, et al. The direct thrombin inhibitor melagatran followed by oral ximelagatran compared with enoxaparin for the prevention of venous thromboembolism after total hip or knee replacement: the EXPRESS study. *J Thromb Haemost.* 2003;1(12):2490-6.

1265. Bailey JP, Kruger MP, Solano FX, Zajko AB, Rubash HE. Prospective randomized trial of sequential compression devices vs low-dose warfarin for deep venous thrombosis prophylaxis in total hip arthroplasty. *J Arthroplasty*. 1991;6 SupplS29-35.

1266. Woolson ST, Watt JM. Intermittent pneumatic compression to prevent proximal deep venous thrombosis during and after total hip replacement. A prospective, randomized study of compression alone, compression and aspirin, and compression and low-dose warfarin. *J Bone Joint Surg Am.* 1991;73(4):507-12.

1267. Kaempffe FA, Lifeso RM, Meinking C. Intermittent pneumatic compression versus coumadin. Prevention of deep vein thrombosis in lower-extremity total joint arthroplasty. *Clin Orthop Relat Res.* 1991(269):89-97.

1268. Leyvraz PF, Bachmann F, Hoek J, et al. Prevention of deep vein thrombosis after hip replacement: randomised comparison between unfractionated heparin and low molecular weight heparin. *Br Med J*. 1991;303(6802):543-8.

1269. Samama CM, Vray M, Barre J, et al. Extended venous thromboembolism prophylaxis after total hip replacement: a comparison of low-molecular-weight heparin with oral anticoagulant. *Arch Intern Med.* 2002;162(19):2191-6.

1270. Dechavanne M, Ville D, Berruyer M, et al. Randomized trial of a low-molecular-weight heparin (Kabi 2165) versus adjusted-dose subcutaneous standard heparin in the prophylaxis of deep-vein thrombosis after elective hip surgery. *Haemostasis*. 1989;19(1):5-12.

1271. Yoo MC, Kang CS, Kim YH, Kim SK. A prospective randomized study on the use of nadroparin calcium in the prophylaxis of thromboembolism in Korean patients undergoing elective total hip replacement. *Int Orthop.* 1997;21(6):399-402.

1272. Avikainen V, von Bonsdorff H, Partio E, et al. Low molecular weight heparin (enoxaparin) compared with unfractionated heparin in prophylaxis of deep venous thrombosis and pulmonary embolism in patients undergoing hip replacement. *Ann Chir Gynaecol.* 1995;84(1):85-90.

1273. Senaran H, Acaroglu E, Ozdemir HM, Atilla B. Enoxaparin and heparin comparison of deep vein thrombosis prophylaxis in total hip replacement patients. *Arch Orthop Trauma Surg.* 2006;126(1):1-5.

1274. Borris LC, Sorensen JV, Lassen MR, et al. Components of coagulation and fibrinolysis during thrombosis prophylaxis with a low molecular weight heparin (Enoxaparin) versus Dextran 70 in hip arthroplasty. *Thromb Res.* 1991;63(1):21-8.

1275. Colwell CW, Jr., Collis DK, Paulson R, et al. Comparison of enoxaparin and warfarin for the prevention of venous thromboembolic disease after total hip arthroplasty. Evaluation during hospitalization and three months after discharge. *J Bone Joint Surg Am.* 1999;81(7):932-40.

1276. Menzin J, Richner R, Huse D, Colditz GA, Oster G. Prevention of deep-vein thrombosis following total hip replacement surgery with enoxaparin versus unfractionated heparin: a pharmacoeconomic evaluation. *Ann Pharmacother*. 1994;28(2):271-5.

1277. Kakkar VV, Bentley PG, Lawrence D, de Haas HA, Ward VP. Prevention of postoperative venous thromboembolism by means of heparin and dihydroergotamine after hip joint replacement. *MMW Munch Med Wochenschr*. 1979;121(36):1152-4.

1278. Hayes A, Murphy DB, McCarroll M. The efficacy of single-dose aprotinin 2 million KIU in reducing blood loss and its impact on the incidence of deep venous thrombosis in patients undergoing total hip replacement surgery. *J Clin Anesth.* 1996;8(5):357-60.

1279. Colwell CW, Jr., Spiro TE, Trowbridge AA, et al. Use of enoxaparin, a low-molecular-weight heparin, and unfractionated heparin for the prevention of deep venous thrombosis after elective hip replacement. A clinical trial comparing efficacy and safety. Enoxaparin Clinical Trial Group. *J Bone Joint Surg Am.* 1994;76(1):3-14. 1280. Leyvraz PF, Richard J, Bachmann F, et al. Adjusted versus fixed-dose subcutaneous heparin in the prevention of deep-vein thrombosis after total hip replacement. *N Engl J Med.* 1983;309(16):954-8.

1281. Huo MH, Salvati EA, Sharrock NE, et al. Intraoperative heparin thromboembolic prophylaxis in primary total hip arthroplasty. A prospective, randomized, controlled, clinical trial. *Clin Orthop Relat Res.* 1992(274):35-46. 1282. Schulman S, Rhedin AS, Lindmarker P, et al. A comparison of six weeks with six months of oral anticoagulant therapy after a first episode of venous thromboembolism. Duration of Anticoagulation Trial Study Group. *N Engl J Med.* 1995;332(25):1661-5.

1283. Hull R, Delmore T, Genton E, et al. Warfarin sodium versus low-dose heparin in the long-term treatment of venous thrombosis. *N Engl J Med.* 1979;301(16):855-8.

1284. Agnelli G, Prandoni P, Santamaria MG, et al. Three months versus one year of oral anticoagulant therapy for idiopathic deep venous thrombosis. Warfarin Optimal Duration Italian Trial Investigators. *N Engl J Med.* 2001;345(3):165-9.

1285. Bern MM, Bierbaum B, Wetzner S, Brennan W, McAlister S. Very low dose warfarin as prophylaxis against ultrasound detected deep vein thrombosis following primary hip replacement. *Am J Hematol.* 2002;71(2):69-74. 1286. Pinede L, Ninet J, Duhaut P, et al. Comparison of 3 and 6 months of oral anticoagulant therapy after a first episode of proximal deep vein thrombosis or pulmonary embolism and comparison of 6 and 12 weeks of therapy after isolated calf deep vein thrombosis. *Circulation.* 2001;103(20):2453-60.

1287. Vives MJ, Hozack WJ, Sharkey PF, Moriarty L, Sokoloff B, Rothman RH. Fixed minidose versus-adjusted low-dose warfarin after total joint arthroplasty: a randomized prospective study. *J Arthroplasty*. 2001;16(8):1030-7. 1288. Campbell IA, Bentley DP, Prescott RJ, Routledge PA, Shetty HG, Williamson IJ. Anticoagulation for three versus six months in patients with deep vein thrombosis or pulmonary embolism, or both: randomised trial. *Br Med J*. 2007;334(7595):674.

1289. Colwell CW, Jr., Berkowitz SD, Davidson BL, et al. Comparison of ximelagatran, an oral direct thrombin inhibitor, with enoxaparin for the prevention of venous thromboembolism following total hip replacement. A randomized, double-blind study. *J Thromb Haemost.* 2003;1(10):2119-30.

1290. Belch JJ, Meek DR, Lowe GD, et al. Subcutaneous ancrod in prevention of deep vein thrombosis after hip replacement surgery. *Thromb Res.* 1982;25(1-2):23-31.

1291. Perhoniemi V, Vuorinen J, Myllynen P, Kivioja A, Lindevall K. The effect of enoxaparin in prevention of deep venous thrombosis in hip and knee surgery--a comparison with the dihydroergotamine-heparin combination. *Ann Chir Gynaecol.* 1996;85(4):359-63.

1292. Eriksson BI, Ekman S, Kalebo P, Zachrisson B, Bach D, Close P. Prevention of deep-vein thrombosis after total hip replacement: direct thrombin inhibition with recombinant hirudin, CGP 39393. *Lancet.* 1996;347(9002):635-9.

1293. Francis CW, Pellegrini VD, Jr., Marder VJ, et al. Comparison of warfarin and external pneumatic compression in prevention of venous thrombosis after total hip replacement. *JAMA*. 1992;267(21):2911-5.

1294. Sorensen JV, Borris LC, Lassen MR, Christiansen HM, Schott P, Olsen AD. Levels of thrombin--

antithrombin-III complex and factor VIII activity in relation to post-operative deep vein thrombosis and influence of prophylaxis with a low-molecular-weight heparin. *Blood Coagul Fibrinolysis*. 1990;1(4-5):389-92.

1295. Manganelli D, Pazzagli M, Mazzantini D, et al. Prolonged prophylaxis with unfractioned heparin is effective to reduce delayed deep vein thrombosis in total hip replacement. *Respiration*. 1998;65(5):369-74.

1296. Gerhart TN, Yett HS, Robertson LK, Lee MA, Smith M, Salzman EW. Low-molecular-weight heparinoid compared with warfarin for prophylaxis of deep-vein thrombosis in patients who are operated on for fracture of the hip. A prospective, randomized trial. *J Bone Joint Surg Am.* 1991;73(4):494-502.

1297. Cohen AT, Phillips MJ, Edmondson RA, et al. A dose ranging study to evaluate dermatan sulphate in preventing deep vein thrombosis following total hip arthroplasty. *Thromb Haemost*. 1994;72(6):793-8.

1298. Hamulyak K, Lensing AW, van der Meer J, Smid WM, van Ooy A, Hoek JA. Subcutaneous low-molecular weight heparin or oral anticoagulants for the prevention of deep-vein thrombosis in elective hip and knee replacement? Fraxiparine Oral Anticoagulant Study Group. *Thromb Haemost.* 1995;74(6):1428-31.

1299. Schmidt B, Michler R, Klein M, Faulmann G, Weber C, Schellong S. Ultrasound screening for distal vein thrombosis is not beneficial after major orthopedic surgery. A randomized controlled trial. *Thromb Haemost.* 2003;90(5):949-54.

1300. Comp PC, Voegeli T, McCutchen JW, Skoutakis VA, Trowbridge A, Overdyke WL. A comparison of danaparoid and warfarin for prophylaxis against deep vein thrombosis after total hip replacement: The Danaparoid Hip Arthroplasty Investigators Group. *Orthopedics*. 1998;21(10):1123-8.

1301. Planes A, Vochelle N, Fagola M, Feret J, Bellaud M. Prevention of deep vein thrombosis after total hip replacement. The effect of low-molecular-weight heparin with spinal and general anaesthesia. *J Bone Joint Surg Br.* 1991;73(3):418-22.

1302. Leyvraz P, Bachmann F, Vuilleumier B, Berthet S, Bohnet J, Haller E. Adjusted subcutaneous heparin versus heparin plus dihydroergotamine in prevention of deep vein thrombosis after total hip arthroplasty. *J Arthroplasty*. 1988;3(1):81-6.

1303. Flicoteaux H, Kher A, Jean N, et al. Comparision of low dose heparin and low dose heparin combined with aspirin in prevention of deep vein thrombosis after total hip replacement. *Pathol Biol (Paris)*. 1977;25 Suppl55-8. 1304. Fredin H, Lindblad B, Jaroszewski H, Bergqvist D. Prevention of thrombosis after hip fracture surgery.

Comparison of dextran 70 with and without dihydroergotamine. *Acta Chir Scand.* 1985;151(8):681-4. 1305. Francis CW, Pellegrini VD, Jr., Totterman S, et al. Prevention of deep-vein thrombosis after total hip arthroplasty. Comparison of warfarin and dalteparin. *J Bone Joint Surg Am.* 1997;79(9):1365-72.

1306. Eriksson BI, Zachrisson BE, Teger-Nilsson AC, Risberg B. Thrombosis prophylaxis with low molecular weight heparin in total hip replacement. *Br J Surg.* 1988;75(11):1053-7.

1307. Hogevold HE, Hoiseth A, Reikeras O. Effect of high-dose corticosteroids on the incidence of deep vein thrombosis after total hip replacement. *Arch Orthop Trauma Surg.* 1991;111(1):29-31.

1308. Zanasi R, Fioretta G, Ciocia G, Bergonzi M. Prevention of deep venous thrombosis in orthopedic surgery: effects of defibrotide. *Clin Ther.* 1988;10(4):350-7.

1309. Barber HM, Feil EJ, Galasko CS, et al. A comparative study of dextran-70, warfarin and low-dose heparin for the prophylaxis of thrombo-embolism following total hip replacement. *Postgrad Med J.* 1977;53(617):130-3.

1310. Kew J, Lee YL, Davey IC, Ho SY, Fung KC, Metreweli C. Deep vein thrombosis in elderly Hong Kong Chinese with hip fractures detected with compression ultrasound and Doppler imaging: incidence and effect of low molecular weight heparin. *Arch Orthop Trauma Surg.* 1999;119(3-4):156-8.

1311. Kim YH, Oh SH, Kim JS. Incidence and natural history of deep-vein thrombosis after total hip arthroplasty. A prospective and randomised clinical study. *J Bone Joint Surg Br.* 2003;85(5):661-5.

1312. Horbach T, Wolf H, Michaelis HC, et al. A fixed-dose combination of low molecular weight heparin with dihydroergotamine versus adjusted-dose unfractionated heparin in the prevention of deep-vein thrombosis after total hip replacement. *Thromb Haemost.* 1996;75(2):246-50.

1313. Zhao HB, Hu M, Zheng HY, Liang HS, Zhu XS. Clinical study on effect of Osteoking in preventing postoperational deep venous thrombosis in patients with intertrochanteric fracture. *Chin J Integr Med.* 2005;11(4):297-9.

1314. Jain V, Dhaon BK, Jaiswal A, Nigam V, Singla J. Deep vein thrombosis after total hip and knee arthroplasty in Indian patients. *Postgrad Med J.* 2004;80(950):729-31.

1315. Munin MC, Rudy TE, Glynn NW, Crossett LS, Rubash HE. Early inpatient rehabilitation after elective hip and knee arthroplasty. *JAMA*. 1998;279(11):847-52.

1316. Brander V, Stulberg S, Chang R. Rehabilitation Follwing Hip and Knee Arthroplasty. *Phys Med Rehabil Clin N Am.* 1994;5(4):815.

1317. Munin M, Hockenberry P, Flynn P, Toplak W. Chapter 7: Rehabilitation after total joint arthroplasty. In: Callaghan J, Rosenberg A, Rubash H, eds. *The Adult Hip*. Philadelphia: Lippencott Raven Publishers; 1998:1571-79.

1318. Flanagan SR, Ragnarsson KT, Ross MK, Wong DK. Rehabilitation of the geriatric orthopaedic patient. *Clin Orthop Relat Res.* 1995(316):80-92.

1319. Gilbey HJ, Ackland TR, Wang AW, Morton AR, Trouchet T, Tapper J. Exercise improves early functional recovery after total hip arthroplasty. *Clin Orthop Relat Res.* 2003(408):193-200.

1320. Wang AW, Gilbey HJ, Ackland TR. Perioperative exercise programs improve early return of ambulatory function after total hip arthroplasty: a randomized, controlled trial. *Am J Phys Med Rehabil*. 2002;81(11):801-6.

1321. Wijgman AJ, Dekkers GH, Waltje E, Krekels T, Arens HJ. No positive effect of preoperative exercise therapy and teaching in patients to be subjected to hip arthroplasty. *Ned Tijdschr Geneeskd*. 1994;138(19):949-52.
1322. Rooks DS, Huang J, Bierbaum BE, et al. Effect of preoperative exercise on measures of functional status in men and women undergoing total hip and knee arthroplasty. *Arthritis Rheum*. 2006;55(5):700-8.

1323. Rodgers JA, Garvin KL, Walker CW, Morford D, Urban J, Bedard J. Preoperative physical therapy in primary total knee arthroplasty. *J Arthroplasty*. 1998;13(4):414-21.

1324. Jaglal SB, MacKay C, Corrigan L. Chapter 7: Rehabilitation for Total Joint Replacement. *ICES Research Atlas*:133-46.

1325. Radl R, Aigner C, Hungerford M, Pascher A, Windhager R. Proximal femoral bone loss and increased rate of fracture with a proximally hydroxyapatite-coated femoral component. *J Bone Joint Surg Br.* 2000;82(8):1151-5. 1326. Strickland EM, Fares M, Krebs DE, et al. In vivo acetabular contact pressures during rehabilitation, Part I: Acute phase. *Phys Ther.* 1992;72(10):691-9.

1327. Buehler KO, D'Lima DD, Petersilge WJ, Colwell CW, Jr., Walker RH. Late deep venous thrombosis and delayed weightbearing after total hip arthroplasty. *Clin Orthop Relat Res.* 1999(361):123-30.

1328. Kishida Y, Sugano N, Sakai T, et al. Full weight-bearing after cementless total hip arthroplasty. *Int Orthop.* 2001;25(1):25-8.

1329. Rao RR, Sharkey PF, Hozack WJ, Eng K, Rothman RH. Immediate weightbearing after uncemented total hip arthroplasty. *Clin Orthop Relat Res.* 1998(349):156-62.

1330. Shih CH, Du YK, Lin YH, Wu CC. Muscular recovery around the hip joint after total hip arthroplasty. *Clin Orthop Relat Res.* 1994(302):115-20.

1331. Camerun H, Brotzman S, Boolos M. Rehabilitation after total joint arthroplasty. In: Brotzman S, ed. *Clinical Orthopaedics Rehabilitation*. Missouri: Mosby-Year Book; 1999:278-311.

1332. Weingarten S, Riedinger MS, Sandhu M, et al. Can practice guidelines safely reduce hospital length of stay? Results from a multicenter interventional study. *Am J Med.* 1998;105(1):33-40.

1333. Brown M, Hislop HJ, Waters RL, Porell D. Walking efficiency before and after total hip replacement. *Phys Ther.* 1980;60(10):1259-63.

1334. Unver B, Karatosun V, Gunal I, Angin S. Comparison of two different rehabilitation programmes for thrust plate prosthesis: a randomized controlled study. *Clin Rehabil.* 2004;18(1):84-91.

1335. Lieberman JR, Dorey F, Shekelle P, et al. Differences between patients' and physicians' evaluations of outcome after total hip arthroplasty. *J Bone Joint Surg Am.* 1996;78(6):835-8.

1336. Long WT, Dorr LD, Healy B, Perry J. Functional recovery of noncemented total hip arthroplasty. *Clin Orthop Relat Res.* 1993(288):73-7.

1337. Ellison J, Miller J, Hocate M, Levitan S, Muraly. Comparison of berg balance scale scores between rehabilitated patients with total hip arthroplasty and matched healthly subjects. *Journal of rehabilitation outcomes measurement*. 2000;4(2):49-54.

1338. Trudelle-Jackson E, Emerson R, Smith S. Outcomes of total hip arthroplasty: a study of patients one year postsurgery. *J Orthop Sports Phys Ther*. 2002;32(6):260-7.

1339. Cifu D. Rehabilitation of fractures of the hip. *Phys Med Rehabil: State of the Art Reviews*. 1995;9125-39. 1340. Karumo I. Recovery and rehabilitation of elderly subjects with femoral neck fractures. *Ann Chir Gynaecol*. 1977;66(3):170-6.

1341. Rush S. Rehabilitation following ORIF of the hip. *Top Geriatr Rehabil* 1996;1238-45.

1342. Baker PA, Evans OM, Lee C. Treadmill gait retraining following fractured neck-of-femur. *Arch Phys Med Rehabil.* 1991;72(9):649-52.

1343. Mitchell SL, Stott DJ, Martin BJ, Grant SJ. Randomized controlled trial of quadriceps training after proximal femoral fracture. *Clin Rehabil.* 2001;15(3):282-90.

1344. Hauer K, Specht N, Schuler M, Bartsch P, Oster P. Intensive physical training in geriatric patients after severe falls and hip surgery. *Age Ageing.* 2002;31(1):49-57.

1345. Jan MH, Hung JY, Lin JC, Wang SF, Liu TK, Tang PF. Effects of a home program on strength, walking speed, and function after total hip replacement. *Arch Phys Med Rehabil.* 2004;85(12):1943-51.

1346. Talbot NJ, Brown JH, Treble NJ. Early dislocation after total hip arthroplasty: are postoperative restrictions necessary? *J Arthroplasty*. 2002;17(8):1006-8.

1347. Bulthuis Y, Drossaers-Bakker KW, Taal E, et al. Arthritis patients show long-term benefits from 3 weeks intensive exercise training directly following hospital discharge. *Rheumatology*. 2007;46(11):1712-7.

1348. Galea MP, Levinger P, Lythgo N, et al. A targeted home- and center-based exercise program for people after total hip replacement: a randomized clinical trial. *Arch Phys Med Rehabil.* 2008;89(8):1442-7.

1349. Maire J, Dugue B, Faillenet-Maire AF, et al. Recovery after total hip joint arthroplasty in elderly patients with osteoarthritis: positive effect of upper limb interval-training. *J Rehabil Med.* 2003;35(4):174-9.

1350. Bulthuis Y, Mohammad S, Braakman-Jansen LM, Drossaers-Bakker KW, van de Laar MA. Costeffectiveness of intensive exercise therapy directly following hospital discharge in patients with arthritis: results of a randomized controlled clinical trial. *Arthritis Rheum*. 2008;59(2):247-54.

1351. Handoll HH, Sherrington C. Mobilisation strategies after hip fracture surgery in adults. *Cochrane Database Syst Rev.* 2007(1):CD001704.

1352. Tinetti ME, Baker DI, Gottschalk M, et al. Systematic home-based physical and functional therapy for older persons after hip fracture. *Arch Phys Med Rehabil.* 1997;78(11):1237-47.

1353. Tinetti ME, Baker DI, Gottschalk M, et al. Home-based multicomponent rehabilitation program for older persons after hip fracture: a randomized trial. *Arch Phys Med Rehabil.* 1999;80(8):916-22.

1354. Cameron ID, Handoll HH, Finnegan TP, Madhok R, Langhorne P. Co-ordinated multidisciplinary approaches for inpatient rehabilitation of older patients with proximal femoral fractures. *Cochrane Database Syst Rev.* 2001(3):CD000106.

1355. Lamb S, Grimley Evans J, Morse R, Trundle H. A randomised placebo controlled and double blind study of neuromuscular stimulation to improve mobility in the first three months after surgical fixation for proximal femoral fracture. *J Bone Joint Surg Br.* 1998;80(suppl II):172.

1356. Lamb SE, Oldham JA, Morse RE, Evans JG. Neuromuscular stimulation of the quadriceps muscle after hip fracture: a randomized controlled trial. *Arch Phys Med Rehabil.* 2002;83(8):1087-92.

1357. Cameron ID, Lyle DM, Quine S. Cost effectiveness of accelerated rehabilitation after proximal femoral fracture. *J Clin Epidemiol*. 1994;47(11):1307-13.

1358. Cameron ID, Lyle DM, Quine S. Accelerated rehabilitation after proximal femoral fracture: a randomized controlled trial. *Disabil Rehabil.* 1993;15(1):29-34.

1359. Quine S, Helby L, Cameron I, Lyle D. Carer burden after proximal femoral fracture. *Disabil Rehabil*. 1994;16(4):191-7.

1360. Graham J. Early or delayed weight-bearing after internal fixation of transcervical fracture of the femur. A clinical trial. *J Bone Joint Surg Br.* 1968;50(3):562-9.

1361. Abrami G, Stevens J. Early weight bearing after internal fixation of transcervical fracture of the femur; preliminary report of a clinical trial. *J Bone Joint Surg Br.* 1964;46204-5.

1362. Galvard H, Samuelsson SM. Orthopedic or geriatric rehabilitation of hip fracture patients: a prospective, randomized, clinically controlled study in Malmo, Sweden. *Aging (Milano)*. 1995;7(1):11-6.

1363. Huusko TM, Karppi P, Avikainen V, Kautiainen H, Sulkava R. Intensive geriatric rehabilitation of hip fracture patients: a randomized, controlled trial. *Acta Orthop Scand*. 2002;73(4):425-31.

1364. Kennie DC, Reid J, Richardson IR, Kiamari AA, Kelt C. Effectiveness of geriatric rehabilitative care after fractures of the proximal femur in elderly women: a randomised clinical trial. *Bmj.* 1988;297(6656):1083-6.

1365. Reid J, Kennie DC. Geriatric rehabilitative care after fractures of the proximal femur: one year follow up of a randomised clinical trial. *Br Med J.* 1989;299(6690):25-6.

1366. Gilchrist WJ, Newman RJ, Hamblen DL, Williams BO. Prospective randomised study of an orthopaedic geriatric inpatient service. *Br Med J.* 1988;297(6656):1116-8.

1367. Naglie G, Tansey C, Kirkland JL, et al. Interdisciplinary inpatient care for elderly people with hip fracture: a randomized controlled trial. *Cmaj.* 2002;167(1):25-32.

1368. Huusko TM, Karppi P, Avikainen V, Kautiainen H, Sulkava R. Randomised, clinically controlled trial of intensive geriatric rehabilitation in patients with hip fracture: subgroup analysis of patients with dementia. *Br Med J* 2000;321(7269):1107-11.

1369. Day GA, Swanson C, Yelland C, et al. Surgical outcomes of a randomized prospective trial involving patients with a proximal femoral fracture. *ANZ J Surg.* 2001;71(1):11-4.

1370. Hauer K, Pfisterer M, Schuler M, Bartsch P, Oster P. Two years later: a prospective long-term follow-up of a training intervention in geriatric patients with a history of severe falls. *Arch Phys Med Rehabil.* 2003;84(10):1426-32.

1371. Mangione KK, Craik RL, Tomlinson SS, Palombaro KM. Can elderly patients who have had a hip fracture perform moderate- to high-intensity exercise at home? *Phys Ther.* 2005;85(8):727-39.

1372. Hauer K, Rost B, Rutschle K, et al. Exercise training for rehabilitation and secondary prevention of falls in geriatric patients with a history of injurious falls. *J Am Geriatr Soc*. 2001;49(1):10-20.

1373. Binder EF, Brown M, Sinacore DR, Steger-May K, Yarasheski KE, Schechtman KB. Effects of extended outpatient rehabilitation after hip fracture: a randomized controlled trial. *JAMA*. 2004;292(7):837-46.

1374. Binder R, Brown M, Sinacore D, Steger-May K, Yarasheski K, Schechtman K. Extended physical therapy with progressive resistance training improved function in frail elderly patients with hip fracture. *J Bone Joint Surg Am.* 2005;87(2):466.

1375. Ruchlin HS, Elkin EB, Allegrante JP. The economic impact of a multifactorial intervention to improve postoperative rehabilitation of hip fracture patients. *Arthritis Rheum*. 2001;45(5):446-52.

1376. Sherrington C, Lord SR. Home exercise to improve strength and walking velocity after hip fracture: a randomized controlled trial. *Arch Phys Med Rehabil.* 1997;78(2):208-12.

1377. Sherrington C, Lord SR, Herbert RD. A randomised trial of weight-bearing versus non-weight-bearing exercise for improving physical ability in inpatients after hip fracture. *Aust J Physiother*. 2003;49(1):15-22. 1378. Trudelle-Jackson E, Smith SS. Effects of a late-phase exercise program after total hip arthroplasty: a

1378. Trudelle-Jackson E, Smith SS. Effects of a late-phase exercise program after total hip arthroplasty: a randomized controlled trial. Arch Phys Med Rehabil. 2004;85(7):1056-62.

1379. Swanson CE, Day GA, Yelland CE, et al. The management of elderly patients with femoral fractures. A randomised controlled trial of early intervention versus standard care. *Med J Aust.* 1998;169(10):515-8.

1380. Jette AM, Harris BA, Cleary PD, Campion EW. Functional recovery after hip fracture. *Arch Phys Med Rehabil.* 1987;68(10):735-40.

1381. Tsauo J, Leu, WS, Chen, YT, Yang, RS. Effects on function and quality of life of postoperative home-based physical therapy for patients with hip fracture. *Arch Phys Med Rehabil.* 2005;86(10):1953-7.

1382. Binder E, Sinacore D, Schechtman K, Brown M. Effects of intensive exercise after hip fracture: results from a randomized controlled trial. *AGS Annual Meeting*. 2003S232.

1383. Lauridsen UB, de la Cour BB, Gottschalck L, Svensson BH. Intensive physical therapy after hip fracture. A randomised clinical trial. *Dan Med Bull*. 2002;49(1):70-2.

1384. Gogia PP, Christensen CM, Schmidt C. Total hip replacement in patients with osteoarthritis of the hip: improvement in pain and functional status. *Orthopedics*. 1994;17(2):145-50.

1385. Brander VA, Malhotra S, Jet J, Heinemann AW, Stulberg SD. Outcome of hip and knee arthroplasty in persons aged 80 years and older. *Clin Orthop Relat Res.* 1997(345):67-78.

1386. Sashika H, Matsuba Y, Watanabe Y. Home program of physical therapy: effect on disabilities of patients with total hip arthroplasty. *Arch Phys Med Rehabil.* 1996;77(3):273-7.

1387. Wilcock GK. Benefits of total hip replacement to older patients and the community. *Br Med J*. 1978;2(6129):37-9.

1388. Unlu E, Eksioglu E, Aydog E, Aydog ST, Atay G. The effect of exercise on hip muscle strength, gait speed and cadence in patients with total hip arthroplasty: a randomized controlled study. *Clin Rehabil.* 2007;21(8):706-11. 1389. Sherrington C, Lord SR, Herbert RD. A randomized controlled trial of weight-bearing versus non-weight-bearing exercise for improving physical ability after usual care for hip fracture. *Arch Phys Med Rehabil.* 2004;85(5):710-6.

1390. Kuster MS. Exercise recommendations after total joint replacement: a review of the current literature and proposal of scientifically based guidelines. *Sports Med.* 2002;32(7):433-45.

1391. Melhorn J, Ackerman W. *Guides to the Evaluation of Disease and Injury Causation*. Chicago: AMA Press; 2008.

1392. Glass L. Occupational Medicine Practice Guidelines: Evaluation and Mangement of Common Health *Problems and Functional Recovery in Workers, Second Edition*. Elk Grove Village: American College of Occupational and Environmental Medicine; 2004.

1393. Hegmann K. Occupational Medicine Practice Guidelines: Evaluation and Mangement of Common Health Problems and Functional Recovery in Workers, Second Edition, 2008 Revision. Elk Grove Village: American College of Occupational and Environmental Medicine; 2008.

1394. Healy WL, Iorio R, Lemos MJ. Athletic activity after total knee arthroplasty. *Clin Orthop Relat Res.* 2000(380):65-71.

1395. Dubs L, Gschwend N, Munzinger U. Sport after total hip arthroplasty. *Arch Orthop Trauma Surg.* 1983;101(3):161-9.

1396. Huddleston HD. Femoral lysis after cemented hip arthroplasty. J Arthroplasty. 1988;3(4):285-97.

1397. Suarez J, Arguelles J, Costales M, Arechaga C, Cabeza F, Vijande M. Factors influencing the return to work of patients after hip replacement and rehabilitation. *Arch Phys Med Rehabil*. 1996;77(3):269-72.

1398. Fishbain DA, Cutler RB, Rosomoff HL, Rosomoff RS. Are opioid-dependent/tolerant patients impaired in driving-related skills? A structured evidence-based review. *J Pain Symptom Manage*. 2003;25(6):559-77.

1399. Ballantyne JC. Opioid analgesia: perspectives on right use and utility. *Pain Physician*. 2007;10(3):479-91.
1400. Manchikanti L, Giordano J, Boswell MV, Fellows B, Manchukonda R, Pampati V. Psychological factors as

predictors of opioid abuse and illicit drug use in chronic pain patients. J Opioid Manag. 2007;3(2):89-100. 1401. Savage S, Covington E, Heit H, et al. Definitions Related to the Use of Opioids for the Treatment of Pain: A Consensus Statement from the American Academy of Pain Medicine, American Pain Society, and the American Society of Addiction Medicine. Glenview; 2001.

1402. Flor H, Birbaumer N. Comparison of the efficacy of electromyographic biofeedback, cognitive-behavioral therapy, and conservative medical interventions in the treatment of chronic musculoskeletal pain. *J Consult Clin Psychol.* 1993;61(4):653-8.

1403. American Physical Therapy Association. Guidelines: Occupational Health Physical Therapy: Work Conditioning and Work Hardening Programs.

www.apta.org/AM/Template.cfm?Section=Policies\_and\_Bylaws&TEMPLATE=/CM/ContentDisplay.cfm&CONTENT ID=26229.

1404. Niemeyer LO, Jacobs K, Reynolds-Lynch K, Bettencourt C, Lang S. Work hardening: past, present, and future--the work programs special interest section national work-hardening outcome study. *Am J Occup Ther.* 1994;48(4):327-39.

1405. Lechner DE. Work hardening and work conditioning interventions: do they affect disability? *Phys Ther*. 1994;74(5):471-93.

1406. Haig AJ, Linton P, McIntosh M, Moneta L, Mead PB. Aggressive early medical management by a specialist in physical medicine and rehabilitation: effect on lost time due to injuries in hospital employees. *J Occup Med.* 1990;32(3):241-4.

1407. Jordan A, Bendix T, Nielsen H, Hansen FR, Host D, Winkel A. Intensive training, physiotherapy, or manipulation for patients with chronic neck pain. A prospective, single-blinded, randomized clinical trial. *Spine (Phila Pa 1976)*. 1998;23(3):311-8; discussion 9.

1408. Staal JB, Hlobil H, Twisk JW, Smid T, Koke AJ, van Mechelen W. Graded activity for low back pain in occupational health care: a randomized, controlled trial. *Ann Intern Med.* 2004;140(2):77-84.

1409. Fairbank J, Frost H, Wilson-MacDonald J, Yu LM, Barker K, Collins R. Randomised controlled trial to compare surgical stabilisation of the lumbar spine with an intensive rehabilitation programme for patients with chronic low back pain: the MRC spine stabilisation trial. *Br Med J*. 2005;330(7502):1233.

1410. Haldorsen EM, Grasdal AL, Skouen JS, Risa AE, Kronholm K, Ursin H. Is there a right treatment for a particular patient group? Comparison of ordinary treatment, light multidisciplinary treatment, and extensive multidisciplinary treatment for long-term sick-listed employees with musculoskeletal pain. *Pain.* 2002;95(1-2):49-63.
1411. Jensen IB, Bergstrom G, Ljungquist T, Bodin L. A 3-year follow-up of a multidisciplinary rehabilitation programme for back and neck pain. *Pain.* 2005;115(3):273-83.

1412. Lindstrom I, Ohlund C, Eek C, Wallin L, Peterson LE, Nachemson A. Mobility, strength, and fitness after a graded activity program for patients with subacute low back pain. A randomized prospective clinical study with a behavioral therapy approach. *Spine (Phila Pa 1976)*. 1992;17(6):641-52.

1413. Anema JR, Steenstra IA, Bongers PM, et al. Multidisciplinary rehabilitation for subacute low back pain: graded activity or workplace intervention or both? A randomized controlled trial. *Spine (Phila Pa 1976)*. 2007;32(3):291-8; discussion 9-300.

1414. Loisel P, Abenhaim L, Durand P, et al. A population-based, randomized clinical trial on back pain management. *Spine (Phila Pa 1976)*. 1997;22(24):2911-8.

1415. de Beer Jde V, Winemaker M, Donnelly G, et al. Efficacy and safety of controlled-release oxycodone and standard therapies for postoperative pain after knee or hip replacement. *Can J Surg.* 2005;48(4):277-83.

1416. Bianconi M, Ferraro L, Traina GC, et al. Pharmacokinetics and efficacy of ropivacaine continuous wound instillation after joint replacement surgery. *Br J Anaesth*. 2003;91(6):830-5.

1417. Murdoch JA, Dickson UK, Wilson PA, Berman JS, Gad-Elrab RR, Scott NB. The efficacy and safety of three concentrations of levobupivacaine administered as a continuous epidural infusion in patients undergoing orthopedic surgery. *Anesth Analg.* 2002;94(2):438-44, table of contents.

1418. Gao F, Waters B, Seager J, Dowling C, Vickers MD. Comparison of bupivacaine plus buprenorphine with bupivacaine alone by caudal blockade for post-operative pain relief after hip and knee arthroplasty. *Eur J Anaesthesiol.* 1995;12(5):471-6.

1419. Foss NB, Kristensen BB, Bundgaard M, et al. Fascia iliaca compartment blockade for acute pain control in hip fracture patients: a randomized, placebo-controlled trial. *Anesthesiology*. 2007;106(4):773-8.

1420. Bogoch ER, Henke M, Mackenzie T, Olschewski E, Mahomed NN. Lumbar paravertebral nerve block in the management of pain after total hip and knee arthroplasty: a randomized controlled clinical trial. *J Arthroplasty*. 2002;17(4):398-401.

1421. Stevens RD, Van Gessel E, Flory N, Fournier R, Gamulin Z. Lumbar plexus block reduces pain and blood loss associated with total hip arthroplasty. *Anesthesiology*. 2000;93(1):115-21.

1422. Siddiqui ZI, Cepeda MS, Denman W, Schumann R, Carr DB. Continuous lumbar plexus block provides improved analgesia with fewer side effects compared with systemic opioids after hip arthroplasty: a randomized controlled trial. *Reg Anesth Pain Med.* 2007;32(5):393-8.

1423. Biboulet P, Morau D, Aubas P, Bringuier-Branchereau S, Capdevila X. Postoperative analgesia after totalhip arthroplasty: Comparison of intravenous patient-controlled analgesia with morphine and single injection of femoral nerve or psoas compartment block. a prospective, randomized, double-blind study. *Reg Anesth Pain Med.* 2004;29(2):102-9. 1424. Mannion S, Hayes I, Loughnane F, Murphy DB, Shorten GD. Intravenous but not perineural clonidine prolongs postoperative analgesia after psoas compartment block with 0.5% levobupivacaine for hip fracture surgery. *Anesth Analg.* 2005;100(3):873-8, table of contents.

1425. Fournier R, Van Gessel E, Gaggero G, Boccovi S, Forster A, Gamulin Z. Postoperative analgesia with "3in-1" femoral nerve block after prosthetic hip surgery. *Can J Anaesth*. 1998;45(1):34-8.

1426. Mannion S, O'Callaghan S, Murphy DB, Shorten GD. Tramadol as adjunct to psoas compartment block with levobupivacaine 0.5%: a randomized double-blinded study. *Br J Anaesth*. 2005;94(3):352-6.

1427. Reiter A, Zulus E, Hartmann T, Hoerauf K. Preoperative oral administration of fast-release morphine sulfate reduces postoperative piritramide consumption. *Wien Klin Wochenschr*. 2003;115(12):417-20.

1428. O'Sullivan G, Bullingham RE, McQuay HJ, et al. A comparison of intramuscular and sublingual

buprenorphine, intramuscular morphine and placebo as premedication. *Anaesthesia*. 1983;38(10):977-84.

1429. Manoir BD, Bourget P, Langlois M, et al. Evaluation of the pharmacokinetic profile and analgesic efficacy of oral morphine after total hip arthroplasty. *Eur J Anaesthesiol*. 2006;23(9):748-54.

1430. Tarradell R, Pol O, Farre M, Barrera E, Puig MM. Respiratory and analgesic effects of meperidine and tramadol in patients undergoing orthopedic surgery. *Methods Find Exp Clin Pharmacol.* 1996;18(3):211-8.
1431. Stubhaug A, Grimstad J, Breivik H. Lack of analgesic effect of 50 and 100 mg oral tramadol after orthopaedic surgery: a randomized, double-blind, placebo and standard active drug comparison. *Pain*.

1995;62(1):111-8.

1432. Gimbel J, Ahdieh H. The efficacy and safety of oral immediate-release oxymorphone for postsurgical pain. *Anesth Analg.* 2004;99(5):1472-7; table of contents.

1433. Ashburn MA, Lind GH, Gillie MH, de Boer AJ, Pace NL, Stanley TH. Oral transmucosal fentanyl citrate (OTFC) for the treatment of postoperative pain. *Anesth Analg.* 1993;76(2):377-81.

1434. Bourke M, Hayes A, Doyle M, McCarroll M. A comparison of regularly administered sustained release oral morphine with intramuscular morphine for control of postoperative pain. *Anesth Analg.* 2000;90(2):427-30.

1435. Murphy DF, MacGrath P, Stritch M. Postoperative analgesia in hip surgery. A controlled comparison of epidural buprenorphine with intramuscular morphine. *Anaesthesia*. 1984;39(2):181-3.

1436. Frater RA, Moores MA, Parry P. Analgesia-induced respiratory depression: comparison of meptazinol and morphine in the postoperative period. *Br J Anaesth.* 1989;63(3):260-5.

1437. Robinson SL, Rowbotham DJ, Smith G. Morphine compared with diamorphine. A comparison of dose requirements and side-effects after hip surgery. *Anaesthesia*. 1991;46(7):538-40.

1438. Love DR, Owen H, Ilsley AH, Plummer JL, Hawkins RM, Morrison A. A comparison of variable-dose patient-controlled analgesia with fixed-dose patient-controlled analgesia. *Anesth Analg.* 1996;83(5):1060-4. 1439. Pang WW, Mok MS, Lin CH, Yang TF, Huang MH. Comparison of patient-controlled analgesia (PCA) with tramadol or morphine. *Can J Anaesth.* 1999;46(11):1030-5.

1440. Ashburn MA, Stephen RL, Ackerman E, et al. Iontophoretic delivery of morphine for postoperative analgesia. *J Pain Symptom Manage*. 1992;7(1):27-33.

1441. Hartrick CT, Bourne MH, Gargiulo K, Damaraju CV, Vallow S, Hewitt DJ. Fentanyl iontophoretic transdermal system for acute-pain management after orthopedic surgery: a comparative study with morphine intravenous patient-controlled analgesia. *Reg Anesth Pain Med.* 2006;31(6):546-54.

1442. Bugter ML, Dirksen R, Jhamandas K, Slappendel R, Weber EW, Milne B. Prior ibuprofen exposure does not augment opioid drug potency or modify opioid requirements for pain inhibition in total hip surgery. *Can J Anaesth.* 2003;50(5):445-9.

1443. Dahl V, Raeder JC, Drosdal S, Wathne O, Brynildsrud J. Prophylactic oral ibuprofen or ibuprofen-codeine versus placebo for postoperative pain after primary hip arthroplasty. *Acta Anaesthesiol Scand*. 1995;39(3):323-6. 1444. Sinatra RS, Jahr JS, Reynolds LW, Viscusi ER, Groudine SB, Payen-Champenois C. Efficacy and safety of single and repeated administration of 1 gram intravenous acetaminophen injection (paracetamol) for pain management after major orthopedic surgery. *Anesthesiology*. 2005;102(4):822-31.

1445. Zhou TJ, Tang J, White PF. Propacetamol versus ketorolac for treatment of acute postoperative pain after total hip or knee replacement. *Anesth Analg.* 2001;92(6):1569-75.

1446. Etches RC, Warriner CB, Badner N, et al. Continuous intravenous administration of ketorolac reduces pain and morphine consumption after total hip or knee arthroplasty. *Anesth Analg.* 1995;81(6):1175-80.

1447. Alexander R, El-Moalem HE, Gan TJ. Comparison of the morphine-sparing effects of diclofenac sodium and ketorolac tromethamine after major orthopedic surgery. *J Clin Anesth.* 2002;14(3):187-92.

1448. Fogarty DJ, O'Hanlon JJ, Milligan KR. Intramuscular ketorolac following total hip replacement with spinal anaesthesia and intrathecal morphine. *Acta Anaesthesiol Scand.* 1995;39(2):191-4.

1449. Johansson S, Josefsson G, Malstam J, Lindstrand A, Stenstroem A. Analgesic efficacy and safety comparison of ketorolac tromethamine and Doleron for the alleviation of orthopaedic post-operative pain. *J Int Med Res.* 1989;17(4):324-32.

1450. Connelly NR, Reuben SS, Albert M, Page D. Use of preincisional ketorolac in hernia patients: intravenous versus surgical site. *Reg Anesth.* 1997;22(3):229-32.

1451. Chan VW, Clark AJ, Davis JC, Wolf RS, Kellstein D, Jayawardene S. The post-operative analgesic efficacy and tolerability of lumiracoxib compared with placebo and naproxen after total knee or hip arthroplasty. *Acta Anaesthesiol Scand*. 2005;49(10):1491-500.

1452. Camu F, Beecher T, Recker DP, Verburg KM. Valdecoxib, a COX-2-specific inhibitor, is an efficacious, opioid-sparing analgesic in patients undergoing hip arthroplasty. *Am J Ther.* 2002;9(1):43-51.

1453. Malan TP, Jr., Marsh G, Hakki SI, Grossman E, Traylor L, Hubbard RC. Parecoxib sodium, a parenteral cyclooxygenase 2 selective inhibitor, improves morphine analgesia and is opioid-sparing following total hip arthroplasty. *Anesthesiology*. 2003;98(4):950-6.

1454. Buvanendran A, Kroin JS, Berger RA, et al. Upregulation of prostaglandin E2 and interleukins in the central nervous system and peripheral tissue during and after surgery in humans. *Anesthesiology*. 2006;104(3):403-10. 1455. Hommeril JL, Bernard JM, Gouin F, Pinaud M. Ketoprofen for pain after hip and knee arthroplasty. *Br J Anaesth*. 1994;72(4):383-7.

1456. Vathana P, Pakpianpairoj C, Prasartritha T. Comparison of ketoprofen and morphine for post-operative analgesia in orthopaedic patients. *J Med Assoc Thai*. 1998;81(4):283-7.

1457. Serpell MG, Thomson MF. Comparison of piroxicam with placebo in the management of pain after total hip replacement. *Br J Anaesth*. 1989;63(3):354-6.

1458. Boeckstyns ME, Backer M, Petersen EM, Hoj I, Albrechtsen H, Andersen HB. Piroxicam spares buprenorphine after total joint replacement. Controlled study of pain treatment in 81 patients. *Acta Orthop Scand*. 1992;63(6):658-60.

1459. Moiniche S, Hjortso NC, Hansen BL, et al. The effect of balanced analgesia on early convalescence after major orthopaedic surgery. *Acta Anaesthesiol Scand*. 1994;38(4):328-35.

1460. Segstro R, Morley-Forster PK, Lu G. The efficacy of indomethacin as a postoperative analgesic following total hip arthroplasty. *Can J Anaesth*. 1990;37(4 Pt 2):S41.

1461. Segstro R, Morley-Forster PK, Lu G. Indomethacin as a postoperative analgesic for total hip arthroplasty. *Can J Anaesth.* 1991;38(5):578-81.

1462. Buchanan JM, Baldasera J, Poole PH, Halshaw J, Dallard JK. Postoperative pain relief; a new approach: narcotics compared with non-steroidal anti-inflammatory drugs. *Ann R Coll Surg Engl.* 1988;70(5):332-5.

1463. Kerrick JM, Fine PG, Lipman AG, Love G. Low-dose amitriptyline as an adjunct to opioids for postoperative orthopedic pain: a placebo-controlled trial. *Pain*. 1993;52(3):325-30.

1464. Viscusi ER, Martin G, Hartrick CT, Singla N, Manvelian G. Forty-eight hours of postoperative pain relief after total hip arthroplasty with a novel, extended-release epidural morphine formulation. *Anesthesiology*. 2005;102(5):1014-22.

1465. Reiz S, Ahlin J, Ahrenfeldt B, Andersson M, Andersson S. Epidural morphine for postoperative pain relief. *Acta Anaesthesiol Scand.* 1981;25(2):111-4.

1466. Kilickan L, Toker K. The effects of preemptive intravenous versus preemptive epidural morphine on postoperative analgesia and surgical stress response after orthopaedic procedures. *Minerva Anestesiol.* 2000;66(9):649-55.

1467. White MJ, Berghausen EJ, Dumont SW, et al. Side effects during continuous epidural infusion of morphine and fentanyl. *Can J Anaesth.* 1992;39(6):576-82.

1468. Gustafsson LL, Johannisson J, Garle M. Extradural and parenteral pethidine as analgesia after total hip replacement: effects and kinetics. A controlled clinical study. *Eur J Clin Pharmacol.* 1986;29(5):529-34.

1469. Foss NB, Kristensen MT, Kristensen BB, Jensen PS, Kehlet H. Effect of postoperative epidural analgesia on rehabilitation and pain after hip fracture surgery: a randomized, double-blind, placebo-controlled trial. *Anesthesiology*. 2005;102(6):1197-204.

1470. Berti M, Fanelli G, Casati A, Lugani D, Aldegheri G, Torri G. Comparison between epidural infusion of fentanyl/bupivacaine and morphine/bupivacaine after orthopaedic surgery. *Can J Anaesth*. 1998;45(6):545-50. 1471. Gedney JA, Liu EH. Side-effects of epidural infusions of opioid bupivacaine mixtures. *Anaesthesia*. 1998;53(12):1148-55.

1472. Modig J, Paalzow L. A comparison of epidural morphine and epidural bupivacaine for postoperative pain relief. *Acta Anaesthesiol Scand.* 1981;25(5):437-41.

1473. Wilder-Smith CH, Wilder-Smith OH, Farschtschian M, Naji P. Preoperative adjuvant epidural tramadol: the effect of different doses on postoperative analgesia and pain processing. *Acta Anaesthesiol Scand*. 1998;42(3):299-305.

1474. Wulf H, Biscoping J, Beland B, Bachmann-Mennenga B, Motsch J. Ropivacaine epidural anesthesia and analgesia versus general anesthesia and intravenous patient-controlled analgesia with morphine in the

perioperative management of hip replacement. Ropivacaine Hip Replacement Multicenter Study Group. *Anesth Analg.* 1999;89(1):111-6.

1475. Turner G, Blake D, Buckland M, et al. Continuous extradural infusion of ropivacaine for prevention of postoperative pain after major orthopaedic surgery. *Br J Anaesth*. 1996;76(5):606-10.

1476. Rauck RL, Eisenach JC, Jackson K, Young LD, Southern J. Epidural clonidine treatment for refractory reflex sympathetic dystrophy. *Anesthesiology*. 1993;79(6):1163-9; discussion 27A.

1477. Carabine UA, Milligan KR, Mulholland D, Moore J. Extradural clonidine infusions for analgesia after total hip replacement. *Br J Anaesth.* 1992;68(4):338-43.

1478. Dobrydnjov I, Axelsson K, Gupta A, Lundin A, Holmstrom B, Granath B. Improved analgesia with clonidine when added to local anesthetic during combined spinal-epidural anesthesia for hip arthroplasty: a double-blind, randomized and placebo-controlled study. *Acta Anaesthesiol Scand*. 2005;49(4):538-45.

1479. Fournier R, Weber A, Gamulin Z. Intrathecal sufentanil is more potent than intravenous for postoperative analgesia after total-hip replacement. *Reg Anesth Pain Med.* 2005;30(3):249-54.

1480. Maurer K, Bonvini JM, Ekatodramis G, Serena S, Borgeat A. Continuous spinal anesthesia/analgesia vs. single-shot spinal anesthesia with patient-controlled analgesia for elective hip arthroplasty. *Acta Anaesthesiol Scand*. 2003;47(7):878-83.

1481. Niemi L, Pitkanen M, Tuominen M, Rosenberg PH. Technical problems and side effects associated with continuous intrathecal or epidural post-operative analgesia in patients undergoing hip arthroplasty. *Eur J Anaesthesiol.* 1994;11(6):469-74.

1482. Grace D, Fee JP. A comparison of intrathecal morphine-6-glucuronide and intrathecal morphine sulfate as analgesics for total hip replacement. *Anesth Analg.* 1996;83(5):1055-9.

1483. Fournier R, Van Gessel E, Weber A, Gamulin Z. A comparison of intrathecal analgesia with fentanyl or sufentanil after total hip replacement. *Anesth Analg.* 2000;90(4):918-22.

1484. Niemi L, Pitkanen MT, Tuominen MK, Rosenberg PH. Comparison of intrathecal fentanyl infusion with intrathecal morphine infusion or bolus for postoperative pain relief after hip arthroplasty. *Anesth Analg.* 1993;77(1):126-30.

1485. Lydon AM, Cooke T, Duggan F, Shorten GD. Delayed postoperative gastric emptying following intrathecal morphine and intrathecal bupivacaine. *Can J Anaesth*. 1999;46(6):544-9.

1486. Grace D, Milligan KR, Morrow BJ, Fee JP. Co-administration of pethidine and clonidine: a spinal anaesthetic technique for total hip replacement. *Br J Anaesth*. 1994;73(5):628-33.

1487. Reay BA, Semple AJ, Macrae WA, MacKenzie N, Grant IS. Low-dose intrathecal diamorphine analgesia following major orthopaedic surgery. *Br J Anaesth*. 1989;62(3):248-52.

1488. Fogarty DJ, Milligan KR. Postoperative analgesia following total hip replacement: a comparison of intrathecal morphine and diamorphine. *J R Soc Med.* 1995;88(2):70-2.

1489. Fournier R, Van Gessel E, Macksay M, Gamulin Z. Onset and offset of intrathecal morphine versus nalbuphine for postoperative pain relief after total hip replacement. *Acta Anaesthesiol Scand.* 2000;44(8):940-5.
1490. Grace D, Bunting H, Milligan KR, Fee JP. Postoperative analgesia after co-administration of clonidine and morphine by the intrathecal route in patients undergoing hip replacement. *Anesth Analg.* 1995;80(1):86-91.
1491. Fogarty DJ, Carabine UA, Milligan KR. Comparison of the analgesic effects of intrathecal clonidine and intrathecal morphine after spinal anaesthesia in patients undergoing total hip replacement. *Br J Anaesth.*

1993;71(5):661-4.

1492. Gentili M, Bonnet F. Spinal clonidine produces less urinary retention than spinal morphine. *Br J Anaesth*. 1996;76(6):872-3.

1493. Strebel S, Gurzeler JA, Schneider MC, Aeschbach A, Kindler CH. Small-dose intrathecal clonidine and isobaric bupivacaine for orthopedic surgery: a dose-response study. *Anesth Analg.* 2004;99(4):1231-8, table of contents.

1494. Atanassoff PG, Hartmannsgruber MW, Thrasher J, et al. Ziconotide, a new N-type calcium channel blocker, administered intrathecally for acute postoperative pain. *Reg Anesth Pain Med*. 2000;25(3):274-8.

1495. Pitkanen MT, Niemi L, Tuominen MK, Rosenberg PH. Effect of tropisetron, a 5-HT3 receptor antagonist, on analgesia and nausea after intrathecal morphine. *Br J Anaesth*. 1993;71(5):681-4.

1496. Johnson A, Bengtsson M, Soderlind K, Lofstrom JB. Influence of intrathecal morphine and naloxone intervention on postoperative ventilatory regulation in elderly patients. *Acta Anaesthesiol Scand.* 1992;36(5):436-44.

1497. Grattidge P. Nausea and vomiting after major arthroplasty with spinal anaesthesia including morphine: a randomised trial of subhypnotic propofol infusion as prophylaxis. *Acta Anaesthesiol Scand*. 1998;42(1):124-7. 1498. Barron DW. Evaluation of anti-emetics in association with intrathecal diamorphine. *Ann R Coll Surg Engl*. 1984;66(5):359-60.

1499. Bernard JM, Pinaud M, Francois T, Babin M, Macquin-Mavier I, Letenneur J. Deliberate hypotension with nicardipine or nitroprusside during total hip arthroplasty. *Anesth Analg.* 1991;73(3):341-5.